1
|
Tong W, Du Y, Yao M, Fang H, He W, Zhang Y, Su Y, Leng Y, Huang X, Xiong Y, Xiong Y. Gold nanocubes etching enhanced light scattering immunoassay for highly sensitive detection of Staphylococcus aureus enterotoxin A. Food Chem 2025; 479:143713. [PMID: 40069079 DOI: 10.1016/j.foodchem.2025.143713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/18/2025] [Accepted: 03/01/2025] [Indexed: 03/15/2025]
Abstract
An innovative light scattering immunoassay was developed using an AuNPs etching strategy. Three types of anisotropic gold nanoparticles, including gold nanocubes, nanorods, and nanoflowers with distinct morphologies, were utilized to investigate how these morphological differences affect the sensitivity of light scattering signal transduction. Based on theoretical insights into light scattering and electromagnetic fields, gold nanocubes were identified as the optimal probes for enhancing light scattering signal transduction and were employed to construct an immunoassay for detecting staphylococcal enterotoxin A (SEA). The developed immunoassay achieved ultrahigh sensitivity for SEA detection in milk samples, with a detection limit of 10.39 pg mL-1, which is 190 times lower than that of conventional ELISA. The proposed immunoassay was validated across ten food samples, demonstrating high accuracy and robustness. Given these promising results, we believe this method has significant potential for screening trace levels of SEA in food products.
Collapse
Affiliation(s)
- Weipeng Tong
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yingjie Du
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Mingjian Yao
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Hao Fang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Weitao He
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yi Zhang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yu Su
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Yuankui Leng
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Ying Xiong
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, National Engineering Research Center of Rice and Byproducts Deep Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resource, Nanchang University, Nanchang 330047, PR China; School of Food Science and Technology, Nanchang University, Nanchang 330047, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
2
|
Chen Q, Gu Y, Wang Y, Lu Z, Dong Q, Liu Z. Development of a smartphone-assisted multiple colorimetric detection assay for GSH in food based on the degradation of gold nanorods. ANAL SCI 2025; 41:335-343. [PMID: 39827446 DOI: 10.1007/s44211-024-00711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025]
Abstract
Glutathione (GSH) is a tripeptide and natural reducing agent composed of glutamic acid, glycine, and cysteine. Its level in the human body is closely linked to human health, such as diabetes, Alzheimer's disease, and cancer. The supplementation of exogenous GSH could bring health benefits and GSH detection in food is of considerable importance. However, the existing assays for GSH detection such as high-performance liquid chromatography/mass spectrometry, electrochemiluminescence and fluorescent nanoprobe were not satisfactory because of the disadvantages of equipment and site requirements. In this study, a multiple-colorimetric detection assay for GSH was developed based on GSH's reaction with gold nanorods. During the reaction with varying concentrations of GSH, the gold nanorods degraded into spherical nanoparticles with multiple color changes, which could be used to determine GSH concentrations. The transverse surface plasmon resonance absorption peak of gold nanorods (AuNRs) significantly shifted, indicating a novel mechanism distinct from etching or surface coating, which typically altered the longitudinal surface plasmon absorption peak. Under optimized conditions, the assay exhibited commendable specificity and reliability in actual samples. The assay accurately quantified GSH ranging from 1 to 10 µM, with detection limits of 439 nM and 260 nM for spectrophotometry and visual analysis, respectively. It was firstly to use GSH as a reducing agent to react with AuNRs in the presence of AgNO3 and the mechanism was different from etching or surface coating. The study's assay shows potential for detecting GSH in food samples and provides an alternative approach for the development of colorimetric detection assays based on AuNRs.
Collapse
Affiliation(s)
- Qiming Chen
- School of Life Sciences, Shanghai University, 381 Nanchen Rd, Shanghai, 200444, China
| | - Yimeng Gu
- School of Life Sciences, Shanghai University, 381 Nanchen Rd, Shanghai, 200444, China
| | - Yikai Wang
- School of Life Sciences, Shanghai University, 381 Nanchen Rd, Shanghai, 200444, China
| | - Zhengrong Lu
- School of Life Sciences, Shanghai University, 381 Nanchen Rd, Shanghai, 200444, China
| | - Quanling Dong
- School of Life Sciences, Shanghai University, 381 Nanchen Rd, Shanghai, 200444, China
| | - Zhanmin Liu
- School of Life Sciences, Shanghai University, 381 Nanchen Rd, Shanghai, 200444, China.
| |
Collapse
|
3
|
Gu Y, Zhao T, Sun B, Zhang Y, Zhang Q, Xu G, Yu C. Integrated gold nanorods-based dual-signal platform for accurate total antioxidant capacity assessment in food samples. Talanta 2024; 280:126650. [PMID: 39128310 DOI: 10.1016/j.talanta.2024.126650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Accurate assessment of Total Antioxidant Capacity (TAC) in food is crucial for evaluating nutritional quality and potential health benefits. This study aims to enhance the sensitivity and reliability of TAC detection through a dual-signal method, combining colorimetric and photothermal signals. Gold nanorods (AuNRs) were utilized to establish a dual-signal method duo to the colorimetric and photothermal properties. Fenton reaction can etch the AuNRs from the tips, as a result, a blue shift in the longitudinal LSPR absorption peak was obtained, leading to significant changes in color and photothermal effects, facilitating discrimination through both visual observation and thermometer measurements. In the presence of antioxidants, the Fenton reaction was suppressed or inhibited, protecting the AuNRs from etching. The colorimetric and photothermal signals were therefore positively correlated with TAC levels, enabling dual-signal detection of TAC. The linear range of AA was 4-100 μM in both colorimetry and photothermal modes, with detection limits of 1.60 μM and 1.38 μM, respectively. This dual-signal approach achieves low detection limits, enhancing precision and sensitivity. The method thus has the potential to act as a promising candidate for TAC detection in food samples, contributing to improved food quality and safety assessment.
Collapse
Affiliation(s)
- Yuwei Gu
- College of Science, Hebei Agricultural University, Baoding, 071001, PR China
| | - Tengfei Zhao
- Lucky Healthcare Limited Liability Company, Baoding, 071054, PR China
| | - Bo Sun
- College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, 071001, PR China
| | - Yunyi Zhang
- College of Science, Hebei Agricultural University, Baoding, 071001, PR China.
| | - Qingfeng Zhang
- College of Science and Technology, Hebei Agricultural University, Cangzhou, 061100, Hebei, PR China.
| | - Guangcai Xu
- College of Science, Hebei Agricultural University, Baoding, 071001, PR China
| | - Cong Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
4
|
Liu DM, Dong C. Gold nanoparticles as colorimetric probes in food analysis: Progress and challenges. Food Chem 2023; 429:136887. [PMID: 37478597 DOI: 10.1016/j.foodchem.2023.136887] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/03/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
The rapid, sensitive and reliable food safety control is urgently needed due to the harmful effects of the food contaminants on human health. Colorimetric approach has exhibited promising potential for the detection of food contaminants due to their easy preparation, rapid detection, high sensitivity, and naked-eye sensing. In recent years, AuNPs-based colorimetric probes have been extensively explored for food analysis. The present article reviews the development of AuNPs-based colorimetric probes for colorimetric sensing and their applications in food analysis. It generally summarizes the properties of AuNPs and introduces the preparation and functionalization methods of AuNPs. An overview of the colorimetric sensing mechanisms of AuNPs-based probes and their applications in analysis of food contaminants are also provided. Although AuNPs-based colorimetric probes show many advantages in detection of food contaminants, challenges remain in terms of complexity of food matrices, multiple analytes detection in a single go, and testing conditions interference.
