1
|
Cadamuro F, Ferrario M, Akbari R, Antonini C, Nicotra F, Russo L. Tyrosine glucosylation of collagen films exploiting Horseradish Peroxidase (HRP). Carbohydr Res 2023; 533:108938. [PMID: 37713734 DOI: 10.1016/j.carres.2023.108938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
The development of human tissue models for regenerative medicine and animal-free drug screening requires glycosylated biomaterials such as collagen. An easy and fast biomaterial glycosylation method exploiting Horseradish Peroxidase (HRP) phenol coupling reaction is proposed. The protocol is adaptable to any polymer functionalized with phenol residues or tyrosine containing proteins. As a model the tyrosine residues on collagen films were functionalized with salidroside, a natural β-glucoside with a phenol in the aglycone. Scanning Electron Microscope (SEM) and contact angle analysis revealed the influence of glycosylation on the sample's morphology and wettability. Preliminary biological evaluation showed the cytocompatibility of the glucosylated collagen films.
Collapse
Affiliation(s)
- Francesca Cadamuro
- School of Medicine and Surgery, University of Milano-Bicocca, 20854, Vedano al Lambro, Italy.
| | - Matteo Ferrario
- School of Medicine and Surgery, University of Milano-Bicocca, 20854, Vedano al Lambro, Italy.
| | - Raziyeh Akbari
- Department of Materials Science, University of Milano-Bicocca, 20126, Milan, Italy.
| | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, 20126, Milan, Italy.
| | - Francesco Nicotra
- School of Medicine and Surgery, University of Milano-Bicocca, 20854, Vedano al Lambro, Italy.
| | - Laura Russo
- School of Medicine and Surgery, University of Milano-Bicocca, 20854, Vedano al Lambro, Italy; CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, H91TK33, Galway, Ireland.
| |
Collapse
|
2
|
Cadamuro F, Nicotra F, Russo L. 3D printed tissue models: From hydrogels to biomedical applications. J Control Release 2023; 354:726-745. [PMID: 36682728 DOI: 10.1016/j.jconrel.2023.01.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
The development of new advanced constructs resembling structural and functional properties of human organs and tissues requires a deep knowledge of the morphological and biochemical properties of the extracellular matrices (ECM), and the capacity to reproduce them. Manufacturing technologies like 3D printing and bioprinting represent valuable tools for this purpose. This review will describe how morphological and biochemical properties of ECM change in different tissues, organs, healthy and pathological states, and how ECM mimics with the required properties can be generated by 3D printing and bioprinting. The review describes and classifies the polymeric materials of natural and synthetic origin exploited to generate the hydrogels acting as "inks" in the 3D printing process, with particular emphasis on their functionalization allowing crosslinking and conjugation with signaling molecules to develop bio-responsive and bio-instructive ECM mimics.
Collapse
Affiliation(s)
- Francesca Cadamuro
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY Galway, Ireland.
| |
Collapse
|
3
|
Guizzardi R, Zamuner A, Brun P, Dettin M, Natalello A, Cipolla L. Thymosin‐β4, and Human Vitronectin peptides Grafted to Collagen Tune Adhesion or VEGF Gene Expression in Human Cell Lines**. ChemistrySelect 2021. [DOI: 10.1002/slct.202102757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Roberto Guizzardi
- Dept. of Biotechnology and Biosciences University of Milano-Bicocca P.zza della Scienza 2 20126 Milano Italy
- Present address: Tecnoservizi ambientali s.r.l
| | - Annj Zamuner
- Dept. of Industrial Engineering University of Padova Via Marzolo, 9 35131 Padova Italy
| | - Paola Brun
- Dept. of Molecular Medicine University of Padova Via Gabelli, 63 35121 Padova Italy
| | - Monica Dettin
- Dept. of Industrial Engineering University of Padova Via Marzolo, 9 35131 Padova Italy
| | - Antonino Natalello
- Dept. of Biotechnology and Biosciences University of Milano-Bicocca P.zza della Scienza 2 20126 Milano Italy
| | - Laura Cipolla
- Dept. of Biotechnology and Biosciences University of Milano-Bicocca P.zza della Scienza 2 20126 Milano Italy
| |
Collapse
|
4
|
Neoglycosylated Collagen: Effect on Neuroblastoma F-11 Cell Lines. Molecules 2020; 25:molecules25194361. [PMID: 32977424 PMCID: PMC7583933 DOI: 10.3390/molecules25194361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
The regeneration of the nervous system is a challenging task. Currently, regenerative medicine approaches that exploit nature-inspired cues are being studied and hold great promise. The possibility to use protein-based matrices functionalized with small oligo- and monosaccharides is of interest since these can be finely tuned to better mimic the native environment. Collagen has been selected as a promising material that has the potential to be further tailored to incorporate carbohydrates in order to drive cell behavior towards neuroregeneration. Indeed, the grafting of carbohydrates to collagen 2D matrices is proved to enhance its biological significance. In the present study, collagen 2D matrices were grafted with different carbohydrate epitopes, and their potential to drive F-11 neuroblastoma cells towards neuronal differentiation was evaluated. Collagen functionalized with α-glucosides was able to differentiate neuroblastoma cells into functional neurons, while sialyl α-(2→6)-galactosides stimulated cell proliferation.
