1
|
Lao Z, Ren X, Zhuang D, Xie L, Zhang Y, Li W, Chen Y, Li P, Tong L, Chu PK, Wang H. A phenotype-independent "label-capture-release" process for isolating viable circulating tumor cells in real-time drug susceptibility testing. Innovation (N Y) 2025; 6:100805. [PMID: 40432772 PMCID: PMC12105512 DOI: 10.1016/j.xinn.2025.100805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/10/2025] [Indexed: 05/29/2025] Open
Abstract
Although various strategies have been proposed for enrichment of circulating tumor cells (CTCs), the clinical outcomes of CTC detection are far from satisfactory. The prevailing methodologies for CTC detection are generally oriented toward naturally occurring targets; however, misdetection and interference are prevalent due to the diverse phenotypes and subpopulations of CTCs, which are highly heterogeneous. Here, a CTC isolation system based on the "label-capture-release" process is demonstrated for the precise and highly efficient enrichment of CTCs from clinical blood samples. On the basis of the abnormal glycometabolism of tumor cells, the surface of CTCs can be decorated with artificial azido groups. By utilizing bio-orthogonal plates designed with dibenzocyclooctane (DBCO) and disulfide groups, with the aid of anti-fouling effects, CTCs labeled with azido groups can be captured through a copper-free click reaction and subsequently released via disulfide reduction. The technique has been shown to label tumor cells with the epithelial cell adhesion molecule (EpCAM)+ and EpCAM- phenotypes in both adherent and suspended states. Moreover, it effectively isolates all epithelial, interstitial, and hybrid phenotypes of CTCs from clinical blood samples collected from dozens of patients across more than 10 cancer types. Compared to the clinically approved CTC detection system, our strategy demonstrates superior performance from the perspective of broad-spectrum and accurate recognition of heterogeneous CTCs. More importantly, most of the captured CTCs can be released with the retention of living activity, making this technique well suited for downstream applications such as drug susceptibility tests involving viable CTCs.
Collapse
Affiliation(s)
- Zhiqi Lao
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoxue Ren
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dehua Zhuang
- Department of Medical Laboratory, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Lingxia Xie
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yucong Zhang
- Department of Medical Laboratory, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Wei Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yue Chen
- Department of Medical Laboratory, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Penghui Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liping Tong
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Paul K. Chu
- Departments of Physics, Materials Science and Engineering, and Biomedical Engineering, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Key Laboratory of Biomedical Imaging Science and System, Chinese Academy of Sciences, Shenzhen 518055, China
- State Key Laboratory of Biomedical Imaging Science and System, Shenzhen 518055, China
| |
Collapse
|
2
|
Tang P, Thongrom B, Arora S, Haag R. Polyglycerol-Based Biomedical Matrix for Immunomagnetic Circulating Tumor Cell Isolation and Their Expansion into Tumor Spheroids for Drug Screening. Adv Healthc Mater 2023; 12:e2300842. [PMID: 37402278 PMCID: PMC11469197 DOI: 10.1002/adhm.202300842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 07/06/2023]
Abstract
Circulating tumor cells (CTCs) are established as distinct cancer biomarkers for diagnosis, as preclinical models, and therapeutic targets. Their use as preclinical models is limited owing to low purity after isolation and the lack of effective techniques to create 3D cultures that accurately mimic in vivo conditions. Herein, a two-component system for detecting, isolating, and expanding CTCs to generate multicellular tumor spheroids that mimic the physiology and microenvironment of the diseased organ is proposed. First, an antifouling biointerface on magnetic beads is fabricated by adding a bioinert polymer layer and conjugation of biospecific ligands to isolate cancer cells, dramatically enhancing the selectivity and purity of the isolated cancer cells. Next, the isolated cells are encapsulated into self-degradable hydrogels synthesized using a thiol-click approach. The hydrogels are mechanochemically tuned to enable tumor spheroid growth to a size greater than 300 µm and to further release the grown spheroids while retaining their tumor-like characteristics. In addition, drug treatment highlights the need for 3D culture environments rather than conventional 2D culture. The designed biomedical matrix shows potential as a universal method to ensure mimicry of in vivo tumor characteristics in individual patients and to improve the predictability of preclinical screening of personalized therapeutics.
