1
|
Liu J, Chen Y, Song Y, Xu D, Gu Y, Wang J, Song W, Sun B, Jiang Z, Xia B. Evidence of size-dependent toxicity of polystyrene nano- and microplastics in sea cucumber Apostichopus japonicus (Selenka, 1867) during the intestinal regeneration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124394. [PMID: 38901819 DOI: 10.1016/j.envpol.2024.124394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Microplastics are ubiquitous pollutants in the global marine environment. However, few studies have adequately explored the different toxic mechanisms of microplastics (MPs) and nanoplastics (NPs) in aquatic organisms. The sea cucumber, Apostichopus japonicus, is a key organism in the marine benthic ecosystem due to its crucial roles in biogeochemical cycles and food web. This study investigated the bioaccumulation and adverse effects of polystyrene micro- and nanoplastics (PS-M/NPs) of different sizes (20 μm, 1 μm and 80 nm) in the regenerated intestine of A. japonicus using multi-omics analysis. The results showed that after 30-day exposure at the concentration of 0.1 mg L-1, PS-MPs and PS-NPs accumulated to 155.41-175.04 μg g-1 and 337.95 μg g-1, respectively. This excessive accumulation led to increased levels of antioxidases (SOD, CAT, GPx and T-AOC) and reduced activities of immune enzymes (AKP, ACP and T-NOS), indicating oxidative damage and compromised immunity in the regenerated intestine. PS-NPs had more profound negative impacts on cell proliferation and differentiation compared to PS-MPs. Transcriptomic analysis revealed that PS-NPs primarily affected pathways related to cellular components, e.g., ribosome, and oxidative phosphorylation. In comparison, PS-MPs had greater influences on actin-related organization and organic compound metabolism. In the PS-M/NPs-treated groups, differentially expressed metabolites were mainly amino acids, fatty acids, glycerol phospholipid, and purine nucleosides. Additionally, microbial community reconstruction in the regenerated intestine was severely disrupted by the presence of PS-M/NPs. In the PS-NPs group, Burkholderiaceae abundance significantly increased while Rhodobacteraceae abundance decreased. Correlation analyses demonstrated that intestinal regeneration of A. japonicus was closely linked to its enteric microorganisms. These microbiota-host interactions were notably affected by different PS-M/NPs, with PS-NPs exposure causing the most remarkable disruption of mutual symbiosis. The multi-omic approaches used here provide novel insights into the size-dependent toxicity of PS-M/NPs and highlight their detrimental effects on invertebrates in M/NPs-polluted marine benthic ecosystems.
Collapse
Affiliation(s)
- Ji Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yanru Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yize Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Dongxue Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yuanxue Gu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Jinye Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wenqi Song
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Baiqin Sun
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Zitan Jiang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Bin Xia
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
2
|
Xu Y, Parra-Ortiz E, Wan F, Cañadas O, Garcia-Alvarez B, Thakur A, Franzyk H, Pérez-Gil J, Malmsten M, Foged C. Insights into the mechanisms of interaction between inhalable lipid-polymer hybrid nanoparticles and pulmonary surfactant. J Colloid Interface Sci 2023; 633:511-525. [PMID: 36463820 DOI: 10.1016/j.jcis.2022.11.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/15/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Pulmonary delivery of small interfering RNA (siRNA) using nanoparticle-based delivery systems is promising for local treatment of respiratory diseases. We designed dry powder inhaler formulations of siRNA-loaded lipid-polymer hybrid nanoparticles (LPNs) with aerosolization properties optimized for inhalation therapy. Interactions between LPNs and pulmonary surfactant (PS) determine the fate of inhaled LPNs, but interaction mechanisms are unknown. Here we used surface-sensitive techniques to study how physicochemical properties and pathological microenvironments influence interactions between siRNA-loaded LPNs and supported PS layers. PS was deposited on SiO2 surfaces as single bilayer or multilayers and characterized using quartz crystal microbalance with dissipation monitoring and Fourier-transform infrared spectroscopy with attenuated total reflection. Immobilization of PS as multilayers, resembling the structural PS organization in the alveolar subphase, effectively reduced the relative importance of interactions between PS and the underlying surface. However, the binding affinity between PS and LPNs was identical in the two models. The physicochemical LPN properties influenced the translocation pathways and retention time of LPNs. Membrane fluidity and electrostatic interactions were decisive for the interaction strength between LPNs and PS. Experimental conditions reflecting pathological microenvironments promoted LPN deposition. Hence, these results shed new light on design criteria for LPN transport through the air-blood barrier.
Collapse
Affiliation(s)
- You Xu
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Elisa Parra-Ortiz
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Feng Wan
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Olga Cañadas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain
| | - Begoña Garcia-Alvarez
- Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain; Department of Biochemistry and Molecular Biology, Faculty of Chemistry, Complutense University, 28040 Madrid, Spain
| | - Aneesh Thakur
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, 2100 Copenhagen Ø, Denmark
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University, 28040 Madrid, Spain; Research Institute "Hospital 12 de Octubre (imas12)", Madrid, Spain
| | - Martin Malmsten
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark; Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden
| | - Camilla Foged
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen Ø, Denmark.