Collapse
Affiliation(s)
- Dong-Mei Liu
- Key Lab for Special Functional Materials, Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, PR China
| | - Chen Dong
- Key Laboratory of Photovoltaic Materials, Henan University, Kaifeng, 475004 PR China.
| |
Collapse
|
5
|
Aboelezz E, Pogue BW. Review of nanomaterial advances for ionizing radiation dosimetry. APPLIED PHYSICS REVIEWS 2023; 10:021312. [PMID: 37304732 PMCID: PMC10249220 DOI: 10.1063/5.0134982] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/01/2023] [Indexed: 06/13/2023]
Abstract
There are a wide range of applications with ionizing radiation and a common theme throughout these is that accurate dosimetry is usually required, although many newer demands are provided by improved features in higher range, multi-spectral and particle type detected. Today, the array of dosimeters includes both offline and online tools, such as gel dosimeters, thermoluminescence (TL), scintillators, optically stimulated luminescence (OSL), radiochromic polymeric films, gels, ionization chambers, colorimetry, and electron spin resonance (ESR) measurement systems. Several future nanocomposite features and interpretation of their substantial behaviors are discussed that can lead to improvements in specific features, such as (1) lower sensitivity range, (2) less saturation at high range, (3) overall increased dynamic range, (4) superior linearity, (5) linear energy transfer and energy independence, (6) lower cost, (7) higher ease of use, and (8) improved tissue equivalence. Nanophase versions of TL and ESR dosimeters and scintillators each have potential for higher range of linearity, sometimes due to superior charge transfer to the trapping center. Both OSL and ESR detection of nanomaterials can have increased dose sensitivity because of their higher readout sensitivity with nanoscale sensing. New nanocrystalline scintillators, such as perovskite, have fundamentally important advantages in sensitivity and purposeful design for key new applications. Nanoparticle plasmon coupled sensors doped within a lower Zeff material have been an effective way to achieve enhanced sensitivity of many dosimetry systems while still achieving tissue equivalency. These nanomaterial processing techniques and unique combinations of them are key steps that lead to the advanced features. Each must be realized through industrial production and quality control with packaging into dosimetry systems that maximize stability and reproducibility. Ultimately, recommendations for future work in this field of radiation dosimetry were summarized throughout the review.
Collapse
Affiliation(s)
- Eslam Aboelezz
- Ionizing Radiation Metrology Department, National Institute of Standards, Giza, Egypt
| | - Brian W. Pogue
- Department of Medical Physics, University of Wisconsin-Madison, Madison 53705, USA
| |
Collapse
|
6
|
Sun J, Guo A, Yan M, Wu X, Wang GL. Kanamycin triggered nanozyme for homogeneous and amplified colorimetric detection of T4 polynucleotide kinase. Talanta 2023; 257:124335. [PMID: 36821968 DOI: 10.1016/j.talanta.2023.124335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023]
Abstract
It is of significance to develop efficient methods for detecting the activity of T4 polynucleotide kinase (T4 PNK) due to its essential role in the modulation of different life activities. In this work, we constructed a novel nanozyme using Kanamycin (KANA) as a trigger for the [Fe(CN)6]3- coordinated Cu2(OH)3NO3 (Cu2(OH)3NO3/[Fe(CN)6]3-) nanorods, and designed an amplified colorimetric method to detect T4 PNK. That was, the free KANA efficiently triggered the peroxidase-like activity of Cu2(OH)3NO3/[Fe(CN)6]3-, while the bound KANA by its aptamer lost the stimulative capability for the nanomaterials. On the basis of the bioreaction regulated generation of the KANA aptamer, a highly sensitive colorimetric assay aided by the rolling circle amplification (RCA) reaction for the detection of T4 PNK was realized. Results showed that this assay can detect T4 PNK from 1.0 × 10-3 to 10.0 U/mL, with a limit of detection (LOD) of 1.42 × 10-4 U/mL. The assay also showed acceptable performance in the detection of T4 PNK in serum samples. In addition to the satisfactory sensitivity and selectivity, the displayed T4 PNK assay also presented merits of operational convenience, without labeling or immobilization process and did not require costly instrument. It is expected that the KANA as a stimulator would have extended biosensing applications by coupling various bioreactions that can produce the KANA aptamer.
Collapse
Affiliation(s)
- Jie Sun
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Aohuan Guo
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Menghua Yan
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiuming Wu
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Guang-Li Wang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Yuan L, Tian X, Fan Y, Sun Z, Zheng K, Zou X, Zhang W. TPB-DMTP@S-CDs/MnO 2 Fluorescence Composite on a Dual-Emission-Capture Sensor Module for Fingerprint Recognition of Organophosphorus Pesticides. Anal Chem 2023; 95:2741-2749. [PMID: 36689633 DOI: 10.1021/acs.analchem.2c03738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Residues of organophosphorus pesticides (OPs) raise considerable concern, while identifying OPs from unknown sources is still a challenge to onsite fluorescence techniques. Herein, a dual-emission-capture sensor module, based on a TPB-DMTP@S-CDs/MnO2 fluorescence composite, is developed for OP fingerprint recognition. TPB-DMTP@S-CDs/MnO2, synthesized by a hydrothermal method and self-assembly, is spectrographically validated as a dual-wavelength fluorescence source. OP-sensitive catalysis (acetylcholinesterase on acetylthiocholine chloride) is designed to regulate fluorescence by decomposing quenchable MnO2. A flexibly fabricated sensor module supports the optimal dual-wavelength fluorescence excitations and captures and converts fluorescence emissions into equivalent photocurrents for feasible access. The most prominent finding is that dual-fluorescence emissions alternatively respond to levels, species, and multi-pH pretreatments of OPs due to varied MnO2 sizes and distributions. Therefore, OP fingerprint recognition is conducted by refining the multidimensional information from fluorescence-triggered photocurrents and preset hydrolyzation using principal component analysis and the rule of maximum covariance. The recommended method provides a wide dynamic range (1 × 10-6 ∼ 12 μg mL-1), a good limit of detection (7.9 × 10-7 μg mL-1), 15-day stability, and good selectivity to guarantee fingerprint recognition. For laboratory and natural samples, this method credibly identifies a single kind of OPs from multiple species at trace levels (10-5 μg mL-1) and performs well in two-component and multicomponent analyses.
Collapse
Affiliation(s)
- Lei Yuan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China.,College of Photoelectric Engineering, Chongqing University, Chongqing 400044, China
| | - Xiaoyu Tian
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yushan Fan
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zongbao Sun
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kaiyi Zheng
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaobo Zou
- Department of Food & Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wen Zhang
- College of Photoelectric Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
8
|
Zhang YD, Ma C, Shi YP. Gold bipyramids molecularly imprinted gel colorimetric device for whole blood cholesterol analysis. Anal Chim Acta 2022; 1236:340584. [DOI: 10.1016/j.aca.2022.340584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
|
9
|
Chang L, Liu X, Zhu J, Rao Y, Chen D, Wang Y, Zhao Y, Qin J. Cellulose-based thermo-responsive hydrogel with NIR photothermal enhanced DOX released property for anti-tumor chemotherapy. Colloids Surf B Biointerfaces 2022; 218:112747. [DOI: 10.1016/j.colsurfb.2022.112747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
|
10
|
Zhang XP, Xu W, Wang JH, Shu Y. MnO 2/DNAzyme-mediated ratiometric fluorescence assay of acetylcholinesterase. Analyst 2022; 147:4008-4013. [DOI: 10.1039/d2an01180h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ratiometric fluorescent probe (MnO2/DNAzyme) is constructed. In the presence of AChE, the product thiocholine reduces MnO2 to Mn2+. The released H1 strands hybridizes with H2 strands to activate DNAzyme and cause cleavage of DNA-F signal probe.
Collapse
Affiliation(s)
- Xiao-Ping Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Wang Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
11
|
Zhao XH, Dai XC, Zhou YN, Zhang HX, Cui XH, Zhai X, Yu BF, Song ZL. A sensitive fluorescence biosensor based on metal ion-mediated DNAzyme activity for amplified detection of acetylcholinesterase. Analyst 2022; 147:2575-2581. [DOI: 10.1039/d2an00414c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this paper, we developed an amplified fluorescence biosensor for acetylcholinesterase (AChE) activity detection by taking advantage of the mercury ion-mediated Mgzyme (Mg2+-dependent DNAzyme) activity.