Collapse
Affiliation(s)
- Peng Tang
- Institute for Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Boonya Thongrom
- Institute for Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Smriti Arora
- Institute for Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| | - Rainer Haag
- Institute for Chemistry and BiochemistryFreie Universität BerlinTakustr. 314195BerlinGermany
| |
Collapse
|
3
|
Durkin TJ, Barua B, Holmstrom JJ, Karanikola V, Savagatrup S. Functionalized Amphiphilic Block Copolymers and Complex Emulsions for Selective Sensing of Dissolved Metals at Liquid-Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12845-12854. [PMID: 37625160 DOI: 10.1021/acs.langmuir.3c01761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Increasing contamination in potable water supplies necessitates the development of sensing methods that provide the speed and selectivity necessary for safety. One promising method relies on recognition and detection at the liquid-liquid interface of dynamic complex emulsions. These all-liquid materials transduce changes in interfacial tensions into optical signals via the coupling of their chemical, physical, and optical properties. Thus, to introduce selectivity, it is necessary to modify the liquid-liquid interface with an interfacially stable and selective recognition unit. To this end, we report the synthesis and characterization of amphiphilic block copolymers modified with metal chelators to selectively measure the concentrations of dissolved metal ions. We find that significant reduction in interfacial tensions arises upon quantitative addition of metal ions with high affinity toward functionalized chelators. Furthermore, measurements from UV-vis spectroscopy reveal that complexation of the block copolymers with metal ions leads to an increase in surface excess and surfactant effectiveness. We also demonstrate selective detection of iron(III) cations (Fe3+) on the μM levels even through interference from other mono-, di-, or trivalent cations in complex matrices of synthetic groundwater. Our results provide a unique platform that couples selective recognition and modulation of interfacial behaviors and demonstrates a step forward in the development of the multiplexed sensing device needed to deconvolute the complicated array of contaminants that comprise real-world environmental samples.
Collapse
Affiliation(s)
- Tyler J Durkin
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Baishali Barua
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Jamie J Holmstrom
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Vasiliki Karanikola
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Suchol Savagatrup
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| |
Collapse
|
4
|
Jou AFJ, Hsu YC. Aptamer-Engineered Cu 2O Nanocubes as a Surface-Modulated Catalytic Optical Sensor for Lung Cancer Cell Detection. ACS APPLIED BIO MATERIALS 2023; 6:318-324. [PMID: 36538376 DOI: 10.1021/acsabm.2c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Herein, fine and homogeneous Cu2O nanocubes are synthesized and sensitized with a hairpin-structured AS1411 aptamer for the establishment of a biosensor for lung cancer cell detection. The Apt-Cu2O nanocubes feature a recognition function in identifying a cancer-associated surface nucleolin protein. The intrinsic reduction catalytic ability is also confirmed by the use of two benchmark substrates, methylene blue (MB) and 4-nitrophenol (4-NP). The aptamer grafting on Apt-Cu2O nanocubes is able to greatly prevent nonspecific-protein binding and to show specificity toward the nucleolin protein. The specific binding resulting from nucleolin protein leads to less exposure of the active area of the Apt-Cu2O nanocubes, so the catalytic ability of Apt-Cu2O nanocubes is thus diminished. The modulated catalytic ability led to less generation of the reduced 4-AP product, and the change in absorption of 4-AP allows the quantification of the nucleolin protein with a detection limit of 0.47 nM. The as-developed biosensor is applied to the detection of nucleolin-overexpressed A549 lung cancer cells, presenting a sensitive detection limit down to 20 cells. This may be ascribed to the clustering of surface nucleolin protein in a lipid raft membrane of cancer cells, as evidenced by a notable binding of Apt-Cu2O nanocubes on the cancer cell surface. Real human serum samples spiked with cancer cells were also investigated, and a recovery rate of 87 ± 2.4% for 20 extracted cells validates the surface-modulated Apt-Cu2O nanocubes-based catalytic optical biosensor as a promising tool for the detection of circulating tumor cells. The establishment of the Apt-Cu2O nanocubes may allow for further studies on their use as a potential theranostics tool for cancer therapy.
Collapse
Affiliation(s)
- Amily Fang-Ju Jou
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zongbei Road, Zhongli District, Taoyuan City320314, Taiwan (ROC).,Center for Nano Technology, Chung Yuan Christian University, No. 200, Zongbei Road, Zhongli District, Taoyuan City320314, Taiwan (ROC)
| | - Yu-Chieh Hsu
- Department of Chemistry, Chung Yuan Christian University, No. 200, Zongbei Road, Zhongli District, Taoyuan City320314, Taiwan (ROC)
| |
Collapse
|
5
|
Zhu S, Xie Z, Chen Y, Liu S, Kwan YW, Zeng S, Yuan W, Ho HP. Real-Time Detection of Circulating Tumor Cells in Bloodstream Using Plasmonic Fiber Sensors. BIOSENSORS 2022; 12:968. [PMID: 36354476 PMCID: PMC9687831 DOI: 10.3390/bios12110968] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 05/28/2023]
Abstract
Circulating tumor cells (CTCs) are single cancer cells or cancer cell clusters that are present in the circulatory system. Assessing CTC levels in patients can aid in the early detection of cancer metastasis and is essential for the purposes of accurate cancer prognosis. However, current in vitro blood tests are limited by the insufficient blood samples and low concentration levels of CTCs, which presents a major challenge for practical biosensing devices. In this work, we propose the first surface plasmon resonance (SPR) fiber probe to work intravenously, which offers a real-time detection of CTCs in bloodstreams. By exposing the protein-functionalized fiber probe to circulating blood, a continuous capture of CTCs ensures a constant increase in enrichment and hence greatly enhances enumeration accuracy. The performance of our plasmonic fiber probe was demonstrated to specifically detect Michigan Cancer Foundation-7 (MCF-7) breast cancer cells in flowing whole mouse blood. Further, a detection limit of ~1.4 cells per microliter was achieved by using an epithelial cell adhesion molecule (EpCAM) antibody-based receptor layer and a 15 minute enrichment period. This pilot study validates real-time CTC detection directly in the bloodstream by using plasmonic fiber probes, which exhibit promising clinical potential for in vivo diagnostic tests involving low concentration biomarkers in circulating blood.