| |
Collapse
|
3
|
Perini DA, Parra-Ortiz E, Varó I, Queralt-Martín M, Malmsten M, Alcaraz A. Surface-Functionalized Polystyrene Nanoparticles Alter the Transmembrane Potential via Ion-Selective Pores Maintaining Global Bilayer Integrity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14837-14849. [PMID: 36417698 PMCID: PMC9974068 DOI: 10.1021/acs.langmuir.2c02487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Although nanoplastics have well-known toxic effects toward the environment and living organisms, their molecular toxicity mechanisms, including the nature of nanoparticle-cell membrane interactions, are still under investigation. Here, we employ dynamic light scattering, quartz crystal microbalance with dissipation monitoring, and electrophysiology to investigate the interaction between polystyrene nanoparticles (PS NPs) and phospholipid membranes. Our results show that PS NPs adsorb onto lipid bilayers creating soft inhomogeneous films that include disordered defects. PS NPs form an integral part of the generated channels so that the surface functionalization and charge of the NP determine the pore conductive properties. The large difference in size between the NP diameter and the lipid bilayer thickness (∼60 vs ∼5 nm) suggests a particular and complex lipid-NP assembly that is able to maintain overall membrane integrity. In view of this, we suggest that NP-induced toxicity in cells could operate in more subtle ways than membrane disintegration, such as inducing lipid reorganization and transmembrane ionic fluxes that disrupt the membrane potential.
Collapse
Affiliation(s)
- D. Aurora Perini
- Laboratory
of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071Castellón, Spain
| | - Elisa Parra-Ortiz
- Department
of Pharmacy, University of Copenhagen, DK-2100Copenhagen, Denmark
| | - Inmaculada Varó
- Institute
of Aquaculture Torre de la Sal (IATS-CSIC), Ribera de Cabanes, 12595Castellón, Spain
| | - María Queralt-Martín
- Laboratory
of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071Castellón, Spain
| | - Martin Malmsten
- Department
of Pharmacy, University of Copenhagen, DK-2100Copenhagen, Denmark
- Department
of Physical Chemistry 1, University of Lund, SE-22100Lund, Sweden
| | - Antonio Alcaraz
- Laboratory
of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12071Castellón, Spain
- . Tel.: +34 964 72 8044
| |
Collapse
|
4
|
Zaki MRM, Aris AZ. An overview of the effects of nanoplastics on marine organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 831:154757. [PMID: 35339559 DOI: 10.1016/j.scitotenv.2022.154757] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The ubiquity and detrimental effects of plastics in the environment have become global environmental concerns over the past decade. Intensive anthropogenic activities, such as urbanisation, industrialisation and increasing population density, have resulted in increased plastic pollution in the environment. Recently, nanoplastics have received increased research attention and concern because of their potential adverse effects on marine organisms. However, the potential ecological issues associated with nanoplastics are not yet fully understood because of the insufficient and limited research conducted to date on baseline data, exposure and associated risks for marine organisms. This review highlights an understanding of the nature and characteristics of nanoplastics, as well as the occurrence of nanoplastics in the marine environment. In the future, the effects of nanoplastics on marine organisms may directly or indirectly influence human health. Thus, this review also highlights the effects of nanoplastics on marine organisms. An overview and insights into the occurrence of nanoplastics in marine environments and their potential effects on marine organisms will facilitate the preventative interventions and measures of nanoplastics pollution in the marine environment.
Collapse
Affiliation(s)
- Muhammad Rozaimi Mohd Zaki
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
5
|
Guo X, Lin H, Xu S, He L. Recent Advances in Spectroscopic Techniques for the Analysis of Microplastics in Food. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1410-1422. [PMID: 35099960 DOI: 10.1021/acs.jafc.1c06085] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microplastic pollution has become a worldwide concern in aquatic and terrestrial environments. Microplastics could also enter the food chain, causing potential harm to human health. To facilitate the risk assessment of microplastics to humans, it is critically important to have a reliable analytical technique to detect, quantify, and identify microplastics of various materials, sizes, and shapes from environmental, agricultural, and food matrices. Spectroscopic techniques, mainly vibrational spectroscopy (Raman and infrared), are commonly used techniques for microplastic analysis. This review focuses on recent advances of these spectroscopic techniques for the analysis of microplastics in food. The fundamental, recent technical advances of the spectroscopic techniques and their advantages and limitations were summarized. The food sample pretreatment methods and recent applications for detecting and quantifying microplastics in different types of food were reviewed. In addition, the current technical challenges and future research directions were discussed. It is anticipated that the advances in instrument development and methodology innovation will enable spectroscopic techniques to solve critical analytical challenges in microplastic analysis in food, which will facilitate the reliable risk assessment.
Collapse
Affiliation(s)
- Xin Guo
- Department of Food Science, University of Massachusetts Amherst, Chenoweth Laboratory, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Helen Lin
- Department of Food Science, University of Massachusetts Amherst, Chenoweth Laboratory, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| | - Shuping Xu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theorical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin 130012, People's Republic of China
| | - Lili He
- Department of Food Science, University of Massachusetts Amherst, Chenoweth Laboratory, 102 Holdsworth Way, Amherst, Massachusetts 01003, United States
| |
Collapse
|
6
|
Li Z, Feng C, Pang W, Tian C, Zhao Y. Nanoplastic-Induced Genotoxicity and Intestinal Damage in Freshwater Benthic Clams ( Corbicula fluminea): Comparison with Microplastics. ACS NANO 2021; 15:9469-9481. [PMID: 33988023 DOI: 10.1021/acsnano.1c02407] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
With the wide application of plastics in daily life, nanoplastics (NPs) are ubiquitous in freshwater environments. However, to date, few studies have focused on the mechanism underlying the toxicity of NPs, and the differences between this mechanism and that governing the toxicity of MPs have also not been thoroughly characterized. In this study, the genotoxicity, intestinal damage, and intestinal flora in Corbicula fluminea exposed to micro/nanoplastics were investigated through RNA sequencing, histopathology, and 16S rRNA sequencing, respectively. Significant differences in differentially expressed genes (DEGs) were observed between MP and NP exposure groups. It was observed that NPs preferentially elicited the process related to cellular components and triggered the apoptosis through the mitochondrial pathway in various tissues, especially in indirectly contacted tissues, while MPs induced the innate immune response and activated the complement and coagulation cascades (complement system) pathway. Both MPs and NPs can induce an inflammatory response and cause epithelial damage in the intestines, and they can notably change the gut microbial community structure. However, the abundance of pathogenic bacteria (e.g., Mycoplasma) was observed to increase only in the MP-treated group, which exacerbated intestinal damage. Unlike MPs, the effect of NPs on the intestinal microflora was highly limited, while NPs elicited more severe damage to the intestinal mucosal barrier. The results of this study may help to elucidate the toxicity mechanisms governing the responses of bivalves to MPs and NPs and to evaluate the detriment of MPs and NPs to the benthic ecosystem.