Collapse
|
5
|
Cheng K, Zhu Y, Wang D, Li Y, Xu X, Cai H, Chu H, Li J, Zhang D. Biomimetic synthesis of chondroitin sulfate-analogue hydrogels for regulating osteogenic and chondrogenic differentiation of bone marrow mesenchymal stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111368. [PMID: 32919697 DOI: 10.1016/j.msec.2020.111368] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023]
Abstract
As a typical representative of crucial glycosaminoglycans (GAGs), chondroitin sulfate (CS) with sulfonated polysaccharide in structures extensively exists in the extracellular matrix (ECM) and exhibits peculiar bioactivity on the regulation of cells behaviors and fates (e.g. proliferation and differentiation) in organisms. Nevertheless, some intrinsic disadvantages of natural CS mainly ascribe to the intricate structure and inhomogeneous composition (especially the uncontrollable sulfonate degrees), resulting in overt restrictions on its physiological functions and applications. Although recent bionic synthesis of artificial GAGs analogues at the molecular level have already provides an efficient strategy to reconstruct GAG for regulating the cellular behaviors and fates, it still remains great challenges to rationally design and synthesize GAGs analogues with special composition and structure for precisely mimicking ECM. Simultaneously, the relevant regulation process of GAG analogues on cell fate needs to be further studied as well. Herein, chondroitin sulfate-analogue (CS-analogue) hydrogels with diverse contents of saccharide and sulfonate units in the networks were fabricated through photo-polymerization and then characterized by Fourier transform infrared (FT-IR) spectroscopy, zeta potential and scanning electron microscope (SEM). Additionally, CS-analogue hydrogels with proper mechanical properties exhibited favorable swelling, degradation performance and prominent cytocompatibility. According to cell cultivation results, CS-analogue hydrogel with a certain proportion of saccharide and sulfonate units presented preferable promotion on the adhesion, spreading, proliferation and differentiation of bone marrow mesenchymal stem cells (BMSCs), shedding light on the significance of saccharide and sulfonate units in regulating cell behaviors. Furthermore, BMSCs cultivated with CS-analogue hydrogels under different culture conditions were also systematically investigated, revealing that with the help of cultivation environment CS-analogue hydrogels owned the remarkable capacity of directing either chondrogenic or osteogenic differentiation of BMSCs. Therefore, it is envisioned that versatile CS-analogue hydrogels would have promising application prospects in the biomedical and clinical fields.
Collapse
Affiliation(s)
- Kai Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yalin Zhu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dingqian Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yichen Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyuan Xu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Huijuan Cai
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hetao Chu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Dongyue Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Kightlinger W, Warfel KF, DeLisa MP, Jewett MC. Synthetic Glycobiology: Parts, Systems, and Applications. ACS Synth Biol 2020; 9:1534-1562. [PMID: 32526139 PMCID: PMC7372563 DOI: 10.1021/acssynbio.0c00210] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Protein glycosylation, the attachment of sugars to amino acid side chains, can endow proteins with a wide variety of properties of great interest to the engineering biology community. However, natural glycosylation systems are limited in the diversity of glycoproteins they can synthesize, the scale at which they can be harnessed for biotechnology, and the homogeneity of glycoprotein structures they can produce. Here we provide an overview of the emerging field of synthetic glycobiology, the application of synthetic biology tools and design principles to better understand and engineer glycosylation. Specifically, we focus on how the biosynthetic and analytical tools of synthetic biology have been used to redesign glycosylation systems to obtain defined glycosylation structures on proteins for diverse applications in medicine, materials, and diagnostics. We review the key biological parts available to synthetic biologists interested in engineering glycoproteins to solve compelling problems in glycoscience, describe recent efforts to construct synthetic glycoprotein synthesis systems, and outline exemplary applications as well as new opportunities in this emerging space.