Collapse
Affiliation(s)
- Xu-Hua Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Xiao-Chun Dai
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Ya-Nan Zhou
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Han-Xiao Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Xiao-Hua Cui
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Xiang Zhai
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Bao-Feng Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - Zhi-Ling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
12
|
Bradbury DW, Trinh JT, Ryan MJ, Chen KJ, Battikha AA, Wu BM, Kamei DT. Combination of the lateral-flow immunoassay with multicolor gold nanorod etching for the semi-quantitative detection of digoxin. Analyst 2022; 147:4000-4007. [DOI: 10.1039/d2an01047j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrated the first ever combination of the lateral-flow immunoassay (LFA) with gold nanorod etching to achieve a multicolor readout where the changes in color hue are more easily discernible than changes in intensity of a single color.
Collapse
Affiliation(s)
- Daniel W. Bradbury
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Jasmine T. Trinh
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Milo J. Ryan
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Kyle J. Chen
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Adel A. Battikha
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Benjamin M. Wu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Division of Advanced Prosthodontics & Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, CA 90095, USA
| | - Daniel T. Kamei
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
13
|
de Almeida RBM, de Almeida Luz RLS, Leite FHA, Botura MB. A Review on the in vitro Evaluation of the Anticholinesterase Activity Based on Ellman's Method. Mini Rev Med Chem 2021; 22:1803-1813. [PMID: 34711159 DOI: 10.2174/1389557521666211027104638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 05/12/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Inhibition of cholinesterases is a common strategy for the treatment of several disorders, especially Alzheimer´s disease. In vitro assays represent a critical step towards identifying molecules with potential anticholinesterase effect. This study aimed at providing a comprehensive review of the methodologies used in vitro for the anticholinesterase activity based on the spectrophotometry of Ellman's method. This work used two databases (PubMed and ScienceDirect) to search for original articles and selected publications between 1961 and 2019, which reported in vitro spectrophotometry assays for anticholinesterase activity. After the search process and the selection of publications, the final sample consisted of 146 articles published in several journals submitted by researchers from different countries. Although the studies analyzed in this work are all within the same conception of in vitro tests based on Ellman's method, one can observe a wide divergence in the origin and concentration of enzyme, the choice and pH of the buffer, the concentration of the substrate, the sample diluent, incubation time, temperature, and time of the spectrophotometric reading interval. There is no consensus in the methodology of studies with in vitro tests for anticholinesterase assessment. The methodological variations related to kinetic parameters may interfere in the characterization of cholinesterase inhibitors.
Collapse
Affiliation(s)
| | | | - Franco Henrique Andrade Leite
- Laboratório de Quimioinformática e Avaliação Biológica, Departamento de Saúde, Universidade Estadual de Feira de Santana, Bahia. Brazil
| | - Mariana Borges Botura
- Laboratório de Toxicologia, Departamento de Saúde, Universidade Estadual de Feira de Santana, Bahia. Brazil
| |
Collapse
|
14
|
Li B, Guo Y, Jiang Y, Lin JM, Hu Q, Yu L. A pendant droplet-based sensor for the detection of acetylcholinesterase and its inhibitors. Chem Commun (Camb) 2021; 57:8909-8912. [PMID: 35225993 DOI: 10.1039/d1cc03370k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a pendant droplet-based sensor is developed for the rapid and label-free detection of acetylcholinesterase (AChE) and its inhibitors. The detection limit of AChE reaches 0.17 mU mL-1. The pIC50 values of AChE inhibitors such as neostigmine, rivastigmine and galantamine are determined to be 0.45 μM, 0.64 μM and 4.93 μM, respectively.
Collapse
Affiliation(s)
- Benyou Li
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China.
| | - Yongxian Guo
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China.
| | - Yifei Jiang
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qiongzheng Hu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, P. R. China.
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, P. R. China.
| |
Collapse
|
15
|
Gold nanorods etching as a powerful signaling process for plasmonic multicolorimetric chemo-/biosensors: Strategies and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213934] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Fu R, Zhou J, Wang Y, Liu Y, Liu H, Yang Q, Zhao Q, Jiao B, He Y. Oxidase-like Nanozyme-Mediated Altering of the Aspect Ratio of Gold Nanorods for Breaking through H 2O 2-Supported Multicolor Colorimetric Assay: Application in the Detection of Acetylcholinesterase Activity and Its Inhibitors. ACS APPLIED BIO MATERIALS 2021; 4:3539-3546. [PMID: 35014439 DOI: 10.1021/acsabm.1c00069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A convenient, fast, and colorful colorimetric platform with high resolution for acetylcholinesterase (AChE) activity and its inhibitors detection based on the regulation of oxidase-like nanozyme-mediated etching of gold nanorods (AuNRs) has been proposed in this work. MnO2 nanosheets are selected as the nanozyme. Their excellent oxidase-like activity enables the etching process to proceed smoothly without the usage of unstable H2O2. When AChE is present, it catalytically hydrolyzes acetylthiocholine (ATCh) to thiocholine (TCh). With high reducing ability, TCh induces the decomposition of MnO2 nanosheets, causing them to lose their oxidase-like activity. Thus, the etching of AuNRs is hampered. Consequently, with the increasing concentration of AChE, an apparent change in the AuNRs solution color is observed. The proposed platform achieves high-sensitivity detection of AChE (limit of detection = 0.18 mU/mL). Furthermore, the proposed platform also has been demonstrated its applicability for its inhibitors detection. Benefiting from the advantages of convenient and high resolution of visual readout, the proposed platform holds great potential for the detection of AChE and its inhibitors in clinical diagnosis.
Collapse
Affiliation(s)
- Ruijie Fu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Jing Zhou
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Yiwen Wang
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Yanlin Liu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Haoran Liu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Qin Yang
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Qiyang Zhao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Bining Jiao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| | - Yue He
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P.R. China.,National Citrus Engineering Research Center, Chongqing 400712, P.R. China
| |
Collapse
|
17
|
Zhou X, Wang C, Wu L, Wei W, Liu S. An OliGreen-responsive fluorescence sensor for sensitive detection of organophosphorus pesticide based on its specific selectivity towards T-Hg 2+-T DNA structure. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119155. [PMID: 33186818 DOI: 10.1016/j.saa.2020.119155] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
In this paper, it was found that OliGreen emitted much stronger fluorescence in rigid T-Hg2+-T DNA structure than that in the presence of poly T. Thus, an OliGreen-responsive label-free fluorescent sensor was proposed for sensitive detection of organophosphorus pesticides (OPs) by constructing T-Hg2+-T DNA structure. OliGreen emits strong fluorescence in T-Hg2+-T structures. The rigid DNA structure of T-Hg2+-T is prone to be destroyed by thiocholine (TCh) that hydrolyzed by acetylcholinesterase (AChE) because of the high affinity of TCh with Hg2+. As a result, T-Hg2+-T DNA structure broke down and the fluorescence intensity of OliGreen decreased greatly. With the inhibition of AChE by OPs, fluorescence intensity of OliGreen remained strong because of the rigid T-Hg2+-T DNA structure. Thus, a "turn-on" fluorescent sensor which avoids synthesis of nanomaterials and complex label procedures is proposed based on the fluorescence intensity of OliGreen. DDVP were detected with a wide linear range from 0.005 to 25.0 ng/mL and the detection limit was 2.9 pg/mL, which is more sensitive than previously reported methods.
Collapse
Affiliation(s)
- Xiaoyuan Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China; Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Chenchen Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| | - Wei Wei
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| |
Collapse
|
18
|
Chen X, Liang Y. Visual detection of different metal ions based on the tug of war between triangular Au nanoparticles and metal ions against mercaptans. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:227-231. [PMID: 33346752 DOI: 10.1039/d0ay01845g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Herein, a new colorimetric sensor array was developed for the first time, which can rapidly recognize 9 types of metal ions (e.g., Ni2+, Zn2+, Cd2+, Cu2+, Cr3+, Fe2+, Se2+, Mn2+, and Mg2+). The colorimetric characteristics of the sensor array were closely related to the oxidation etching of the triangular gold nanoplates (AuNPLs) by hydrogen peroxide (H2O2), catalyzed by horseradish peroxidase (HRP). In the design, two types of thiols (glutathione (GSH) and cysteine (Cys)) as recognition elements were employed to construct the sensor units (AuNPLs/GSH and AuNPLs/Cys) and adjust the etching degrees of AuNPLs in the presence of various metal ions. The differential binding affinities between metal ions and thiols will lead to different degrees of oxidation etching of AuNPLs with hydrogen peroxide, exhibiting characteristic colors, which can be visually distinguished by the naked eye. Thus, the colorimetric sensor array provides a new way for the discrimination of various metal ions, thereby simplifying the water quality analysis.