Collapse
Affiliation(s)
- Zhenling Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| | - Chenghong Feng
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| | - Wen Pang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| | - Chenhao Tian
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| | - Yue Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
7
|
Lee J, Chae KJ. A systematic protocol of microplastics analysis from their identification to quantification in water environment: A comprehensive review. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:124049. [PMID: 33265057 DOI: 10.1016/j.jhazmat.2020.124049] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/27/2020] [Accepted: 09/18/2020] [Indexed: 06/12/2023]
Abstract
With microplastics (MPs) being detected in aquatic environments, numerous studies revealed that they caused severe environmental issues, including damage to ecosystems and human health. MPs transport persistent organic pollutants by adsorbing them, and in nanoplastics this phenomenon is exacerbated by increased surface area. Despite their environmental risk, systematic protocol for qualitative and quantitative analysis are yet to be established in environmental analytical chemistry. Current analytical technologies on MP identification have technological limits with regard to detecting small sized particles (<1 µm), underestimation of MPs with organic contaminants, and physico-chemically altered particles by weathering and photo degradation. According to the published works, MPs are spread in living organisms through the food web, and are even detected in bottled water. To determine its eco-toxicity and removal by biodegradation, its accuracy, reliability, and reproducibility should be ensured by establishing a systematic protocol of MP identification. This review compares procedures, applicability, and limitations of Fourier transform infrared spectroscopy, Raman spectroscopy, and thermo-analytical methods for identifying MPs. Finally, it suggests systematic protocols for MPs analysis.
Collapse
Affiliation(s)
- Jieun Lee
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, South Korea
| | - Kyu-Jung Chae
- Department of Environmental Engineering, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan 49112, South Korea.
| |
Collapse
|
8
|
Fagnani DE, Tami JL, Copley G, Clemons MN, Getzler YDYL, McNeil AJ. 100th Anniversary of Macromolecular Science Viewpoint: Redefining Sustainable Polymers. ACS Macro Lett 2021; 10:41-53. [PMID: 35548997 DOI: 10.1021/acsmacrolett.0c00789] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Although Staudinger realized makromoleküles had enormous potential, he likely did not anticipate the consequences of their universal adoption. With 6.3 billion metric tons of plastic waste now contaminating our land, water, and air, we are facing an environmental and public health crisis. Synthetic polymer chemists can help create a more sustainable future, but are we on the right path to do so? Herein, a comprehensive literature survey reveals that there has been an increased focus on "sustainable polymers" in recent years, but most papers focus on biomass-derived feedstocks. In contrast, there is less focus on polymer end-of-life fates. Moving forward, we suggest an increased emphasis on chemical recycling, which sees value in plastic waste and promotes a closed-loop plastic economy. To help keep us on the path to sustainability, the synthetic polymer community should routinely seek the systems perspective offered by life cycle assessment.
Collapse
Affiliation(s)
- Danielle E. Fagnani
- Department of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jessica L. Tami
- Department of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Graeme Copley
- Department of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Mackenzie N. Clemons
- Department of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | | | - Anne J. McNeil
- Department of Chemistry and Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
9
|
Zhou R, Lu G, Yan Z, Jiang R, Bao X, Lu P. A review of the influences of microplastics on toxicity and transgenerational effects of pharmaceutical and personal care products in aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139222. [PMID: 32438173 DOI: 10.1016/j.scitotenv.2020.139222] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/03/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
PPCPs (pharmaceutical and personal care products) and microplastics (MPs) are two types of emerging pollutants that are ubiquitous and widely concerned in the environment. Both of them can accumulate in fish or aquatic invertebrates and transfer to offspring, thereby producing toxic effects on both parents and offspring, in which the characteristics of MPs also enable them to adsorb PPCPs thus producing carrier effects. In this study, we have conducted a comprehensive review of MPs and PPCPs and found that MPs can act as a carrier of PPCPs to influence the bioaccumulation of PPCPs. MPs and PPCPs have toxicity and transgenerational effects on both fish and aquatic invertebrates in many aspects, and MPs can also affect the toxicity and transgenerational effects of PPCPs due to their carrier effects. This paper revealed that MPs may have an important impact on the bioavailability of PPCPs and the interaction between MPs and PPCPs is a hot topic in future research. This study also puts forward the shortcomings of the current research and related suggestions, and relevant research should be carried out as soon as possible to provide the basis for the prevention and treatment of fresh water.