Collapse
Affiliation(s)
- Shaodi Zhu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, University of Technology of Troyes, 10000 Troyes, France
| | - Zhenming Xie
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Yuzhi Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shiyue Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Yiu-Wa Kwan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Shuwen Zeng
- Light, Nanomaterials & Nanotechnologies (L2n), CNRS-EMR 7004, University of Technology of Troyes, 10000 Troyes, France
| | - Wu Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China
| |
Collapse
|
6
|
Wang X, Wang Z, Yu C, Ge Z, Yang W. Advances in precise single-cell capture for analysis and biological applications. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3047-3063. [PMID: 35946358 DOI: 10.1039/d2ay00625a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cells are the basic structural and functional units of living organisms. However, conventional cell analysis only averages millions of cell populations, and some important information is lost. It is essential to quantitatively characterize the physiology and pathology of single-cell activities. Precise single-cell capture is an extremely challenging task during cell sample preparation. In this review, we summarize the category of technologies to capture single cells precisely with a focus on the latest development in the last five years. Each technology has its own set of benefits and specific challenges, which provide opportunities for researchers in different fields. Accordingly, we introduce the applications of captured single cells in cancer diagnosis, analysis of metabolism and secretion, and disease treatment. Finally, some perspectives are provided on the current development trends, future research directions, and challenges of single-cell capture.
Collapse
Affiliation(s)
- Xiaowen Wang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China.
| | - Zhen Wang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China.
| | - Chang Yu
- College of Computer Science, Chongqing University, Chongqing 400000, China
| | - Zhixing Ge
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Wenguang Yang
- School of Electromechanical and Automotive Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
7
|
CAO R, ZHANG M, YU H, QIN J. [Recent advances in isolation and detection of circulating tumor cells with a microfluidic system]. Se Pu 2022; 40:213-223. [PMID: 35243831 PMCID: PMC9404083 DOI: 10.3724/sp.j.1123.2021.07009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 11/25/2022] Open
Abstract
The isolation and analysis of circulating tumor cells (CTCs) is an important issue in tumor research. CTCs in peripheral blood, which are important biomarkers of liquid biopsy, are closely related to the occurrence of cancer and are used to monitor the effect of treatment on cancer patients. However, the number of CTCs in the blood samples of cancer patients is very low, usually being present at only 0-10 CTCs/mL. Therefore, prior to the detection of CTCs, it is important to preprocess clinical blood samples for efficient separation and enrichment. With the advantages of low sample consumption, high separation efficiency, ease of automation and integration, microfluidic chips can be a suitable platform for the isolation of CTCs. In the last few years, CTC separation and detection using microfluidic chips have developed rapidly, and a variety of detection methods have been developed. According to the technical principle used, microfluidics for CTC separation can be divided into biological property-based methods and physical property-based methods. The biological property-based methods mainly depend on the interaction between the antigen and antibody, or the specific binding of the aptamer and target. These methods have high selectivity but low efficiency and recovery rates. Physical separation is based on the physical properties of CTCs such as their size, density, and dielectric properties. For example, CTCs can be blocked or captured by the microstructure in the channels of microfluidic chips, sorted by external physical fields (acoustic, electrical, magnetic), or screened by micro-scale hydrodynamics. Physical property-based methods generally have a higher flux but lower separation purity. However, the advantages of biological property-based methods and physical property-based methods can be integrated to provide microfluidic chips having better separation performance. In addition to the direct positive enrichment of CTCs, a negative enrichment strategy can also be adopted. The influence of direct screening on the activity of CTCs can be avoided by selectively removing white blood cells. In this paper, recent advances in microfluidics utilized in the isolation of CTCs, including physical and immune methods and positive and negative enrichment, are reviewed. We summarized the technical principles, detection methods, and research progress in CTC separation and detection using microfluidic chips. Developing trends in microfluidics for CTC separation and analysis are also discussed.