Collapse
Affiliation(s)
- Weston Kightlinger
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Katherine F. Warfel
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| | - Matthew P. DeLisa
- Department
of Microbiology, Cornell University, 123 Wing Drive, Ithaca, New York 14853, United States
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 120 Olin Hall, Ithaca, New York 14853, United States
- Nancy
E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Weill Hall, Ithaca, New York 14853, United States
| | - Michael C. Jewett
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E136, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Tech B486, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Histological validation of adipogenic differentiation potential of ASC on collagen-based 2D scaffolds. Histochem Cell Biol 2020; 154:449-455. [PMID: 32666152 DOI: 10.1007/s00418-020-01902-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
Determination of the adipogenic potential and behavior of adipose-derived mesenchymal stem/stromal cells (ASCs) is particularly relevant for their potential clinical application in regenerative medicine, especially when regeneration is supported by biomaterials or scaffolds. Scaffolds need to be able to induce tissue repair and limit undesired adipogenic differentiation. Depending on the scaffold employed, determination of cell behavior may be hindered by material interference with staining, which will limit either cells identification or dye quantification. Collagen is a promising biomaterial in regenerative medicine, however, histological analysis of cells cultured on collagen-based scaffolds is challenging. Here we describe a new histological method based on iron hematoxylin combined with Oil red O (ORO) staining, for the determination of the adipogenic differentiation of ASCs cultivated on a collagen-based 2D scaffold. ASCs were seeded on collagen films or plastic, differentiated into adipocytes for 14 days, and then stained with either ORO or iron hematoxylin and ORO combined. The collagen films avidly absorbed the ORO dye; conventional staining and quantification by dye extraction failed to discriminate between differentiated and undifferentiated cells on the films. On the contrary, the iron hematoxylin-ORO combination provided a quantitative and more reliable determination of adipocytes based on single cell count. This method is particularly recommended for determining the adipogenic differentiation potential of ASCs and other cell types grown on highly absorptive materials that need to be validated for their potential use in bioengineering and regenerative medicine.
Collapse
|
8
|
Rebelo AL, Bizeau J, Russo L, Pandit A. Glycan-Functionalized Collagen Hydrogels Modulate the Glycoenvironment of a Neuronal Primary Culture. Biomacromolecules 2020; 21:2681-2694. [DOI: 10.1021/acs.biomac.0c00387] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ana Lúcia Rebelo
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland H91 W2TY
| | - Joëlle Bizeau
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland H91 W2TY
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland H91 W2TY
| |
Collapse
|
9
|
Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L. 3D Extracellular Matrix Mimics: Fundamental Concepts and Role of Materials Chemistry to Influence Stem Cell Fate. Biomacromolecules 2020; 21:1968-1994. [PMID: 32227919 DOI: 10.1021/acs.biomac.0c00045] [Citation(s) in RCA: 312] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Synthetic 3D extracellular matrices (ECMs) find application in cell studies, regenerative medicine, and drug discovery. While cells cultured in a monolayer may exhibit unnatural behavior and develop very different phenotypes and genotypes than in vivo, great efforts in materials chemistry have been devoted to reproducing in vitro behavior in in vivo cell microenvironments. This requires fine-tuning the biochemical and structural actors in synthetic ECMs. This review will present the fundamentals of the ECM, cover the chemical and structural features of the scaffolds used to generate ECM mimics, discuss the nature of the signaling biomolecules required and exploited to generate bioresponsive cell microenvironments able to induce a specific cell fate, and highlight the synthetic strategies involved in creating functional 3D ECM mimics.