Collapse
Affiliation(s)
- Ranran Zhou
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China.
| | - Zhenhua Yan
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xuhui Bao
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ping Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
10
|
Xia Z, Lau BLT. Mitigating effects of osmolytes on the interactions between nanoparticles and supported lipid bilayer. J Colloid Interface Sci 2020; 568:1-7. [PMID: 32070850 DOI: 10.1016/j.jcis.2020.02.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 10/25/2022]
Abstract
To maintain osmotic balance, cells usually produce neutral solutes (i.e., osmolytes), together with charged species to cope with salinity stress. Osmolytes are known to be important in stabilizing/destabilizing macromolecules (e.g., proteins) via depletion /accumulation around their surfaces. To better understand the physiological fate of nanoparticles (NPs), we investigated the effect of osmolytes [(urea and trimethylamine N-oxide (TMAO)] and specific anions (NO3- and F-) on the interactions between NPs and supported lipid bilayers (SLBs). Carboxylated polystyrene NPs (60 nm) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were chosen as model NPs and lipid. Quartz crystal microbalance with dissipation monitoring (QCM-D) was used to quantify NP deposition dynamics. Microscale thermophoresis (MST) was used to characterize the affinity between DOPC vesicles (or NPs) and osmolytes. Our results show that osmolytes are capable of protecting SLBs from NP-induced disruption. Upon NP deposition onto supported vesicle layers (SVLs), the leakage of encapsulated dyes decreased with the addition of osmolytes. The combination of kosmotropes (TMAO and F-) are more efficient than that of chaotropes (urea and NO3-) in weakening the hydrophobic interaction between NPs and SLBs by preferential binding to NPs and/or SLBs.
Collapse
Affiliation(s)
- Zehui Xia
- Department of Civil & Environmental Engineering, University of Massachusetts Amherst, 130 Natural Resources Road, Amherst, MA 01003, USA
| | - Boris L T Lau
- Department of Civil & Environmental Engineering, University of Massachusetts Amherst, 130 Natural Resources Road, Amherst, MA 01003, USA.
| |
Collapse
|
11
|
Abstract
When antibiotics are administered, orally or intravenously, they pass through different organs and layers of tissue on their way to the site of infection; this can cause dilution and/or intoxication. To overcome these problems, drug delivery vehicles have been used to encapsulate and deliver antibiotics, improving their therapeutic index while minimizing their adverse effects. Liposomes are self-assembled lipid vesicles made from at least one bilayer of phospholipids with an inner aqueous compartment. Liposomes are attractive vehicles to deliver antibiotics because they can encapsulate both hydrophobic and hydrophilic antibiotics, they have low toxicity, and they can change the biodistribution of the drug. Furthermore, liposomes have been approved by regulatory agencies. However, most developmental and mechanistic research in the field has been focused on encapsulation and delivery of anticancer drugs, a class of molecules that differ significantly in chemistry from antibiotics. In this critical Review, we discuss the state of knowledge regarding the design of liposomes for encapsulation and delivery of antibiotics and offer insight into the challenges and promises of using liposomes for antibiotic delivery.
Collapse
Affiliation(s)
- Azucena Gonzalez Gomez
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L9S 8L7, Canada
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L9S 8L7, Canada
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L98 4LS, Canada
| |
Collapse
|
12
|
Birch QT, Potter PM, Pinto PX, Dionysiou DD, Al-Abed SR. Sources, transport, measurement and impact of nano and microplastics in urban watersheds. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2020; 19:275-336. [PMID: 32982619 PMCID: PMC7511030 DOI: 10.1007/s11157-020-09529-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
The growing and pervasive presence of plastic pollution has attracted considerable interest in recent years, especially small (< 5 mm) plastic particles known as 'microplastics' (MPs). Their widespread presence may pose a threat to marine organisms globally. Most of the nano and microplastic (N&MP) pollution in marine environments is assumed to originate from land-based sources, but their sources, transport routes, and transformations are uncertain. Information on freshwater and terrestrial systems is lacking, and data on nanoplastic pollution are particularly sparse. The shortage of systematic studies of freshwater and terrestrial systems is a critical research gap because estimates of plastic release into these systems are much higher than those for oceans. As most plastic pollution originates in urban environments, studies of urban watersheds, particularly those with high population densities and industrial activities, are especially relevant with respect to source apportionment. Released plastic debris is transported in water, soil, and air. It can be exchanged between environmental compartments, adsorb toxic compounds, and ultimately be carried long distances, with potential to cause both physical and chemical harm to a multitude of species. Measurement challenges and a lack of standardized methods has slowed progress in determining the environmental prevalence and impacts of N&MPs. An overall aim of this review is to report the sources and abundances of N&MPs in urban watersheds. We focus on urban watersheds, and summarize monitoring methods and their limitations, knowing that identifying N&MPs and their urban/industrial sources is necessary to reduce their presence in all environments.