Collapse
|
8
|
Winter A, Zacharowski K, Meybohm P, Schnitzbauer A, Ruf P, Kellermann C, Lindhofer H. Removal of EpCAM-positive tumor cells from blood collected during major oncological surgery using the Catuvab device- a pilot study. BMC Anesthesiol 2021; 21:261. [PMID: 34715784 PMCID: PMC8555247 DOI: 10.1186/s12871-021-01479-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Intraoperative blood salvage (IBS) is regarded as an alternative to allogeneic blood transfusion excluding the risks associated with allogeneic blood. Currently, IBS is generally avoided in tumor surgeries due to concern for potential metastasis caused by residual tumor cells in the erythrocyte concentrate. METHODS The feasibility, efficacy and safety aspects of the new developed Catuvab procedure using the bispecific trifunctional antibody Catumaxomab was investigated in an ex-vivo pilot study in order to remove residual EpCAM positive tumor cells from the autologous erythrocyte concentrates (EC) from various cancer patients, generated by a IBS device. RESULTS Tumor cells in intraoperative blood were detected in 10 of 16 patient samples in the range of 69-2.6 × 105 but no residual malignant cells in the final erythrocyte concentrates after Catuvab procedure. IL-6 and IL-8 as pro-inflammatory cytokines released during surgery, were lowered in mean 28-fold and 52-fold during the Catuvab procedure, respectively, whereas Catumaxomab antibody was detected in 8 of 16 of the final EC products at a considerable decreased and uncritical residual amount (37 ng in mean). CONCLUSION The preliminary study results indicate efficacy and feasibility of the new medical device Catuvab allowing potentially the reinfusion of autologous erythrocyte concentrates (EC) produced by IBS device during oncological high blood loss surgery. An open-label, multicenter clinical study on the removal of EpCAM-positive tumor cells from blood collected during tumor surgery using the Catuvab device is initiated to validate these encouraging results.
Collapse
Affiliation(s)
- Andreas Winter
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Patrick Meybohm
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Department of Anaesthesiology, University Hospital Wuerzburg, Oberdürrbacher Straße 6, 97080, Wuerzburg, Germany
| | - Andreas Schnitzbauer
- Department of General and Visceral Surgery, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Peter Ruf
- Trion Research GmbH, Am Klopferspitz 19, 82152, Martinsried, Germany
| | | | - Horst Lindhofer
- Trion Research GmbH, Am Klopferspitz 19, 82152, Martinsried, Germany
| |
Collapse
|
9
|
Singh B, Arora S, D'Souza A, Kale N, Aland G, Bharde A, Quadir M, Calderón M, Chaturvedi P, Khandare J. Chemo-specific designs for the enumeration of circulating tumor cells: advances in liquid biopsy. J Mater Chem B 2021; 9:2946-2978. [PMID: 33480960 DOI: 10.1039/d0tb02574g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Advanced materials and chemo-specific designs at the nano/micrometer-scale have ensured revolutionary progress in next-generation clinically relevant technologies. For example, isolating a rare population of cells, like circulating tumor cells (CTCs) from the blood amongst billions of other blood cells, is one of the most complex scientific challenges in cancer diagnostics. The chemical tunability for achieving this degree of exceptional specificity for extra-cellular biomarker interactions demands the utility of advanced entities and multistep reactions both in solution and in the insoluble state. Thus, this review delineates the chemo-specific substrates, chemical methods, and structure-activity relationships (SARs) of chemical platforms used for isolation and enumeration of CTCs in advancing the relevance of liquid biopsy in cancer diagnostics and disease management. We highlight the synthesis of cell-specific, tumor biomarker-based, chemo-specific substrates utilizing functionalized linkers through chemistry-based conjugation strategies. The capacity of these nano/micro substrates to enhance the cell interaction specificity and efficiency with the targeted tumor cells is detailed. Furthermore, this review accounts for the importance of CTC capture and other downstream processes involving genotypic and phenotypic CTC analysis in real-time for the detection of the early onset of metastases progression and chemotherapy treatment response, and for monitoring progression free-survival (PFS), disease-free survival (DFS), and eventually overall survival (OS) in cancer patients.
Collapse
Affiliation(s)
- Balram Singh
- Actorius Innovations and Research Pvt. Ltd, Pune, 411057, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Antibody CD133 Biofunctionalization of Ammonium Acryloyldimethyltaurate and Vinylpyrrolidone Co-Polymer-Based Coating of the Vascular Implants. MATERIALS 2020; 13:ma13245634. [PMID: 33321837 PMCID: PMC7763102 DOI: 10.3390/ma13245634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 11/26/2022]
Abstract
Current vascular stents, such as drug eluting stents (DES), have some serious drawbacks, like in stent restenosis and thrombosis. Therefore, other solutions are sought to overcome these post-implantations complications. These include the strategy of biofunctionalization of the stent surface with antibodies that facilitate adhesion of endothelial cells (ECs) or endothelial progenitor cells (EPCs). Rapid re-endothelialization of the surface minimizes the risk of possible complications. In this study, we proposed ammonium acryloyldimethyltaurate/vinylpyrrolidone co-polymer-based surface (AVC), which was mercaptosilanized in order to expose free thiol groups. The presence of free thiol groups allowed for the covalent attachment of CD133 antibodies by disulfide bridges formation between mercaptosilanized surface and cysteine of the protein molecule thiol groups. Various examinations were performed in order to validate the procedure, including attenuated total reflection–Fourier transform infrared spectroscopy (ATR-FTIR) and Fourier transform Raman spectroscopy (FT-Raman), atomic force microscopy (AFM) and scanning electron microscopy (SEM). By means of ATR-FTIR spectroscopy presence of the CD133 antibody within coating was confirmed. In vitro studies proved good biocompatibility for blood cells without induction of hemolytic response. Thus, proposed biofunctionalized CD133 antibody AVC surface has shown sufficient stability for adapting as cardiovascular implant coating and biocompatibility. According to conducted in vitro studies, the modified surface can be further tested for applications in various biological systems.