Collapse
Affiliation(s)
- Xianli Chen
- Medical College of Shaoguan University, No. 108, Xinhua South Road, Shaoguan, Guangdong Province 512026, China
| | - Yong Liang
- School of Chemistry and Environment, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
19
|
Ren L, Li H, Liu M, Du J. Light-accelerating oxidase-mimicking activity of black phosphorus quantum dots for colorimetric detection of acetylcholinesterase activity and inhibitor screening. Analyst 2021; 145:8022-8029. [PMID: 33057486 DOI: 10.1039/d0an01917h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A feasible and sensitive colorimetric platform was established for the assay of acetylcholinesterase (AChE) activity and evaluation of its inhibitor screening, based upon the light-accelerating oxidase-mimicking activity of black phosphorus quantum dots (BP QDs). The BP QDs were synthesized through a thermal exfoliation method and characterized using various techniques. The BP QDs exhibit oxidase-mimicking catalytic activity on dissolved oxygen-mediating oxidation of 3,3',5,5'-tetramethylbenzidine, a typical substrate of oxidase. This results in a transformation of 3,3',5,5'-tetramethylbenzidine into its blue oxidized product, which has a visible absorption peak at 652 nm. The exposure of 365 nm light irradiation significantly accelerates the oxidase-mimicking activity of the BP QDs and speeds up the reaction efficiency. AChE can specifically catalyze the decomposition of its substrate acetylthiocholine chloride to thiocholine. Thiocholine has reducing capacity and can thus reduce the oxidase-mimicking activity of the BP QDs. As a result, the oxidation of 3,3',5,5'-tetramethylbenzidine is hindered and the blue solution becomes paler. This gives a linear response for AChE ranging from 0.5 to 10.0 mU mL-1 and a detection limit of 0.17 mU mL-1. The assay was successfully applied to evaluate inhibitor screening with neostigmine as the model.
Collapse
Affiliation(s)
- Lei Ren
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | | | | | | |
Collapse
|
20
|
Xiao T, Wang S, Yan M, Huang J, Yang X. A thiamine-triggered fluormetric assay for acetylcholinesterase activity and inhibitor screening based on oxidase-like activity of MnO2 nanosheets. Talanta 2021; 221:121362. [DOI: 10.1016/j.talanta.2020.121362] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 01/12/2023]
|
21
|
Size-modulated optical property of gold nanorods for sensitive and colorimetric detection of thiourea in fruit juice. Talanta 2020; 225:121965. [PMID: 33592719 DOI: 10.1016/j.talanta.2020.121965] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/12/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023]
Abstract
As an important sulfur compound, thiourea (TU) has caused great concern because of its wide application as well as its serious toxicity and hazard to the environment. Thus, it is necessary to develop a sensitive and selective method for TU analysis. In this work, gold nanorods (AuNRs) acted as an optical probe to realize the sensitive and colorimetric detection of TU. In HCl medium, Fe3+ at low concentration was difficult to oxide Au0 to form Au+ because of the high redox potential or the positive Gibbs free energy change. However, this process was possible when TU was present since the association constant between Au+ and TU is great enough to bind with TU to form a stable complex to further promote the etching of AuNRs, resulting in the lower aspect ratio of AuNRs with the blue shift and intensity decrease in extinction spectra, accompanied by the divisive colors of AuNRs solution or colorful dark-field light scattering imaging of single AuNR. The blue-shift of AuNRs longitudinal plasmon resonance absorption (LPRA) band was proportional to the concentration of TU in the range of 1-250 nM and the limit of detection (3σ/k) was as low as 0.4 nM. In addition, the colorimetric method was proven with high selectivity in the presence of potential interfering compounds, which was successfully applied to the detection of TU in fruit juice samples. This proposed colorimetric method provides a simple, sensitive yet selective measurement tool for TU sensing, which may offer new opportunities in the development of colorimetric sensors for food safety in the future.
Collapse
|
22
|
Zhu H, Dong Y, Zhang P, Hu X, Zhang H, Zhao H, Wang E, Jin Y, Yang X. Silver transfer based plasmonic nanoprobe for highly sensitive detection of hydrogen sulfide. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Zhang X, Sucre-Rosales E, Byram A, Hernandez FE, Chen G. Ultrasensitive Visual Detection of Glucose in Urine Based on the Iodide-Promoted Etching of Gold Bipyramids. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49502-49509. [PMID: 33089983 DOI: 10.1021/acsami.0c16369] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Blood glucose monitoring is an essential but painful component of diabetes management, so it is urgent to develop simple, convenient, and noninvasive glucose monitoring methods as alternatives. Because the glucose level in urine is directly related to the blood glucose, urine can be an alternative for blood glucose monitoring. Herein, we report the development of a new and highly sensitive noninvasive colorimetric assay to detect the glucose content in urine samples using gold bipyramids (GBPs). The principle of this method is to utilize hydrogen peroxide (H2O2), the oxidation product of glucose, to etch GBPs, where the urine glucose will be quantified based on the displacement of the absorption peak of GBPs. The unique morphology (sharp tips) and etching mechanism (from tips) of GBPs determine the high sensitivity of this assay. Under optimal conditions, this colorimetric assay shows a dynamic range of 0.5-250 μM and a detection limit of 0.34 μM for artificial urine samples. This detection capability is ideal when sample dilution is necessary. Another advantage is that the color change of the GBP solution in this assay is convenient for the visual readout of the urine glucose semiquantitatively by the naked eye. Furthermore, it has been demonstrated here that the iodide ion has the horseradish peroxidase (HRP) activity and can be used alone to promote the reduction reaction of H2O2, which eliminates the use of HRP enzymes, simplifies the reaction, and reduces costs. The role of iodide ions has been studied and mainly attributed as a catalyst with I2 as the reaction intermediate, which reduced the activation energy for the reduction of H2O2.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Estefanía Sucre-Rosales
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Alexander Byram
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| | - Florencio E Hernandez
- Department of Chemistry and CREOL/The School of Optics and Photonics, University of Central Florida, Orlando, Florida 32816, United States
| | - Gang Chen
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
24
|
Qing Z, Li Y, Li Y, Luo G, Hu J, Zou Z, Lei Y, Liu J, Yang R. Thiol-suppressed I 2-etching of AuNRs: acetylcholinesterase-mediated colorimetric detection of organophosphorus pesticides. Mikrochim Acta 2020; 187:497. [PMID: 32803418 DOI: 10.1007/s00604-020-04486-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
For the first time it is demonstrated that sulfhydryl compounds can suppress longitudinal etching of gold nanorods via consuming oxidizers, which provides a new signaling mechanism for colorimetric sensing. As a proof of concept, a colorimetric assay is developed for detecting organophosphorus pesticides, which are most widely used in modern agriculture to improve food production but with high toxicity to animals and the ecological environment. Triazophos was selected as a model organophosphorus pesticide. In the absence of triazophos, the active acetylcholinesterase can catalyze the conversion of acetylthiocholine iodide to thiocholine whose thiol group can suppress the I2-induced etching of gold nanorods. When triazophos is present, the activity of AchE is inhibited, and I2-induced etching of gold nanorods results in triazophos concentration-dependent color change from brown to blue, pink, and red. The aspect ratio of gold nanorods reduced with gradually blue-shifted longitudinal absorption. There was a linear detection range from 0 to 117 nM (R2 = 0.9908), the detection limit was 4.69 nM, and a good application potential was demonstrated by the assay of real water samples. This method will not only contribute to public monitoring of organophosphorus pesticides but also has verified a new signaling mechanism which will open up a new path to develop colorimetric detection methods. It has been first found that sulfhydryl compounds can suppress longitudinal etching of gold nanorods (AuNRs) via consuming oxidizers, which provides a new signaling mechanism for colorimetric sensing. As a proof of concept, a colorimetric assay is developed for sensitively detecting organophosphorus pesticides (OPs). It will not only contribute to public monitoring of OPs but also has verified a new signaling mechanism which will open up a new path to develop multicolor colorimetric methods.