Collapse
Affiliation(s)
- Quinn T. Birch
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| | - Phillip M. Potter
- Oak Ridge Institute for Science and Education (ORISE), USEPA, Cincinnati, Ohio, 45268, USA
| | | | - Dionysios D. Dionysiou
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| | - Souhail R. Al-Abed
- Center for Environmental Solutions and Emergency Response, U.S. Environmental Protection Agency (USEPA), Cincinnati, Ohio, 45268, USA
| |
Collapse
|
13
|
Shams M, Alam I, Chowdhury I. Aggregation and stability of nanoscale plastics in aquatic environment. WATER RESEARCH 2020; 171:115401. [PMID: 31884379 DOI: 10.1016/j.watres.2019.115401] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
The widespread use and release of plastics in nature have raised global concerns about their impact on public health and the environment. While much research has been conducted on macro- and micro-sized plastics, the fate of nanoscale plastics remains unexplored. In this study, the aggregation kinetics and stability of polyethylene and polystyrene nanoscale plastics were investigated over a wide range of aquatic chemistries (pH, salt types (NaCl, CaCl2, MgCl2), ionic strength) relevant to the natural environment. Results showed that salt types and ionic strength had significant effects on the stability of both polyethylene and polystyrene nanoscale plastics, while pH had none. Aggregation and stability of both polyethylene and polystyrene nanoscale plastics in the aquatic environment followed colloidal theory (DLVO theory and Schulze-Hardy rule), similar to other colloidal particles. The critical coagulation concentration (CCC) values of polyethylene nanoscale plastics were lower for CaCl2 (0.1 mM) compared to NaCl (80 mM) and MgCl2 (3 mM). Similarly, CCC values of polystyrene nanospheres were 10 mM for CaCl2, 800 mM for NaCl and 25 mM for MgCl2. It implies that CaCl2 destabilized both polyethylene and polystyrene nanoscale plastics more aggressively than NaCl and MgCl2. Moreover, polystyrene nanospheres are more stable in the aquatic environment than polyethylene nanoscale plastics. However, natural organic matter improved the stability of polyethylene nanoscale plastics in water primarily due to steric repulsion, increasing CCC values to 0.4 mM, 120 mM and 8 mM for CaCl2, NaCl and MgCl2 respectively. Stability studies with various water conditions demonstrated that polyethylene nanoscale plastics will be fairly stable in the natural surface waters. Conversely, synthetic surface water, wastewater, seawater and groundwater rapidly destabilized polyethylene nanoscale plastics. Overall, our findings indicate that significant aqueous transport of nanoscale plastics will be possible in natural surface waters.
Collapse
Affiliation(s)
- Mehnaz Shams
- Department of Civil & Environmental Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Iftaykhairul Alam
- Department of Civil & Environmental Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Indranil Chowdhury
- Department of Civil & Environmental Engineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
14
|
Grupi A, Ashur I, Degani-Katzav N, Yudovich S, Shapira Z, Marzouq A, Morgenstein L, Mandel Y, Weiss S. Interfacing the Cell with "Biomimetic Membrane Proteins". SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903006. [PMID: 31765076 DOI: 10.1002/smll.201903006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/30/2019] [Indexed: 06/10/2023]
Abstract
Integral membrane proteins mediate a myriad of cellular processes and are the target of many therapeutic drugs. Enhancement and extension of the functional scope of membrane proteins can be realized by membrane incorporation of engineered nanoparticles designed for specific diagnostic and therapeutic applications. In contrast to hydrophobic insertion of small amphiphilic molecules, delivery and membrane incorporation of particles on the nanometric scale poses a crucial barrier for technological development. In this perspective, the transformative potential of biomimetic membrane proteins (BMPs), current state of the art, and the barriers that need to be overcome in order to advance the field are discussed.
Collapse
Affiliation(s)
- Asaf Grupi
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Idan Ashur
- Agricultural Research Organization, The Volcani Center, Institute of Agricultural Engineering, Rishon LeZion, 7505101, Israel
| | - Nurit Degani-Katzav
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shimon Yudovich
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Zehavit Shapira
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Adan Marzouq
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Lion Morgenstein
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Yossi Mandel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- School of Optometry and Vision Science, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Shimon Weiss
- Department of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
15
|
Nguyen B, Claveau-Mallet D, Hernandez LM, Xu EG, Farner JM, Tufenkji N. Separation and Analysis of Microplastics and Nanoplastics in Complex Environmental Samples. Acc Chem Res 2019; 52:858-866. [PMID: 30925038 DOI: 10.1021/acs.accounts.8b00602] [Citation(s) in RCA: 300] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The vast amount of plastic waste emitted into the environment and the increasing concern of potential harm to wildlife has made microplastic and nanoplastic pollution a growing environmental concern. Plastic pollution has the potential to cause both physical and chemical harm to wildlife directly or via sorption, concentration, and transfer of other environmental contaminants to the wildlife that ingest plastic. Small particles of plastic pollution, termed microplastics (>100 nm and <5 mm) or nanoplastics (<100 nm), can form through fragmentation of larger pieces of plastic. These small particles are especially concerning because of their high specific surface area for sorption of contaminants as well as their potential to translocate in the bodies of organisms. These same small particles are challenging to separate and identify in environmental samples because their size makes handling and observation difficult. As a result, our understanding of the environmental prevalence of nanoplastics and microplastics is limited. Generally, the smaller the size of the plastic particle, the more difficult it is to separate from environmental samples. Currently employed passive density and size separation techniques to isolate plastics from environmental samples are not well suited to separate microplastics and nanoplastics. Passive flotation is hindered by the low buoyancy of small particles as well as the difficulty of handling small particles on the surface of flotation media. Here we suggest exploring alternative techniques borrowed from other fields of research to improve separation of the smallest plastic particles. These techniques include adapting active density separation (centrifugation) from cell biology and taking advantage of surface-interaction-based separations from analytical chemistry. Furthermore, plastic pollution is often challenging to quantify in complex matrices such as biological tissues and wastewater. Biological and wastewater samples are important matrices that represent key points in the fate and sources of plastic pollution, respectively. In both kinds of samples, protocols need to be optimized to increase throughput, reduce contamination potential, and avoid destruction of plastics during sample processing. To this end, we recommend adapting digestion protocols to match the expected composition of the nonplastic material as well as taking measures to reduce and account for contamination. Once separated, plastics in an environmental sample should ideally be characterized both visually and chemically. With existing techniques, microplastics and nanoplastics are difficult to characterize or even detect. Their low mass and small size provide limited signal for visual, vibrational spectroscopic, and mass spectrometric analyses. Each of these techniques involves trade-offs in throughput, spatial resolution, and sensitivity. To accurately identify and completely quantify microplastics and nanoplastics in environmental samples, multiple analytical techniques applied in tandem are likely to be required.