Collapse
|
11
|
Ansari A, Trehan R, Watson C, Senyo S. Increasing Silicone Mold Longevity: A Review of Surface Modification Techniques for PDMS-PDMS Double Casting. SOFT MATERIALS 2020; 19:388-399. [PMID: 35035304 PMCID: PMC8758012 DOI: 10.1080/1539445x.2020.1850476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/10/2020] [Indexed: 06/14/2023]
Abstract
Polydimethyl siloxane (PDMS) has been used extensively for microfluidic devices due to its chemical properties allowing for rapid molding and versatile biological application. Soft lithography based PDMS fabrication primarily comprises casting from patterned photoresist on a silicon wafer. The patterned photoresist is often replaced with the cast PDMS as a more durable template mold for final PDMS fabrication that is less fragile and expensive. PDMS-PDMS double casting prolongs the longevity of soft lithography molds and reduces overall costs to microfuidic applications. A common end to the lifetime of PDMS negative masters is the risk of bonding between the replicate and mold and distorted topographrical features. This review examines common chemical and physical debonding approaches between PDMS-PDMS castings to exend the lifetime of PDMS masters.
Collapse
Affiliation(s)
- Ali Ansari
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Rajiv Trehan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Craig Watson
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Samuel Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
12
|
Kuzmyn AR, Nguyen AT, Teunissen LW, Zuilhof H, Baggerman J. Antifouling Polymer Brushes via Oxygen-Tolerant Surface-Initiated PET-RAFT. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4439-4446. [PMID: 32293894 PMCID: PMC7191748 DOI: 10.1021/acs.langmuir.9b03536] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
This work presents a new method for the synthesis of antifouling polymer brushes using surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain-transfer polymerization with eosin Y and triethanolamine as catalysts. This method proceeds in an aqueous environment under atmospheric conditions without any prior degassing and without the use of heavy metal catalysts. The versatility of the method is shown by using three chemically different monomers: oligo(ethylene glycol) methacrylate, N-(2-hydroxypropyl)methacrylamide, and carboxybetaine methacrylamide. In addition, the light-triggered nature of the polymerization allows the creation of complex three-dimensional structures. The composition and topological structuring of the brushes are confirmed by X-ray photoelectron spectroscopy and atomic force microscopy. The kinetics of the polymerizations are followed by measuring the layer thickness with ellipsometry. The polymer brushes demonstrate excellent antifouling properties when exposed to single-protein solutions and complex biological matrices such as diluted bovine serum. This method thus presents a new simple approach for the manufacturing of antifouling coatings for biomedical and biotechnological applications.
Collapse
Affiliation(s)
- Andriy R Kuzmyn
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Aquamarijn Micro Filtration BV, IJsselkade 7, 7201 HB Zutphen, The Netherlands
| | - Ai T Nguyen
- Aquamarijn Micro Filtration BV, IJsselkade 7, 7201 HB Zutphen, The Netherlands
| | - Lucas W Teunissen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People's Republic of China
- Department of Chemical and Materials Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Jacob Baggerman
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Aquamarijn Micro Filtration BV, IJsselkade 7, 7201 HB Zutphen, The Netherlands
| |
Collapse
|
13
|
Nanduri LK, Hissa B, Weitz J, Schölch S, Bork U. The prognostic role of circulating tumor cells in colorectal cancer. Expert Rev Anticancer Ther 2019; 19:1077-1088. [PMID: 31778322 DOI: 10.1080/14737140.2019.1699065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Metastasis is the main cause of cancer-associated death in colorectal cancer (CRC). The presence of circulating tumor cells (CTC) in the blood is associated with an increased risk of recurrence and poor prognosis. The clinical significance of CTCs as a novel biomarker has been extensively studied in the last decade. It has been shown that CTC detection applies to early cancer detection. The presence of CTCs is associated with metastatic spread and poor survival and is also useful as a marker for therapy response.Areas covered: We summarize the role of CTC in CRC, their clinical significance, current methods for CTC detection and challenges as well as future perspectives of CTC research.Expert commentary: The clinical significance of CTC in CRC patients is well established. Although insightful, the available marker-based approaches hampered our understanding of the CTCs and their biology, as such approaches do not take into account the heterogeneity of these cell populations. New technologies should expand the marker-based detection to multi biomarker-based approaches together with recent technological advances in microfluidics for single cell enrichment and analysis.