Collapse
Affiliation(s)
- Zhihe Qing
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China. .,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada.
| | - Yacheng Li
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
| | - Younan Li
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
| | - Guoyan Luo
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
| | - Jinlei Hu
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
| | - Zhen Zou
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
| | - Yanli Lei
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Ronghua Yang
- Hunan Provincial Key Laboratory of Cytochemistry, Hunan Provincial Engineering Research Center for Food Processing of Aquatic Biotic Resources, School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, 410114, People's Republic of China. .,Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
25
|
Zhou J, Fu R, Tian F, Yang Y, Jiao B, He Y. Dual Enzyme-Induced Au–Ag Alloy Nanorods as Colorful Chromogenic Substrates for Sensitive Detection of Staphylococcus aureus. ACS APPLIED BIO MATERIALS 2020; 3:6103-6109. [DOI: 10.1021/acsabm.0c00687] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jing Zhou
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Chongqing 400712, P. R. China
| | - Ruijie Fu
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Chongqing 400712, P. R. China
| | - Fengyu Tian
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Chongqing 400712, P. R. China
| | - Yujun Yang
- Key Laboratory of Laboratory Medical Diagnostics, Chinese Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Bining Jiao
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Chongqing 400712, P. R. China
| | - Yue He
- Laboratory of Quality & Safety Risk Assessment for Citrus Products (Chongqing), Ministry of Agriculture, Citrus Research Institute, Southwest University, Chongqing 400712, P. R. China
- National Citrus Engineering Research Center, Chongqing 400712, P. R. China
| |
Collapse
|
26
|
Tao Y, Li M, Liu X, Leong KW, Gautier J, Zha S. Dual-Color Plasmonic Nanosensor for Radiation Dosimetry. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22499-22506. [PMID: 32337977 PMCID: PMC7346094 DOI: 10.1021/acsami.0c03001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Radiation dosimeters are critical for accurately assessing the levels of radiation exposure of tumor sites and surrounding tissues and for optimizing therapeutic interventions as well as for monitoring environmental exposure. To fill the need for a simple, user-friendly, and inexpensive dosimeter, we designed an innovative colorimetric nanosensor-based assay for detecting ionizing radiation. We show that hydroxyl radicals generated by ionizing radiation can be used to etch gold nanorods (AuNRs) and silver nanoprisms (AgNPRs), yielding reproducible color changes for radiation dose detection in the range of 50-2000 rad, broad enough to cover doses used in hyperfractionated, conventional, and hypofractionated radiotherapy. This range of doses detected by this assay correlates with radiation-induced DNA damage response in mammalian cells. Furthermore, this AuNR- and AgNPR-based sensing platform has been established in a paper format that can be readily adopted for a wide range of applications and translation.
Collapse
Affiliation(s)
- Yu Tao
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, United States
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
- Laboratory of Biomaterials and Translational Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Xiangyu Liu
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, New York 10027, United States
| | - Jean Gautier
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, United States
- Department of Genetics and Development, Columbia University, New York, New York 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, United States
| | - Shan Zha
- Institute for Cancer Genetics, Columbia University, New York, New York 10032, United States
- Department of Pediatrics, Pathology and Cell Biology, Immunology and Microbiology, Columbia University, New York, New York 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, United States
| |
Collapse
|
27
|
Liu Z, Xia X, Zhou G, Ge L, Li F. Acetylcholinesterase-catalyzed silver deposition for ultrasensitive electrochemical biosensing of organophosphorus pesticides. Analyst 2020; 145:2339-2344. [DOI: 10.1039/c9an02546d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work reports, for the first time, acetylcholinesterase-catalyzed silver deposition for sensitive electrochemical detection of organophosphorus pesticides.
Collapse
Affiliation(s)
- Zhenhui Liu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Xin Xia
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Guoxing Zhou
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Lei Ge
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao
- People's Republic of China
| |
Collapse
|
28
|
Zhang P, Fu C, Xiao Y, Zhang Q, Ding C. Copper(II) complex as a turn on fluorescent sensing platform for acetylcholinesterase activity with high sensitivity. Talanta 2019; 208:120406. [PMID: 31816742 DOI: 10.1016/j.talanta.2019.120406] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 08/14/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
Acetylcholinesterase (AChE) is an important enzyme associated with many nervous diseases, demonstrating the great need for smarter sensing platform with improved sensitivity, selectivity and simplified operation. A "turn on" fluorometric assay is described herein for AChE activity detection, according to the specific enzyme catalyzed reaction of acetylcholine (ATCh) by AChE, which generates thiocholine (TCh) as the product. The well-designed fluorescent probe HBTP possesses ESIPT (Excited State Intramolecular Proton Transfer) nature, leading to a larger Stokes shift, which could be quenched upon coordination with Cu2+. The fluorescence-silent HBTP-Cu2+ complex could be broken by TCh generated from reaction of ATCh with AChE, giving rise to HBTP release which originates from competitive coordination of TCh with Cu2+. This complex probe HBTP-Cu2+ offers a limit detection as low as 0.02 mU mL-1, which is lower than most reported literatures. Furthermore, both HBTP-Cu2+ and HBTP show little toxicity to live cells and is available in visualizing cellular AChE activity.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Caixia Fu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Yuzhe Xiao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qian Zhang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Caifeng Ding
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
29
|
Wei J, Chen H, Chen H, Cui Y, Qileng A, Qin W, Liu W, Liu Y. Multifunctional Peroxidase-Encapsulated Nanoliposomes: Bioetching-Induced Photoelectrometric and Colorimetric Immunoassay for Broad-Spectrum Detection of Ochratoxins. ACS APPLIED MATERIALS & INTERFACES 2019; 11:23832-23839. [PMID: 31245985 DOI: 10.1021/acsami.9b04136] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, a versatile dual-modal readout immunoassay platform was achieved for sensitive and broad-spectrum detection of ochratoxins based on the photocurrent response of flexible CdS/ZnO nanorod arrays/reduced graphene oxide and the localized surface plasmon resonance (LSPR) peak shift of Au nanobipyramids (Au NBPs). By using nanoliposomes as the vehicle to carry the secondary antibody and encapsulate horseradish peroxidase (HRP), the photocurrent change and the peak shift can be greatly amplified. The reaction mechanism was investigated in detail, indicating that HRP can trigger enzymatic bioetching in the presence of H2O2. In the photoelectrochemical detection, the oxidized HRP can etch CdS on the photoelectrode, resulting in the photocurrent change, while in the colorimetric detection, HRP can oxidize H2O2 to produce hydroxyl radicals that can etch Au NBPs to form multiple color changes and LSPR shifts. Compared with the common single-modal immunoassay for ochratoxins, such dual-modal immunoassay is more precise and reliable, owing to the completely independent signal conversion and transmission mechanism. Therefore, we hope that this accurate, simple, and visualized strategy may create a new avenue and provide innovative inspiration for food analysis.
Collapse
|
30
|
Chang CC, Chen CP, Wu TH, Yang CH, Lin CW, Chen CY. Gold Nanoparticle-Based Colorimetric Strategies for Chemical and Biological Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E861. [PMID: 31174348 PMCID: PMC6631916 DOI: 10.3390/nano9060861] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 12/18/2022]
Abstract
Gold nanoparticles are popularly used in biological and chemical sensors and their applications owing to their fascinating chemical, optical, and catalytic properties. Particularly, the use of gold nanoparticles is widespread in colorimetric assays because of their simple, cost-effective fabrication, and ease of use. More importantly, the gold nanoparticle sensor response is a visual change in color, which allows easy interpretation of results. Therefore, many studies of gold nanoparticle-based colorimetric methods have been reported, and some review articles published over the past years. Most reviews focus exclusively on a single gold nanoparticle-based colorimetric technique for one analyte of interest. In this review, we focus on the current developments in different colorimetric assay designs for the sensing of various chemical and biological samples. We summarize and classify the sensing strategies and mechanism analyses of gold nanoparticle-based detection. Additionally, typical examples of recently developed gold nanoparticle-based colorimetric methods and their applications in the detection of various analytes are presented and discussed comprehensively.