Collapse
Affiliation(s)
- Brian Nguyen
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec H3A 0C5, Canada
| | - Dominique Claveau-Mallet
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec H3A 0C5, Canada
| | - Laura M. Hernandez
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec H3A 0C5, Canada
| | - Elvis Genbo Xu
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec H3A 0C5, Canada
| | - Jeffrey M. Farner
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec H3A 0C5, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec H3A 0C5, Canada
| |
Collapse
|
16
|
Wan F, Nylander T, Foged C, Yang M, Baldursdottir SG, Nielsen HM. Qualitative and quantitative analysis of the biophysical interaction of inhaled nanoparticles with pulmonary surfactant by using quartz crystal microbalance with dissipation monitoring. J Colloid Interface Sci 2019; 545:162-171. [PMID: 30877998 DOI: 10.1016/j.jcis.2019.02.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 11/28/2022]
Abstract
Understanding the interaction between inhaled nanoparticles and pulmonary surfactant is a prerequisite for predicting the fate of inhaled nanoparticles. Here, we introduce a quartz crystal microbalance with dissipation monitoring (QCM-D)-based methodology to reveal the extent and nature of the biophysical interactions of polymer- and lipid-based nanoparticles with pulmonary surfactant. By fitting the QCM-D data to the Langmuir adsorption equation, we determined the kinetics and equilibrium parameters [i.e., maximal adsorption (Δmmax), equilibrium constant (Ka), adsorption rate constant (ka) and desorption rate constant (kd)] of polymeric nanoparticles adsorption onto the pulmonary surfactant (e.g., an artificial lipid mixture and an extract of porcine lung surfactant). Furthermore, our results revealed that the nature of the interactions between lipid-based nanoparticles (e.g., liposomes) and pulmonary surfactant was governed by the liposomal composition, i.e., incorporation of cholesterol and PEGylated phospholipid (DSPE-PEG2000) into DOPC-based liposomes led to the adsorption of intact liposomes onto the pulmonary surfactant layer and the mass exchange between the liposomes and pulmonary surfactant layer, respectively. In conclusion, we demonstrate the applicability of the QCM-D technique for qualitative and quantitative analysis of the biophysical interaction of inhaled nanoparticles with pulmonary surfactant, which is vital for rational design and optimization of inhalable nanomedicines.
Collapse
Affiliation(s)
- Feng Wan
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Tommy Nylander
- Department of Physical Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Camilla Foged
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Mingshi Yang
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Stefania G Baldursdottir
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark
| | - Hanne M Nielsen
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen Ø, Denmark.
| |
Collapse
|
17
|
Ballesteros CAS, Bernardi JC, Correa DS, Zucolotto V. Controlled Release of Silver Nanoparticles Contained in Photoresponsive Nanogels. ACS APPLIED BIO MATERIALS 2019; 2:644-653. [PMID: 35016270 DOI: 10.1021/acsabm.8b00366] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Camilo A. S. Ballesteros
- Nanomedicine and Nanotoxicology Group (GNano), IFSC, USP, P.O. Box 369, São Carlos, 13566-590 São Paulo, Brazil
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, P.O. Box 741, São Carlos, 13560-970 São Paulo, Brazil
| | - Juliana Cancino Bernardi
- Nanomedicine and Nanotoxicology Group (GNano), IFSC, USP, P.O. Box 369, São Carlos, 13566-590 São Paulo, Brazil
| | - Daniel S. Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, P.O. Box 741, São Carlos, 13560-970 São Paulo, Brazil
| | - Valtencir Zucolotto
- Nanomedicine and Nanotoxicology Group (GNano), IFSC, USP, P.O. Box 369, São Carlos, 13566-590 São Paulo, Brazil
| |
Collapse
|
18
|
Melby ES, Allen C, Foreman-Ortiz IU, Caudill ER, Kuech TR, Vartanian AM, Zhang X, Murphy CJ, Hernandez R, Pedersen JA. Peripheral Membrane Proteins Facilitate Nanoparticle Binding at Lipid Bilayer Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10793-10805. [PMID: 30102857 DOI: 10.1021/acs.langmuir.8b02060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular understanding of the impact of nanomaterials on cell membranes is critical for the prediction of effects that span environmental exposures to nanoenabled therapies. Experimental and computational studies employing phospholipid bilayers as model systems for membranes have yielded important insights but lack the biomolecular complexity of actual membranes. Here, we increase model membrane complexity by incorporating the peripheral membrane protein cytochrome c and studying the interactions of the resulting membrane systems with two types of anionic nanoparticles. Experimental and computational studies reveal that the extent of cytochrome c binding to supported lipid bilayers depends on anionic phospholipid number density and headgroup chemistry. Gold nanoparticles functionalized with short, anionic ligands or wrapped with an anionic polymer do not interact with silica-supported bilayers composed solely of phospholipids. Strikingly, when cytochrome c was bound to these bilayers, nanoparticles functionalized with short anionic ligands attached to model biomembranes in amounts proportional to the number of bound cytochrome c molecules. In contrast, anionic polymer-wrapped gold nanoparticles appeared to remove cytochrome c from supported lipid bilayers in a manner inversely proportional to the strength of cytochrome c binding to the bilayer; this reflects the removal of a weakly bound pool of cytochrome c, as suggested by molecular dynamics simulations. These results highlight the importance of the surface chemistry of both the nanoparticle and the membrane in predicting nano-bio interactions.