Collapse
Affiliation(s)
- Lahiri Kanth Nanduri
- Department of Gastrointestinal-, Thoracic- and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Barbara Hissa
- Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jürgen Weitz
- Department of Gastrointestinal-, Thoracic- and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Schölch
- Department of Gastrointestinal-, Thoracic- and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ulrich Bork
- Department of Gastrointestinal-, Thoracic- and Vascular Surgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
14
|
Ostrikov K, Michl T, MacGregor M, Vasilev K. Bladder Cancer Cell Capture: Elucidating the Effect of Sample Storage Conditions on Capturing Bladder Cancer Cells via Surface Immobilized EpCAM Antibody. ACS APPLIED BIO MATERIALS 2019; 2:3730-3736. [DOI: 10.1021/acsabm.9b00299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
15
|
|
16
|
Yin J, Mou L, Yang M, Zou W, Du C, Zhang W, Jiang X. Highly efficient capture of circulating tumor cells with low background signals by using pyramidal microcavity array. Anal Chim Acta 2019; 1060:133-141. [DOI: 10.1016/j.aca.2019.01.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
|
17
|
Rapid prototyping of Nanoroughened polydimethylsiloxane surfaces for the enhancement of immunomagnetic isolation and recovery of rare tumor cells. Biomed Microdevices 2019; 21:58. [PMID: 31227909 DOI: 10.1007/s10544-019-0418-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Traditional immunomagnetic assays for the isolation and recovery of circulating tumor cells (CTCs) usually require sophisticated device or intense magnetic field to simultaneously achieve high capture efficiency and high throughout. In this study, a simple microfluidic chip featured with nanoroughened channel substrate was developed for effectively capture and release of CTCs based on an immunomagnetic chip-based approach. The nanoroughened substrate aims to increase the cell-surface contact area, facilitate the immobilization of magnet particles (MPs) and accommodate cell attachment tendency. Hep3B tumor cells were firstly conjugated with MPs that were functionalized with anti-EpCAM. Comparing with the flat channel, MPs modified tumor cells can be more effectively captured on nanoroughened substrate at the presence of the magnetic field. Upon the removal of magnetic field, these captured cells can be released from the device and collected for further analysis. Under the optimum operating conditions, the capture efficiency of tumor cells was obtained as high as ~90% with a detection limit of 10 cell per mL. Additionally, recovery rates of trapped tumor cells at various densities all exceeded 90% and their biological potencies were well retained by investigating the cell attachment and proliferation. Therefore, the present approach may potentially be used in clinical CTC analysis for cancer diagnosis and prognosis as well as the fundamental understanding of tumor metastasis.
Collapse
|
18
|
Andree KC, Mentink A, Nguyen AT, Goldsteen P, van Dalum G, Broekmaat JJ, van Rijn CJM, Terstappen LWMM. Tumor cell capture from blood by flowing across antibody-coated surfaces. LAB ON A CHIP 2019; 19:1006-1012. [PMID: 30762848 DOI: 10.1039/c8lc01158c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The load of circulating tumor cells (CTC) is related to poor outcomes in cancer patients. A sufficient number of these cells would enable a full characterization of the cancer. An approach to probe larger blood volumes, allowing for the detection of more of these very rare CTC, is the use of leukapheresis. Currently available techniques allow only the analysis of a small portion of leukapheresis products. Here, we present a method that uses flow rather than static conditions which allows processing of larger volumes. We evaluated the conditions needed to isolate tumor cells from blood while passing antibody coated surfaces. Results show that our set-up efficiently captures cancer cells from whole blood. Results show that the optimal velocity at which cells are captured from blood is 0.6 mm s-1. Also, it can be concluded that the VU1D9 antibody targeting the EpCAM antigen has very high capture efficiency. When using an antibody that does not capture 100% of all cells, combining multiple antibodies on the capture surface is very beneficial leading to an increase in cell capture and is therefore worthwhile considering in any cancer cell capture methodology.
Collapse
Affiliation(s)
- K C Andree
- Medical Cell Biophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yu CC, Chen YW, Yeh PY, Hsiao YS, Lin WT, Kuo CW, Chueh DY, You YW, Shyue JJ, Chang YC, Chen P. Random and aligned electrospun PLGA nanofibers embedded in microfluidic chips for cancer cell isolation and integration with air foam technology for cell release. J Nanobiotechnology 2019; 17:31. [PMID: 30782169 PMCID: PMC6379968 DOI: 10.1186/s12951-019-0466-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Circulating tumor cells (CTCs) comprise the high metastatic potential population of cancer cells in the blood circulation of humans; they have become the established biomarkers for cancer diagnosis, individualized cancer therapy, and cancer development. Technologies for the isolation and recovery of CTCs can be powerful cancer diagnostic tools for liquid biopsies, allowing the identification of malignancies and guiding cancer treatments for precision medicine. METHODS We have used an electrospinning process to prepare poly(lactic-co-glycolic acid) (PLGA) nanofibrous arrays in random or aligned orientations on glass slips. We then fabricated poly(methyl methacrylate) (PMMA)-based microfluidic chips embedding the PLGA nanofiber arrays and modified their surfaces through sequential coating with using biotin-(PEG)7-amine through EDC/NHS activation, streptavidin (SA), and biotinylated epithelial-cell adhesion-molecule antibody (biotin-anti-EpCAM) to achieve highly efficient CTC capture. When combined with an air foam technology that induced a high shear stress and, thereby, nondestructive release of the captured cells from the PLGA surfaces, the proposed device system operated with a high cell recovery rate. RESULTS The morphologies and average diameters of the electrospun PLGA nanofibers were characterized using scanning electron microscopy (SEM) and confocal Raman imaging. The surface chemistry of the PLGA nanofibers conjugated with the biotin-(PEG)7-amine was confirmed through time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging. The chip system was studied for the effects of the surface modification density of biotin-(PEG)7-amine, the flow rates, and the diameters of the PLGA nanofibers on the capture efficiency of EpCAM-positive HCT116 cells from the spiked liquid samples. To assess their CTC capture efficiencies in whole blood samples, the aligned and random PLGA nanofiber arrays were tested for their abilities to capture HCT116 cells, providing cancer cell capture efficiencies of 66 and 80%, respectively. With the continuous injection of air foam into the microfluidic devices, the cell release efficiency on the aligned PLGA fibers was 74% (recovery rate: 49%), while it was 90% (recovery rate: 73%) on the random PLGA fibers, from tests of 200 spiked cells in 2 mL of whole blood from healthy individuals. Our study suggests that integrated PMMA microfluidic chips embedding random PLGA nanofiber arrays may be suitable devices for the efficient capture and recovery of CTCs from whole blood samples.