Collapse
Affiliation(s)
- Julien Nicolas
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, , 92296 Châtenay-Malabry, France
| | - Sofia Magli
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Linda Rabbachin
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Susanna Sampaolesi
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
10
|
Vacchini M, Edwards R, Guizzardi R, Palmioli A, Ciaramelli C, Paiotta A, Airoldi C, La Ferla B, Cipolla L. Glycan Carriers As Glycotools for Medicinal Chemistry Applications. Curr Med Chem 2019; 26:6349-6398. [DOI: 10.2174/0929867326666190104164653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 11/07/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Carbohydrates are one of the most powerful and versatile classes of biomolecules that nature
uses to regulate organisms’ biochemistry, modulating plenty of signaling events within cells, triggering
a plethora of physiological and pathological cellular behaviors. In this framework, glycan carrier
systems or carbohydrate-decorated materials constitute interesting and relevant tools for medicinal
chemistry applications. In the last few decades, efforts have been focused, among others, on the development
of multivalent glycoconjugates, biosensors, glycoarrays, carbohydrate-decorated biomaterials
for regenerative medicine, and glyconanoparticles. This review aims to provide the reader with a general
overview of the different carbohydrate carrier systems that have been developed as tools in different
medicinal chemistry approaches relying on carbohydrate-protein interactions. Given the extent of
this topic, the present review will focus on selected examples that highlight the advancements and potentialities
offered by this specific area of research, rather than being an exhaustive literature survey of
any specific glyco-functionalized system.
Collapse
Affiliation(s)
- Mattia Vacchini
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Rana Edwards
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Roberto Guizzardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alessandro Palmioli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Carlotta Ciaramelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Alice Paiotta
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Cristina Airoldi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Barbara La Ferla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca Milano, Italy
| |
Collapse
|
11
|
Dozio SM, Montesi M, Campodoni E, Sandri M, Piattelli A, Tampieri A, Panseri S. Differences in osteogenic induction of human mesenchymal stem cells between a tailored 3D hybrid scaffold and a 2D standard culture. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:136. [PMID: 31802234 DOI: 10.1007/s10856-019-6346-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Many medical-related scientific discoveries arise from trial-error patterns where the processes involved must be refined and modified continuously before any product could be able to reach the final costumers. One of the elements affecting negatively these processes is the inaccuracy of two-dimension (2D) standard culture systems, carried over in plastic plates or similar, in replicating complex environments and patterns. Consequently, animal tests are required to validate every in vitro finding, at the expenses of more funds and ethical issues. A possible solution relies in the implementation of three-dimension (3D) culture systems as a fitting gear between the 2D tests and in vivo tests, aiming to reduce the negative in vivo outcomes. These 3D structures are depending from the comprehension of the extracellular matrix (ECM) and the ability to replicate it in vitro. In this article a comparison of efficacies between these two culture systems was taken as subject, human mesenchymal stem cells (hMSCs) was utilized and a hybrid scaffold made by a blend of chitosan, gelatin and biomineralized gelatin was used for the 3D culture system.
Collapse
Affiliation(s)
- Samuele M Dozio
- Institute of Science and Technology for Ceramics, National Research Council, ISTEC-CNR, Faenza, Italy.
- Scuola Superiore "G. d'Annunzio", University of Chieti-Pescara, Chieti, Italy.
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council, ISTEC-CNR, Faenza, Italy.
| | - Elisabetta Campodoni
- Institute of Science and Technology for Ceramics, National Research Council, ISTEC-CNR, Faenza, Italy
| | - Monica Sandri
- Institute of Science and Technology for Ceramics, National Research Council, ISTEC-CNR, Faenza, Italy
| | - Adriano Piattelli
- Scuola Superiore "G. d'Annunzio", University of Chieti-Pescara, Chieti, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, ISTEC-CNR, Faenza, Italy
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics, National Research Council, ISTEC-CNR, Faenza, Italy
| |
Collapse
|
12
|
A cell-free biosynthesis platform for modular construction of protein glycosylation pathways. Nat Commun 2019; 10:5404. [PMID: 31776339 PMCID: PMC6881289 DOI: 10.1038/s41467-019-12024-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 08/15/2019] [Indexed: 11/29/2022] Open
Abstract
Glycosylation plays important roles in cellular function and endows protein therapeutics with beneficial properties. However, constructing biosynthetic pathways to study and engineer precise glycan structures on proteins remains a bottleneck. Here, we report a modular, versatile cell-free platform for glycosylation pathway assembly by rapid in vitro mixing and expression (GlycoPRIME). In GlycoPRIME, glycosylation pathways are assembled by mixing-and-matching cell-free synthesized glycosyltransferases that can elaborate a glucose primer installed onto protein targets by an N-glycosyltransferase. We demonstrate GlycoPRIME by constructing 37 putative protein glycosylation pathways, creating 23 unique glycan motifs, 18 of which have not yet been synthesized on proteins. We use selected pathways to synthesize a protein vaccine candidate with an α-galactose adjuvant motif in a one-pot cell-free system and human antibody constant regions with minimal sialic acid motifs in glycoengineered Escherichia coli. We anticipate that these methods and pathways will facilitate glycoscience and make possible new glycoengineering applications. Constructing biosynthetic pathways to study and engineer glycoprotein structures is difficult. Here, the authors use GlycoPRIME, a cell-free workflow for mixing-and-matching glycosylation enzymes, to evaluate 37 putative glycosylation pathways and discover routes to 18 new glycoprotein structures
Collapse
|
13
|
Abstract
Glycans have been selected by nature for both structural and 'recognition' purposes. Taking inspiration from nature, nanomedicine exploits glycans not only as structural constituents of nanoparticles and nanostructured biomaterials but also as selective interactors of such glyco-nanotools. Surface glycosylation of nanoparticles finds application in targeting specific cells, whereas recent findings give evidence that the glycan content of cell microenvironment is able to induce the cell fate. This review will highlight the role of glycans in nanomedicine, schematizing the different uses and roles in drug-delivery systems and in biomaterials for regenerative medicine.