Collapse
Affiliation(s)
- Eric S Melby
- Environmental Chemistry and Technology Program , University of Wisconsin-Madison , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
- Environmental and Molecular Sciences Laboratory , Pacific Northwest National Laboratory , 3335 Innovation Boulevard , Richland , Washington 99354 , United States
| | - Caley Allen
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Isabel U Foreman-Ortiz
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Emily R Caudill
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| | - Thomas R Kuech
- Environmental Chemistry and Technology Program , University of Wisconsin-Madison , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
| | - Ariane M Vartanian
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Xi Zhang
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Catherine J Murphy
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Rigoberto Hernandez
- Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Joel A Pedersen
- Environmental Chemistry and Technology Program , University of Wisconsin-Madison , 1525 Observatory Drive , Madison , Wisconsin 53706 , United States
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , United States
| |
Collapse
|
19
|
Surface Charge and Overlayer pH Influence the Dynamics of Supported Phospholipid Films. J Electroanal Chem (Lausanne) 2017; 812:159-165. [PMID: 29503601 DOI: 10.1016/j.jelechem.2017.11.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Understanding the thermodynamics and kinetics of interactions between model lipid bilayers and planar supports is of critical importance in the furtherance of biosensing and the creation of biomimetic devices. Evaluating these properties can be accomplished through understanding the diffusional properties of the bilayer constituents. In this report, the dynamics of a model DMPC bilayer supported on a phosphorylated silica surface are studied in the presence and absence of interfacial Ca2+ as a function of pH of the aqueous overlayer. The data for this system reveal the importance of the balance of ionic interactions between the interfacial species, and the dependence of the diffusional, kinetic and thermodynamic properties of the system on pH. The thermodynamic data suggest that interactions between the bilayer and surface are mediated enthalpically rather than entropically.
Collapse
|
20
|
Bo Z, Avsar SY, Corliss MK, Chung M, Cho NJ. Influence of natural organic matter (NOM) coatings on nanoparticle adsorption onto supported lipid bilayers. JOURNAL OF HAZARDOUS MATERIALS 2017; 339:264-273. [PMID: 28654791 DOI: 10.1016/j.jhazmat.2017.06.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/31/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
As the worldwide usage of nanoparticles in commercial products continues to increase, there is growing concern about the environmental risks that nanoparticles pose to biological systems, including potential damage to cellular membranes. A detailed understanding of how different types of nanoparticles behave in environmentally relevant conditions is imperative for predicting and mitigating potential membrane-associated toxicities. Herein, we investigated the adsorption of two popular nanoparticles (silver and buckminsterfullerene) onto biomimetic supported lipid bilayers of varying membrane charge (positive and negative). The quartz crystal microbalance-dissipation (QCM-D) measurement technique was employed to track the adsorption kinetics. Particular attention was focused on understanding how natural organic matter (NOM) coatings affect nanoparticle-bilayer interactions. Both types of nanoparticles preferentially adsorbed onto the positively charged bilayers, although NOM coatings on the nanoparticle and lipid bilayer surfaces could either inhibit or promote adsorption in certain electrolyte conditions. While past findings showed that NOM coatings inhibit membrane adhesion, our findings demonstrate that the effects of NOM coatings are more nuanced depending on the type of nanoparticle and electrolyte condition. Taken together, the results demonstrate that NOM coatings can modulate the lipid membrane interactions of various nanoparticles, suggesting a possible way to improve the environmental safety of nanoparticles.
Collapse
Affiliation(s)
- Zhang Bo
- Shanghai Jiao Tong University Environment Science Building, 800 Dongchuan Rd, Minhang District, Shanghai 200240, China
| | - Saziye Yorulmaz Avsar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore; Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore
| | - Michael K Corliss
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore; Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore
| | - Minsub Chung
- Department of Chemical Engineering, Hongik University, Mapo-gu, Seoul 04066, Republic of Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore; Centre for Biomimetic Sensor Science, Nanyang Technological University, 50 Nanyang Drive, 637553, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore.
| |
Collapse
|
21
|
Zou W, Zhang X, Zhao M, Zhou Q, Hu X. Cellular proliferation and differentiation induced by single-layer molybdenum disulfide and mediation mechanisms of proteins via the Akt-mTOR-p70S6K signaling pathway. Nanotoxicology 2017; 11:781-793. [PMID: 28714804 DOI: 10.1080/17435390.2017.1357213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Single-layer molybdenum disulfide (SLMoS2) is a novel kind of 2D nanosheet that has attracted great attention regarding its use in biosensors, drug delivery, tissue engineering, and therapy. However, our results demonstrated that SLMoS2 accelerated proliferation and promoted myogenic differentiation and epithelial-mesenchymal transition (EMT) in human embryonic lung fibroblasts (HELFs). The abnormal proliferation and differentiation of HELFs contribute to idiopathic pulmonary fibrosis. Specifically, SLMoS2 significantly stimulated the expression of myofibroblast- and mesenchymal-associated genes and proteins. The Akt-mTOR-p70S6K signaling pathway plays a critical role in the acceleration of proliferation and promotion of myogenic differentiation and EMT in HELFs induced by SLMoS2. After cell uptake, SLMoS2 was primarily located in the cytoplasm and the perinuclear region and activated Akt-dependent signaling due to the generation of reactive oxygen species (ROS). Moreover, bovine serum albumin (BSA) binding markedly inhibited the cellular uptake of SLMoS2 and the production of intracellular ROS due to an increased thickness and reduced adhesion of HELFs. BSA binding also mitigated the SLMoS2-activated phosphorylation of Akt-dependent signaling pathways. This study is the first to illustrate the induction of cellular proliferation and differentiation by SLMoS2 and the related mediation by proteins through Akt-mTOR-p70S6K signaling pathway.