Collapse
Affiliation(s)
- Chia-Cheng Yu
- Department of Materials Engineering, Ming Chi University of Technology, Taishan, New Taipei City, 24301, Taiwan
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yi-Wen Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Po-Ying Yeh
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Sheng Hsiao
- Department of Materials Engineering, Ming Chi University of Technology, Taishan, New Taipei City, 24301, Taiwan.
| | - Wei-Ting Lin
- Department of Materials Engineering, Ming Chi University of Technology, Taishan, New Taipei City, 24301, Taiwan
| | - Chiung-Wen Kuo
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Di-Yen Chueh
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yun-Wen You
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jing-Jong Shyue
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying-Chih Chang
- Genomics Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| | - Peilin Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
20
|
Jaiswal N, Hens A, Chatterjee M, Mahata N, Chanda N. Ethylenediamine assisted functionalization of self-organized poly (d, l-lactide-co-glycolide) patterned surface to enhance cancer cell isolation. J Colloid Interface Sci 2019; 534:122-130. [DOI: 10.1016/j.jcis.2018.08.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
|
21
|
Zhang L, Xu Z, Kang Y, Xue P. Three-dimensional microfluidic chip with twin-layer herringbone structure for high efficient tumor cell capture and release via antibody-conjugated magnetic microbeads. Electrophoresis 2018; 39:1452-1459. [DOI: 10.1002/elps.201800043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Silkworm Genome Biology; Southwest University; Chongqing P. R. China
| | - Zhigang Xu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy; Southwest University; Chongqing P. R. China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices; Chongqing P. R. China
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy; Southwest University; Chongqing P. R. China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices; Chongqing P. R. China
| | - Peng Xue
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy; Southwest University; Chongqing P. R. China
- Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices; Chongqing P. R. China
| |
Collapse
|
22
|
Comparative study on antibody immobilization strategies for efficient circulating tumor cell capture. Biointerphases 2018; 13:021001. [PMID: 29571263 DOI: 10.1116/1.5023456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Methods for isolation and quantification of circulating tumor cells (CTCs) are attracting more attention every day, as the data for their unprecedented clinical utility continue to grow. However, the challenge is that CTCs are extremely rare (as low as 1 in a billion of blood cells) and a highly sensitive and specific technology is required to isolate CTCs from blood cells. Methods utilizing microfluidic systems for immunoaffinity-based CTC capture are preferred, especially when purity is the prime requirement. However, antibody immobilization strategy significantly affects the efficiency of such systems. In this study, two covalent and two bioaffinity antibody immobilization methods were assessed with respect to their CTC capture efficiency and selectivity, using an anti-epithelial cell adhesion molecule (EpCAM) as the capture antibody. Surface functionalization was realized on plain SiO2 surfaces, as well as in microfluidic channels. Surfaces functionalized with different antibody immobilization methods are physically and chemically characterized at each step of functionalization. MCF-7 breast cancer and CCRF-CEM acute lymphoblastic leukemia cell lines were used as EpCAM positive and negative cell models, respectively, to assess CTC capture efficiency and selectivity. Comparisons reveal that bioaffinity based antibody immobilization involving streptavidin attachment with glutaraldehyde linker gave the highest cell capture efficiency. On the other hand, a covalent antibody immobilization method involving direct antibody binding by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC)-N-hydroxysuccinimide (NHS) reaction was found to be more time and cost efficient with a similar cell capture efficiency. All methods provided very high selectivity for CTCs with EpCAM expression. It was also demonstrated that antibody immobilization via EDC-NHS reaction in a microfluidic channel leads to high capture efficiency and selectivity.