Collapse
Affiliation(s)
- Chia-Chen Chang
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
| | - Chie-Pein Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| | - Tzu-Heng Wu
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Ching-Hsu Yang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
| | - Chii-Wann Lin
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan.
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan.
- Department of Biomedical Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Chen-Yu Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei 104, Taiwan.
| |
Collapse
|
31
|
Yuan D, Liu JJ, Yan HH, Li CM, Huang CZ, Wang J. Label-free gold nanorods sensor array for colorimetric detection and discrimination of biothiols in human urine samples. Talanta 2019; 203:220-226. [PMID: 31202329 DOI: 10.1016/j.talanta.2019.05.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/01/2019] [Accepted: 05/16/2019] [Indexed: 12/15/2022]
Abstract
Biothiols play important roles in regulating redox balance in biological systems, but their discrimination is challengeable. In this work, a colorimetric nanosensing array for biothiols was established, which was composed of gold nanorods (AuNRs) and metal ions (Hg2+, Pb2+, Cu2+, Ag+). By employing label-free AuNRs as the colorimetric probe, and the color and spectral changes of AuNRs as the output signal, principal component analysis (PCA) was applied to processing the signal and generating a clustering map. Due to the different binding affinity between biothiols and metal ions, AuNRs exhibited a unique pattern to form a fingerprint-like colorimetric array, which was able to discriminate five biothiols by the naked eyes. This strategy combines PCA and sensor array to achieve rapid and accurate discrimination and detection of biothiols. In addition, the method shows the great potential in analysis of biothiols in human urine samples.
Collapse
Affiliation(s)
- Dan Yuan
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Jia Jun Liu
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Hui Hong Yan
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Chun Mei Li
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Cheng Zhi Huang
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Biomedical Analysis (Southwest University), Chongqing Science & Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400716, China.
| | - Jian Wang
- Key Laboratory on Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
32
|
Das A, Mohanty S, Kuanr BK. Label-free gold nanorod-based plasmonic sensing of arsenic(iii) in contaminated water. Analyst 2019; 144:4708-4718. [DOI: 10.1039/c9an00668k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient label-free strategy for arsenic(iii) sensing in water through the suppression of iron(iii)-catalyzed oxidative shortening of gold nanorods.
Collapse
Affiliation(s)
- Anindita Das
- Special Centre for Nanoscience
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | - Sonali Mohanty
- Special Centre for Nanoscience
- Jawaharlal Nehru University
- New Delhi-110067
- India
| | - Bijoy Kumar Kuanr
- Special Centre for Nanoscience
- Jawaharlal Nehru University
- New Delhi-110067
- India
| |
Collapse
|
33
|
Lu M, Su L, Luo Y, Ma X, Duan Z, Zhu D, Xiong Y. Gold nanoparticle etching induced by an enzymatic-like reaction for the colorimetric detection of hydrogen peroxide and glucose. ANALYTICAL METHODS 2019; 11:4829-4834. [DOI: 10.1039/c9ay01599j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A rapid colorimetric method for the sensitive and selective detection of H2O2 and glucose was developed based on the etching of AuNPs.
Collapse
Affiliation(s)
- Manman Lu
- College of Food Science and Technology
- Dalian Polytechnic University
- Dalian
- P. R. China
- College of Food and Bioengineering
| | - Linjing Su
- College of Food and Bioengineering
- Hezhou University
- Hezhou
- P. R. China
- Institute of Food Science and Engineering Technology
| | - Yanghe Luo
- College of Food Science and Technology
- Dalian Polytechnic University
- Dalian
- P. R. China
- College of Food and Bioengineering
| | - Xionghui Ma
- Analysis and Test Center of Chinese Academy of Tropical Agricultural Sciences
- Haikou
- P. R. China
- Laboratory of Quality & Safety Risk Assessment for Tropical Products (Haikou) Ministry of Agriculture
- Haikou
| | - Zhenhua Duan
- College of Food and Bioengineering
- Hezhou University
- Hezhou
- P. R. China
- Institute of Food Science and Engineering Technology
| | - Dongjian Zhu
- College of Food and Bioengineering
- Hezhou University
- Hezhou
- P. R. China
- Institute of Food Science and Engineering Technology
| | - Yuhao Xiong
- College of Food and Bioengineering
- Hezhou University
- Hezhou
- P. R. China
- Institute of Food Science and Engineering Technology
| |
Collapse
|
34
|
Yan Y, Li J, Li W, Wang Y, Song W, Bi S. DNA flower-encapsulated horseradish peroxidase with enhanced biocatalytic activity synthesized by an isothermal one-pot method based on rolling circle amplification. NANOSCALE 2018; 10:22456-22465. [PMID: 30478460 DOI: 10.1039/c8nr07294a] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
DNA nanotechnology has been developed to construct a variety of functional two- and three-dimensional structures for versatile applications. Rolling circle amplification (RCA) has become prominent in the assembly of DNA-inorganic composites with hierarchical structures and attractive properties. Here, we demonstrate a one-pot method to directly encapsulate horseradish peroxidase (HRP) in DNA flowers (DFs) during RCA. The growing DNA strands and Mg2PPi crystals lead to the construction of porous DFs, which provide sufficient interaction sites for spontaneously incorporating HRP molecules into DFs with high loading capacity and good stability. Furthermore, in comparison with free HRP, the DNA flower-encapsulated HRP (termed HRP-DFs) demonstrate enhanced enzymatic activity, which can efficiently biocatalyze the H2O2-mediated etching of gold nanorods (AuNRs) to generate distinct color changes since the longitudinal localized surface plasmon resonance (LSPR) frequency of AuNRs is highly sensitive to the changes in the AuNR aspect ratio. Through rationally incorporating the complementary thrombin aptamer sequence into the circular template, the synthesized HRP-DF composites are readily used as amplified labels for visual and colorimetric detection of thrombin with ultrahigh sensitivity and excellent selectivity. Therefore, our proposed strategy for direct encapsulation of enzyme molecules into DNA structures shows considerable potential applications in biosensing, biocatalysis, and point-of-care diagnostics.
Collapse
Affiliation(s)
- Yongcun Yan
- College of Chemistry and Chemical Engineering, Shandong Demonstration Center for Experimental Chemistry Education, Qingdao University, Qingdao 266071, P. R. China.
| | | | | | | | | | | |
Collapse
|
35
|
Lu L, Su H, Liu Q, Li F. Development of a Luminescent Dinuclear Ir(III) Complex for Ultrasensitive Determination of Pesticides. Anal Chem 2018; 90:11716-11722. [PMID: 30192517 DOI: 10.1021/acs.analchem.8b03687] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To improve the G-quadruplex specificity of Ir(III) complexes, a novel dinuclear Ir(III) complex (Din Ir(III)-1) was designed and synthesized through connecting two mononuclear Ir(III) complexes via a diphenyl bridge. Din Ir(III)-1 presents 3.4-4.1-fold enhancements for G-quadruplex relative to ssDNA and 4.3-5.3-fold enhancements relative to dsDNA in luminescence intensity, respectively, demonstrating an excellent G-quadruplex selectivity. Ascribed to its superior specificity to G-quadruplex, Din Ir(III)-1 was employed to construct a highly sensitive luminescent pesticides' detection platform. The detection is based on acetylcholinesterase (AChE)-catalyzed hydrolysis product-induced DNA conformational transformation and subsequent terminal deoxynucleotidyl transferase (TdT) directed G-quadruplex formation. The assay exhibited a linear response between the emission intensity of Din Ir(III)-1 and the pesticide concentration in the range of 0.5-25 μg/L ( R2 = 0.994), and the limit of detection for the pesticide was as low as 0.37 μg/L when using aldicarb as the model pesticide. Moreover, this strategy demonstrates good applicability for the pesticide detection in real samples. It is also versatile for the detection of other organophosphate or carbamate pesticides, which have the inhibition ability toward AChE. Therefore, the proposed approach is scalable for practical application in food safety and environmental monitoring fields and will provide promising solutions for the assay of pesticide residues.