Collapse
|
14
|
Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 2018; 185:240-275. [PMID: 30261426 PMCID: PMC6445367 DOI: 10.1016/j.biomaterials.2018.09.028] [Citation(s) in RCA: 237] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
The development, maintenance of healthy bone and regeneration of injured tissue in the human body comprise a set of intricate and finely coordinated processes. However, an analysis of current bone regeneration strategies shows that only a small fraction of well-reported bone biology aspects has been used as inspiration and transposed into the development of therapeutic products. Specific topics that include inter-scale bone structural organization, developmental aspects of bone morphogenesis, bone repair mechanisms, role of specific cells and heterotypic cell contact in the bone niche (including vascularization networks and immune system cells), cell-cell direct and soluble-mediated contact, extracellular matrix composition (with particular focus on the non-soluble fraction of proteins), as well as mechanical aspects of native bone will be the main reviewed topics. In this Review we suggest a systematic parallelization of (i) fundamental well-established biology of bone, (ii) updated and recent advances on the understanding of biological phenomena occurring in native and injured tissue, and (iii) critical discussion of how those individual aspects have been translated into tissue regeneration strategies using biomaterials and other tissue engineering approaches. We aim at presenting a perspective on unexplored aspects of bone physiology and how they could be translated into innovative regeneration-driven concepts.
Collapse
Affiliation(s)
- Diana Lopes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Cláudia Martins-Cruz
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| |
Collapse
|
15
|
Graceffa V, Vinatier C, Guicheux J, Stoddart M, Alini M, Zeugolis DI. Chasing Chimeras - The elusive stable chondrogenic phenotype. Biomaterials 2018; 192:199-225. [PMID: 30453216 DOI: 10.1016/j.biomaterials.2018.11.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/27/2022]
Abstract
The choice of the best-suited cell population for the regeneration of damaged or diseased cartilage depends on the effectiveness of culture conditions (e.g. media supplements, three-dimensional scaffolds, mechanical stimulation, oxygen tension, co-culture systems) to induce stable chondrogenic phenotype. Herein, advances and shortfalls in in vitro, preclinical and clinical setting of various in vitro microenvironment modulators on maintaining chondrocyte phenotype or directing stem cells towards chondrogenic lineage are critically discussed. Chondrocytes possess low isolation efficiency, limited proliferative potential and rapid phenotypic drift in culture. Mesenchymal stem cells are relatively readily available, possess high proliferation potential, exhibit great chondrogenic differentiation capacity, but they tend to acquire a hypertrophic phenotype when exposed to chondrogenic stimuli. Embryonic and induced pluripotent stem cells, despite their promising in vitro and preclinical data, are still under-investigated. Although a stable chondrogenic phenotype remains elusive, recent advances in in vitro microenvironment modulators are likely to develop clinically- and commercially-relevant therapies in the years to come.