Collapse
Affiliation(s)
- Wei Zou
- a Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin , China
| | - Xingli Zhang
- a Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin , China
| | - Mengyang Zhao
- a Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin , China
| | - Qixing Zhou
- a Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin , China
| | - Xiangang Hu
- a Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University , Tianjin , China
| |
Collapse
|
22
|
Ruiz-Rincón S, González-Orive A, de la Fuente JM, Cea P. Reversible Monolayer-Bilayer Transition in Supported Phospholipid LB Films under the Presence of Water: Morphological and Nanomechanical Behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7538-7547. [PMID: 28691823 DOI: 10.1021/acs.langmuir.7b01268] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mixed monolayer Langmuir-Blodgett (LB) films of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol (Chol) in the 1:1 ratio have been prepared onto solid mica substrates. Upon immersion in water or in an aqueous HEPES solution (pH 7.4) the monolayer LB films were spontaneously converted into well-organized bilayers leaving free mica areas. The process has been demonstrated to be reversible upon removal of the aqueous solution, resulting in remarkably free of defects monolayers that are homogeneously distributed onto the mica. In addition, the nanomechanical properties exhibited by the as-formed bilayers have been determined by means of AFM breakthrough force studies. The bilayers formed by immersion of the monolayer in an aqueous media exhibit nanomechanical properties and stability under compression analogous to those of DPPC:Chol supported bilayers obtained by other methods previously described in the literature. Consequently, the hydration of a monolayer LB film has been revealed as an easy method to produce well-ordered bilayers that mimic the cell membrane and that could be used as model cell membranes.
Collapse
Affiliation(s)
| | | | - Jesús M de la Fuente
- Instituto de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC , 50009 Zaragoza, Spain
- Networking Biomedical Research Center of Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Pilar Cea
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza , 50009, Zaragoza, Spain
| |
Collapse
|
23
|
Luchini A, Gerelli Y, Fragneto G, Nylander T, Pálsson GK, Appavou MS, Paduano L. Neutron Reflectometry reveals the interaction between functionalized SPIONs and the surface of lipid bilayers. Colloids Surf B Biointerfaces 2016; 151:76-87. [PMID: 27987458 DOI: 10.1016/j.colsurfb.2016.12.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 11/18/2022]
Abstract
The safe application of nanotechnology devices in biomedicine requires fundamental understanding on how they interact with and affect the different components of biological systems. In this respect, the cellular membrane, the cell envelope, certainly represents an important target or barrier for nanosystems. Here we report on the interaction between functionalized SuperParamagnetic Iron Oxide Nanoparticles (SPIONs), promising contrast agents for Magnetic Resonance Imaging (MRI), and lipid bilayers that mimic the plasma membrane. Neutron Reflectometry, supported by Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) experiments, was used to characterize this interaction by varying both SPION coating and lipid bilayer composition. In particular, the interaction of two different SPIONs, functionalized with a cationic surfactant and a zwitterionic phospholipid, and lipid bilayers, containing different amount of cholesterol, were compared. The obtained results were further validated by Dynamic Light Scattering (DLS) measurements and Cryogenic Transmission Electron Microscopy (Cryo-TEM) images. None of the investigated functionalized SPIONs were found to disrupt the lipid membrane. However, in all case we observed the attachment of the functionalized SPIONs onto the surface of the bilayers, which was affected by the bilayer rigidity, i.e. the cholesterol concentration.
Collapse
Affiliation(s)
- Alessandra Luchini
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Napoli, Italy; CSGI - Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase, Italy; Institut Laue-Langevin, BP 156, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Yuri Gerelli
- Institut Laue-Langevin, BP 156, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, BP 156, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Tommy Nylander
- Physical Chemistry 1, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Gunnar K Pálsson
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38000 Grenoble, France; Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science, Garching Forschungszentrum, Lichtenbergstrasse 1, D-85747 Garching bei München, Germany
| | - Luigi Paduano
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli "Federico II", Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Napoli, Italy; CSGI - Consorzio interuniversitario per lo sviluppo dei Sistemi a Grande Interfase, Italy.
| |
Collapse
|
24
|
Yousefi N, Tufenkji N. Probing the Interaction between Nanoparticles and Lipid Membranes by Quartz Crystal Microbalance with Dissipation Monitoring. Front Chem 2016; 4:46. [PMID: 27995125 PMCID: PMC5136538 DOI: 10.3389/fchem.2016.00046] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 11/18/2016] [Indexed: 11/13/2022] Open
Abstract
There is increasing interest in using quartz crystal microbalance with dissipation monitoring (QCM-D) to investigate the interaction of nanoparticles (NPs) with model surfaces. The high sensitivity, ease of use and the ability to monitor interactions in real-time has made it a popular technique for colloid chemists, biologists, bioengineers, and biophysicists. QCM-D has been recently used to probe the interaction of NPs with supported lipid bilayers (SLBs) as model cell membranes. The interaction of NPs with SLBs is highly influenced by the quality of the lipid bilayers. Unlike many surface sensitive techniques, by using QCM-D, the quality of SLBs can be assessed in real-time, hence QCM-D studies on SLB-NP interactions are less prone to the artifacts arising from bilayers that are not well formed. The ease of use and commercial availability of a wide range of sensor surfaces also have made QCM-D a versatile tool for studying NP interactions with lipid bilayers. In this review, we summarize the state-of-the-art on QCM-D based techniques for probing the interactions of NPs with lipid bilayers.
Collapse
Affiliation(s)
- Nariman Yousefi
- Department of Chemical Engineering, McGill University Montreal, QC, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University Montreal, QC, Canada
| |
Collapse
|