Collapse
Affiliation(s)
- Lihua Lu
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| | - Huijuan Su
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| | - Qingyun Liu
- College of Chemical and Environmental Engineering , Shandong University of Science and Technology , Qingdao 266510 , China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences , Qingdao Agricultural University , Qingdao 266109 , People's Republic of China
| |
Collapse
|
36
|
Ma Y, Zhu Y, Liu B, Quan G, Cui L. Colorimetric Determination of Hypochlorite Based on the Oxidative Leaching of Gold Nanorods. MATERIALS 2018; 11:ma11091629. [PMID: 30200555 PMCID: PMC6164613 DOI: 10.3390/ma11091629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 08/25/2018] [Accepted: 09/03/2018] [Indexed: 11/16/2022]
Abstract
Hypochlorite plays a critical role in killing microorganisms in the water. However, it can also cause cardiovascular diseases, neuron degeneration, and cancer to humans. Although traditional methods feature excellent sensitivity and reliability in detecting hypochlorite, the expensive instruments and strict determination conditions have limited their application in environmental analysis to some extent. Thus, it is necessary and urgent to propose a cheap, facile, and quick analytical assay for hypochlorite. This paper proposes a colorimetric assay for hypochlorite utilizing gold nanorods (AuNRs) as the nanoreactor and color reader. The AuNRs were acquired via a reported seed-mediated method. NaClO with strong oxidation property can cause the etching of gold from the longitudinal tips of AuNRs, which could shorten the aspect ratio of AuNRs, decrease the absorption in the UV–Vis spectrum and also induce the solution color changing from red to pale yellow. Thus, according to the solution color change and the absorbance of longitudinal surface plasmon resonance of AuNRs, we established the calibration curve of NaClO within 0.08 μM to 125 μM (∆Abs = 0.0547 + 0.004 CNaClO, R2 = 0.9631). Compared to traditional method, we obtained the conversion formula between the concentration of residual-chlorine in tap water and the concentration of hypochlorite detected by the proposed colorimetric assay, which is Cresidual-chlorine = 0.24 CNaClO. Finally, the real application of the colorimetric assay in tap water was successfully performed, and the accuracy of the colorimetric method can reach from −6.78% to +8.53%.
Collapse
Affiliation(s)
- Yurong Ma
- School of Environmental Science and Engineering, Yancheng Istitute of technology, Yancheng 224051, China.
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Yingyi Zhu
- School of Environmental Science and Engineering, Yancheng Istitute of technology, Yancheng 224051, China.
| | - Benzhi Liu
- School of Environmental Science and Engineering, Yancheng Istitute of technology, Yancheng 224051, China.
| | - Guixiang Quan
- School of Environmental Science and Engineering, Yancheng Istitute of technology, Yancheng 224051, China.
| | - Liqiang Cui
- School of Environmental Science and Engineering, Yancheng Istitute of technology, Yancheng 224051, China.
| |
Collapse
|
37
|
Plasmonic colorimetric sensors based on etching and growth of noble metal nanoparticles: Strategies and applications. Biosens Bioelectron 2018; 114:52-65. [DOI: 10.1016/j.bios.2018.05.015] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 04/27/2018] [Accepted: 05/09/2018] [Indexed: 01/13/2023]
|
38
|
|
39
|
Zhang Q, Hu Y, Wu D, Ma S, Wang J, Rao J, Xu L, Xu H, Shao H, Guo Z, Wang S. Protein-mimicking nanowire-inspired electro-catalytic biosensor for probing acetylcholinesterase activity and its inhibitors. Talanta 2018; 183:258-267. [PMID: 29567174 DOI: 10.1016/j.talanta.2018.02.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
|
40
|
Ouyang H, Lu Q, Wang W, Song Y, Tu X, Zhu C, Smith JN, Du D, Fu Z, Lin Y. Dual-Readout Immunochromatographic Assay by Utilizing MnO 2 Nanoflowers as the Unique Colorimetric/Chemiluminescent Probe. Anal Chem 2018; 90:5147-5152. [PMID: 29590527 DOI: 10.1021/acs.analchem.7b05247] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Manganese dioxide nanoflowers (MnO2 NFs) were synthesized and used as a dual readout probe to develop a novel immunochromatographic test strip (ITS) for detecting pesticide residues using chlorpyrifos as the model analyte. MnO2 NFs-labeled antibody for chlorpyrifos was employed as the signal tracer for conducting the ITS. After 10 min competitive immunoreaction, the tracer antibody was captured by the immobilized immunogen in the test strip, resulting in the captured MnO2 NFs on test line. The captured MnO2 NFs led to the appearance of brown color on the test line, which could be easily observed by the naked eye as a qualitative readout. Due to the very slight colorimetric difference of chlorpyrifos at trace concentrations, the semiquantitative readout by naked eyes could not meet the demand of quantitative analysis. MnO2 NFs showed a significant effect on the luminol-H2O2 chemiluminescent (CL) system, and the CL signal driven by MnO2 NFs were used to detect the trace concentration of chlorpyrifos quantitatively. 1,3-Diphenylisobenzofuran quenching studies and TMB-H2O2 coloration assays were conducted for studying the enhancing mechanism of MnO2 NFs, which was based on the oxidant activity to decompose H2O2 for forming reactive oxygen species. Under optimal conditions, the linear range of chlorpyrifos was 0.1-50 ng/mL with a low detection limit of 0.033 ng/mL (S/N = 3). The reliability of the dual-readout ITS was successfully demonstrated by the application on traditional Chinese medicine and environmental water samples. Due to the simultaneous rapid-qualitative and sensitive-quantitative detection, the dual-readout protocol provides a promising strategy for rapid screening and field assay on various areas such as environmental monitoring and food safety.
Collapse
Affiliation(s)
- Hui Ouyang
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States.,Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China
| | - Qian Lu
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| | - Wenwen Wang
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China
| | - Yang Song
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| | - Xinman Tu
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| | - Chengzhou Zhu
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| | - Jordan N Smith
- Health Impacts and Exposure Science , Pacific Northwest National Laboratory , Richland , Washington 99352 , United States
| | - Dan Du
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| | - Zhifeng Fu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Ministry of Education), College of Pharmaceutical Sciences , Southwest University , Chongqing 400716 , China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering , Washington State University , Pullman , Washington 99164 , United States
| |
Collapse
|
41
|
Dong H, Zou F, Li H, Zhu H, Koh K, Yin Y, Chen H. Thionine mediated para-sulfonatocalix[4]arene capped AuNPs multilayers for sensitive electrochemical detection of acetylcholinesterase activity. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.073] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
MA XM, SUN M, LIN Y, LIU YJ, LUO F, GUO LH, QIU B, LIN ZY, CHEN GN. Progress of Visual Biosensor Based on Gold Nanoparticles. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(17)61061-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Díez-Buitrago B, Briz N, Liz-Marzán LM, Pavlov V. Biosensing strategies based on enzymatic reactions and nanoparticles. Analyst 2018; 143:1727-1734. [DOI: 10.1039/c7an02067h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Application of new nanomaterials to detection of enzymatic activities allows the development of new sensitive and selective bioanalytical assays based on enzymes for recognition and signal amplification.