Collapse
|
23
|
EpCAM-expressing circulating tumor cells in colorectal cancer. Int J Biol Markers 2017; 32:e415-e420. [PMID: 28604994 DOI: 10.5301/ijbm.5000284] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Several studies have raised the issue of the inadequacy of CellSearch® to detect the entire pool of circulating tumor cells (CTCs) from blood of cancer patients, suggesting that cells expressing low levels of epithelial cell adhesion molecule (EpCAM) are not recognized by the capture reagent. In this exploratory study, we aimed to evaluate the status of EpCAM in CTCs isolated from a group of metastatic colorectal cancer patients, in 40% of whom, CTC had been found to be undetected by the CellSearch® system. METHODS CTCs were analyzed using both a microfiltration method (ScreenCell) and CellSearch® in parallel. Furthermore, since EpCAM exists in 2 different variants, we investigated the presence of both its intracellular domain (EpICD) and extracellular domain (EpEX) through immunofluorescence staining of CTCs on filters. RESULTS Results from immunofluorescence experiments demonstrated that, overall, EpICD and/or EpEX was expressed in 176 CTCs detected by ScreenCell, while the CellSearch® system was able to capture only 10 CTCs. CONCLUSIONS This is the first demonstration that the low sensitivity of CellSearch® to detect CTCs in colorectal cancer patients is not due to the lack of EpCAM.
Collapse
|
24
|
Xia J, Cheng Y, Zhang H, Li R, Hu Y, Liu B. The role of adhesions between homologous cancer cells in tumor progression and targeted therapy. Expert Rev Anticancer Ther 2017; 17:517-526. [DOI: 10.1080/14737140.2017.1322511] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Huang L, Bian S, Cheng Y, Shi G, Liu P, Ye X, Wang W. Microfluidics cell sample preparation for analysis: Advances in efficient cell enrichment and precise single cell capture. BIOMICROFLUIDICS 2017; 11:011501. [PMID: 28217240 PMCID: PMC5303167 DOI: 10.1063/1.4975666] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 01/24/2017] [Indexed: 05/03/2023]
Abstract
Single cell analysis has received increasing attention recently in both academia and clinics, and there is an urgent need for effective upstream cell sample preparation. Two extremely challenging tasks in cell sample preparation-high-efficiency cell enrichment and precise single cell capture-have now entered into an era full of exciting technological advances, which are mostly enabled by microfluidics. In this review, we summarize the category of technologies that provide new solutions and creative insights into the two tasks of cell manipulation, with a focus on the latest development in the recent five years by highlighting the representative works. By doing so, we aim both to outline the framework and to showcase example applications of each task. In most cases for cell enrichment, we take circulating tumor cells (CTCs) as the target cells because of their research and clinical importance in cancer. For single cell capture, we review related technologies for many kinds of target cells because the technologies are supposed to be more universal to all cells rather than CTCs. Most of the mentioned technologies can be used for both cell enrichment and precise single cell capture. Each technology has its own advantages and specific challenges, which provide opportunities for researchers in their own area. Overall, these technologies have shown great promise and now evolve into real clinical applications.
Collapse
Affiliation(s)
- Liang Huang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Shengtai Bian
- Department of Biomedical Engineering, Tsinghua University , Beijing, China
| | - Yinuo Cheng
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Guanya Shi
- Department of Automotive Engineering, Tsinghua University , Beijing, China
| | - Peng Liu
- Department of Biomedical Engineering, Tsinghua University , Beijing, China
| | - Xiongying Ye
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| | - Wenhui Wang
- State Key Laboratory of Precision Measurement Technology and Instrument, Department of Precision Instrument, Tsinghua University , Beijing, China
| |
Collapse
|
26
|
Swennenhuis JF, van Dalum G, Zeune LL, Terstappen LWMM. Improving the CellSearch® system. Expert Rev Mol Diagn 2016; 16:1291-1305. [PMID: 27797592 DOI: 10.1080/14737159.2016.1255144] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The CellSearch® CTC test enumerates tumor cells present in 7.5 ml blood of cancer patients. improvements, extensions and different utilities of the cellsearch system are discussed in this paper. Areas covered: This paper describes work performed with the CellSearch system, which go beyond the normal scope of the test. All results from searches with the search term 'CellSearch' from Web of Science and PubMed were categorized and discussed. Expert commentary: The CellSearch Circulating Tumor Cell test captures and identifies tumor cells in blood that are associated with poor clinical outcome. How to best use CTC in clinical practice is being explored in many clinical trials. The ability to extract information from the CTC to guide therapy will expand the potential clinical utility of CTC.
Collapse
Affiliation(s)
- J F Swennenhuis
- a Medical Cell BioPhysics , University of Twente , Enschede , The Netherlands
| | - G van Dalum
- a Medical Cell BioPhysics , University of Twente , Enschede , The Netherlands
| | - L L Zeune
- a Medical Cell BioPhysics , University of Twente , Enschede , The Netherlands
| | - L W M M Terstappen
- a Medical Cell BioPhysics , University of Twente , Enschede , The Netherlands
| |
Collapse
|