Collapse
Affiliation(s)
- Valeria Graceffa
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - Claire Vinatier
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Jerome Guicheux
- INSERMU1229, Regenerative Medicine and Skeleton (RMeS), University of Nantes, UFR Odontologie & CHU Nantes, PHU 4 OTONN, 44042 Nantes, France
| | - Martin Stoddart
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Mauro Alini
- AO Research Institute, Clavadelerstrasse 8, 7270 Davos, Switzerland
| | - Dimitrios I Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Galway, Ireland.
| |
Collapse
|
16
|
Abstract
The conjugation of biomolecules can impart materials with the bioactivity necessary to modulate specific cell behaviors. While the biological roles of particular polypeptide, oligonucleotide, and glycan structures have been extensively reviewed, along with the influence of attachment on material structure and function, the key role played by the conjugation strategy in determining activity is often overlooked. In this review, we focus on the chemistry of biomolecule conjugation and provide a comprehensive overview of the key strategies for achieving controlled biomaterial functionalization. No universal method exists to provide optimal attachment, and here we will discuss both the relative advantages and disadvantages of each technique. In doing so, we highlight the importance of carefully considering the impact and suitability of a particular technique during biomaterial design.
Collapse
Affiliation(s)
- Christopher D. Spicer
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
| | - E. Thomas Pashuck
- NJ
Centre for Biomaterials, Rutgers University, 145 Bevier Road, Piscataway, New Jersey United States
| | - Molly M. Stevens
- Department
of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles Väg 2, Stockholm, Sweden
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, Exhibition Road, London, United Kingdom
| |
Collapse
|
17
|
Maltose conjugation to PCL: Advanced structural characterization and preliminary biological properties. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.01.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Furuhata Y, Yoshitomi T, Kikuchi Y, Sakao M, Yoshimoto K. Osteogenic Lineage Commitment of Adipose-Derived Stem Cells Is Predetermined by Three-Dimensional Cell Accumulation on Micropatterned Surface. ACS APPLIED MATERIALS & INTERFACES 2017; 9:9339-9347. [PMID: 28247751 DOI: 10.1021/acsami.6b15688] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lineage commitment of stem cells is mainly regulated by their microenvironments, which comprise soluble growth factors, extracellular matrix, mechanical forces, and cell density. Although numerous studies have investigated stem cell response to these factors in two-dimensional (2D) culture, little is known about that in 3D culture. Here, we studied effects of 3D cell accumulation levels on the differentiation behavior of mesenchymal stem cells (MSCs) by using a micropatterned surface. After induction of 3D-cultured MSCs on the surface, their osteogenic differentiation was significantly promoted, while adipogenic differentiation was not. This differentiation behavior of densely packed MSCs in 3D culture is unlike that in 2D culture. Moreover, to determine the contributing factor of this commitment, the relationship between 3D cell accumulation levels and their differentiation potential was studied before differentiation induction. A series of MSCs with varied 3D accumulation levels were constructed on the micropatterned surface, where the accumulated MSCs were not in hypoxic environment. Interestingly, with increasing 3D accumulation levels, MSCs enhanced their osteogenic potential but repressed adipogenic potential in the gene expression level. These results suggest that preconditioned 3D microenvironments with high cell accumulation levels promote osteogenic differentiation of MSCs and their accumulation levels help in regulating MSC differentiation.
Collapse
Affiliation(s)
- Yuichi Furuhata
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo , Shirokanedai 4-6-1, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
19
|
Sgambato A, Cipolla L, Russo L. Bioresponsive Hydrogels: Chemical Strategies and Perspectives in Tissue Engineering. Gels 2016; 2:E28. [PMID: 30674158 PMCID: PMC6318637 DOI: 10.3390/gels2040028] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/28/2016] [Accepted: 10/08/2016] [Indexed: 12/28/2022] Open
Abstract
Disease, trauma, and aging account for a significant number of clinical disorders. Regenerative medicine is emerging as a very promising therapeutic option. The design and development of new cell-customised biomaterials able to mimic extracellular matrix (ECM) functionalities represents one of the major strategies to control the cell fate and stimulate tissue regeneration. Recently, hydrogels have received a considerable interest for their use in the modulation and control of cell fate during the regeneration processes. Several synthetic bioresponsive hydrogels are being developed in order to facilitate cell-matrix and cell-cell interactions. In this review, new strategies and future perspectives of such synthetic cell microenvironments will be highlighted.
Collapse
Affiliation(s)
- Antonella Sgambato
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.
| | - Laura Cipolla
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.
| | - Laura Russo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy.
| |
Collapse
|