Collapse
Affiliation(s)
| | - Nerea Briz
- Tecnalia
- 20009 Donostia-San Sebastián
- Spain
| | - Luis M. Liz-Marzán
- CIC BiomaGUNE
- 20014 Donostia-San Sebastián
- Spain
- Ikerbasque
- Basque Foundation for Science
| | | |
Collapse
|
44
|
Lv J, He B, Wang N, Li M, Lin Y. A gold nanoparticle based colorimetric and fluorescent dual-channel probe for acetylcholinesterase detection and inhibitor screening. RSC Adv 2018; 8:32893-32898. [PMID: 35547712 PMCID: PMC9086352 DOI: 10.1039/c8ra06165c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 09/17/2018] [Indexed: 11/25/2022] Open
Abstract
Based on the competitive host–guest interaction between p-sulfonatocalix[6]arene (p-SC6A) capped AuNPs and Rhodamine B (RhB)/acetylthiocholine, a fluorescent and colorimetric dual channel probe was developed for rapid detection of AChE with high sensitivity and selectivity. The detection limit was estimated to be 0.16 mU mL−1. Crucially, due to the specific host–guest interaction, the high selectivity of the bioassay permitted the discrimination of AChE from other cations and proteins including biothiols and enzymes. Furthermore, the present method was also successfully applied to determinate AChE levels and screen AChE inhibitors in real cerebrospinal fluid (CSF) samples, which suggested that our proposed method has great potential to be applied in monitoring the disease progression and drug treatment effects of Alzheimer's disease (AD). A novel colorimetric and fluorescent dual-channel probe was developed for acetylcholinesterase detection and inhibitor screening with high sensitivity and selectivity.![]()
Collapse
Affiliation(s)
- Jie Lv
- College of Pharmaceutical Sciences
- Hebei Medical University
- Shijiazhuang
- China
| | - Binnan He
- College of Pharmaceutical Sciences
- Hebei Medical University
- Shijiazhuang
- China
| | - Na Wang
- College of Pharmaceutical Sciences
- Hebei Medical University
- Shijiazhuang
- China
| | - Meng Li
- College of Pharmaceutical Sciences
- Hebei Medical University
- Shijiazhuang
- China
| | - Yulong Lin
- College of Pharmaceutical Sciences
- Hebei Medical University
- Shijiazhuang
- China
| |
Collapse
|
45
|
Aldewachi H, Chalati T, Woodroofe MN, Bricklebank N, Sharrack B, Gardiner P. Gold nanoparticle-based colorimetric biosensors. NANOSCALE 2017; 10:18-33. [PMID: 29211091 DOI: 10.1039/c7nr06367a] [Citation(s) in RCA: 349] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Gold nanoparticles (AuNPs) provide excellent platforms for the development of colorimetric biosensors as they can be easily functionalised, displaying different colours depending on their size, shape and state of aggregation. In the last decade, a variety of biosensors have been developed to exploit the extent of colour changes as nano-particles (NPs) either aggregate or disperse, in the presence of analytes. Of critical importance to the design of these methods is that the behaviour of the systems has to be reproducible and predictable. Much has been accomplished in understanding the interactions between a variety of substrates and AuNPs, and how these interactions can be harnessed as colorimetric reporters in biosensors. However, despite these developments, only a few biosensors have been used in practice for the detection of analytes in biological samples. The transition from proof of concept to market biosensors requires extensive long-term reliability and shelf life testing, and modification of protocols and design features to make them safe and easy to use by the population at large. Developments in the next decade will see the adoption of user friendly biosensors for point-of-care and medical diagnosis as innovations are brought to improve the analytical performances and usability of the current designs. This review discusses the mechanisms, strategies, recent advances and perspectives for the use of AuNPs as colorimetric biosensors.
Collapse
Affiliation(s)
- H Aldewachi
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, UK.
| | | | | | | | | | | |
Collapse
|
46
|
Wu S, Li D, Gao Z, Wang J. Controlled etching of gold nanorods by the Au(III)-CTAB complex, and its application to semi-quantitative visual determination of organophosphorus pesticides. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2468-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Yoon S, Lee B, Yun J, Han JG, Lee JS, Lee JH. Systematic study of interdependent relationship on gold nanorod synthesis assisted by electron microscopy image analysis. NANOSCALE 2017; 9:7114-7123. [PMID: 28513707 DOI: 10.1039/c7nr01462g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Here, we systematically investigated the independent, multiple, and synergic effects of three major components, namely, ascorbic acid (AA), seed, and silver ions (Ag+), on the characteristics of gold nanorods (GNRs), i.e., longitudinal localized surface plasmon resonance (LSPR) peak position, shape, size, and monodispersity. To quantitatively assess the shape and dimensions of GNRs, we used an automated transmission electron microscopy image analysis method using a MATLAB-based code developed in-house and the concept of solidity, which is the ratio between the area of a GNR and the area of its convex hull. The solidity of a straight GNR is close to 1, while it decreases for both dumbbell- and dogbone-shaped GNRs. We found that the LSPR peak position, shape, and monodispersity of the GNRs all altered simultaneously with changes in the amounts of individual components. For example, as the amount of AA increased, both the LSPR peak and solidity decreased, while the polydispersity increased. In contrast, as the amount of seeds increased, both the LSPR and solidity increased, while the monodispersity improved. More importantly, we found that the influence of each component can actually change depending on the composition of the GNR growth solution. For instance, the LSPR peak position red-shifted as the amount of AA increased when the seed content was low, whereas it blue-shifted when the seed content was high.
Collapse
Affiliation(s)
- Seokyoung Yoon
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Suwon 16419, South Korea.
| | | | | | | | | | | |
Collapse
|
48
|
Hu R, Luan J, Kharasch ED, Singamaneni S, Morrissey JJ. Aromatic Functionality of Target Proteins Influences Monomer Selection for Creating Artificial Antibodies on Plasmonic Biosensors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:145-151. [PMID: 27935290 PMCID: PMC5372381 DOI: 10.1021/acsami.6b12505] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Natural antibodies used as biorecognition elements suffer from numerous shortcomings, such as limited chemical and environmental stability and cost. Artificial antibodies based on molecular imprinting are an attractive alternative to natural antibodies. We investigated the role of aromatic interactions in target recognition capabilities of artificial antibodies. Three proteins with different aromatic amino acid content were employed as model targets. Artificial antibodies were formed on nanostructures using combinations of silane monomers of varying aromatic functionality. We employed refractive index sensitivity of plasmonic nanostructures as a transduction platform for monitoring various steps in the imprinting process and to quantify the target recognition capabilities of the artificial antibodies. The sensitivity of the artificial antibodies with aromatic interactions exhibited a protein-dependent enhancement. Selectivity and sensitivity enhancement due to the presence of aromatic groups in imprinted polymer matrix was found to be higher for target proteins with higher aromatic amino acid content. Our results indicate that tailoring the monomer composition based on the amino acid content of the target protein can improve the sensitivity of plasmonic biosensors based on artificial antibodies without affecting the selectivity.
Collapse
Affiliation(s)
- Rong Hu
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
- Department of Anesthesiology, Shanghai Ninth Peoples Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jingyi Luan
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering
| | - Evan D. Kharasch
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
- Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- The Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| | - Srikanth Singamaneni
- Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
- Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering
| | - Jeremiah J. Morrissey
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
- Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri 63110, United States
| |
Collapse
|
49
|
Wu Y, Sun Y, Xiao F, Wu Z, Yu R. Sensitive inkjet printing paper-based colormetric strips for acetylcholinesterase inhibitors with indoxyl acetate substrate. Talanta 2016; 162:174-179. [PMID: 27837814 DOI: 10.1016/j.talanta.2016.10.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/12/2016] [Accepted: 10/02/2016] [Indexed: 10/20/2022]
Abstract
A new paper-based biosensing approach has been developed for sensitive and rapid detection of acetylcholinesterase (AChE) inhibitors. The biosensing zone of the paper strip is constructed with an inkjet printing method, and the biomolecule AChE is immobilized into two layers of biocompatible sol-gel-derived silica ink with a "sandwich" form. Indoxyl acetate (IDA) is used as a chromogenic substrate, which is colorless and can be catalytically hydrolyzed into blue-colored indigo dipolymer. When the enzymatic activity of AChE is inhibited after incubation with organophosphate pesticides (OPs), there is a decreased hydrolysis of IDA accompanying with a drop in color intensity. Paraoxon and trichlorfon are used as the representative OPs in the assay. Due to the low solubility and high molar absorption coefficient of the IDA dipolymer product, the paper-based strip can form a neat blue sensing zone and shows obviously improved sensitivity with a limit of detection (LOD) of 0.01ngmL-1 paraoxon and 0.04ngmL-1 trichlorfon (S/N=3) and the LODs for visual detection are 0.03ngmL-1 for paraoxon and 0.1ngmL-1 for trichlorfon comparing with the previously reported colorimetric methods. The concentrations of paraoxon in apple juice samples are also detected, and the results are in accord well with these results from high-performance liquid chromatography, showing great potential for on-site detection of OPs in practical application. The developed assay can be used to qualitatively and semiquantitatively estimate with naked eyes and quantitatively assess OPs through image analysis.
Collapse
Affiliation(s)
- Yan Wu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongfang Sun
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Fubing Xiao
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Zhaoyang Wu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|