1
|
Chatterjee A, Sarkar S, Bhattacharjee S, Bhattacharyya A, Barman S, Pal U, Pandey R, Ethirajan A, Jana B, Das BB, Das A. Microtubule-Targeting NAP Peptide-Ru(II)-polypyridyl Conjugate As a Bimodal Therapeutic Agent for Triple Negative Breast Carcinoma. J Am Chem Soc 2025; 147:532-547. [PMID: 39725612 DOI: 10.1021/jacs.4c11820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Triple-negative breast cancer (TNBC) poses significant treatment challenges due to its high metastasis, heterogeneity, and poor biomarker expression. The N-terminus of an octapeptide NAPVSIPQ (NAP) was covalently coupled to a carboxylic acid derivative of Ru(2,2'-bipy)32+ (Rubpy) to synthesize an N-stapled short peptide-Rubpy conjugate (Ru-NAP). This photosensitizer (PS) was utilized to treat TNBC through microtubule (MT) targeted chemotherapy and photodynamic therapy (PDT). Ru-NAP formed more elaborate molecular aggregates with fibrillar morphology as compared to NAP. A much higher binding affinity of Ru-NAP over NAP toward β-tubulin (KRu-NAP: (6.8 ± 0.55) × 106 M-1; KNAP: (8.2 ± 1.1) × 104 M-1) was observed due to stronger electrostatic interactions between the MT with an average linear charge density of ∼85 e/nm and the cationic Rubpy part of Ru-NAP. This was also supported by docking, simulation, and appropriate imaging studies. Ru-NAP promoted serum stability, specific binding of NAP to the E-site of the βIII-tubulin followed by the disruption of the MT network, and effective singlet oxygen generation in TNBC cells (MDA-MB-231), causing cell cycle arrest in the G2/M phase and triggering apoptosis. Remarkably, MDA-MB-231 cells were more sensitive to Ru-NAP compared to noncancerous human embryonic kidney (HEK293 cells) when exposed to light (LightIC50Ru-NAP[HEK293]: 17.2 ± 2.5 μM, compared to LightIC50Ru-NAP[MDA-MB-231]: 32.5 ± 7.8 nM, DarkIC50Ru-NAP[HEK293]: > 80 μM, compared to DarkIC50Ru-NAP[MDA-MB-231]: 2.9 ± 0.5 μM). Ru-NAP also effectively inhibited tumor growth in MDA-MB-231 xenograft models in nude mice. Our findings provide strong evidence that Ru-NAP has a potential therapeutic role in TNBC treatment.
Collapse
Affiliation(s)
- Atin Chatterjee
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
- Institute for Materials Research (Imo-imomec), Nanobiophysics and Soft Matter Interfaces (NSI) Group, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
| | - Sandip Sarkar
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Sangheeta Bhattacharjee
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Arpan Bhattacharyya
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Surajit Barman
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Uttam Pal
- Technical Research Centre, S. N. Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700106, India
| | - Raviranjan Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Anitha Ethirajan
- Institute for Materials Research (Imo-imomec), Nanobiophysics and Soft Matter Interfaces (NSI) Group, Hasselt University, Martelarenlaan 42, B-3500 Hasselt, Belgium
- Imec, Imo-imomec, Hasselt University, Wetenschapspark 1, B-3590 Diepenbeek, Belgium
| | - Batakrishna Jana
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| | - Benu Brata Das
- Laboratory of Molecular Biology, School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Amitava Das
- Department of Chemical Sciences and Center for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
2
|
Ok HW, Jin S, Park G, Jana B, Ryu JH. Folic Acid-Functionalized β-Cyclodextrin for Delivery of Organelle-Targeted Peptide Chemotherapeutics in Cancer. Mol Pharm 2024; 21:4498-4509. [PMID: 39069731 DOI: 10.1021/acs.molpharmaceut.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Recent emphasis on the design of drug delivery systems typically involves the effective transport of a pharmaceutical substance to the disease site with the desired therapeutic efficacy and minimal cytotoxicity. Organelle-targeted peptides have become an integral part of designing an important class of prodrug/prodrug assemblies for new supramolecular therapeutics owing to their favorable biocompatibility, synthetic ease, tunability of their aggregation behavior, and desired functionalization for site-specificity. However, it is still limited due to the low selectivity. We designed a folic acid-functionalized β-cyclodextrin (FA-CD) as a delivery platform for specific and selective delivery of organelle-targeted (such as microtubule, lysosome, and mitochondria) peptide chemotherapeutics to the folate receptor (FR) overexpressing cancer cell lines. Low toxicity was found for the FA-CD and organelle-targeted peptide inclusion complex in FR-negative normal cells, but superior inhibition of tumor growth with no in vivo toxicity was found for the inclusion complex in the xenograft tumor model.
Collapse
Affiliation(s)
- Hae Won Ok
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seongeon Jin
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Gaeun Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Batakrishna Jana
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, India
| | - Ja-Hyoung Ryu
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
3
|
Chatterjee T, Das G, Chatterjee BK, Ghosh S, Chakrabarti P. The Role of Protein- L-isoaspartyl Methyltransferase (PIMT) in the Suppression of Toxicity of the Oligomeric Form of Aβ42, in Addition to the Inhibition of Its Fibrillization. ACS Chem Neurosci 2023; 14:2888-2901. [PMID: 37535852 DOI: 10.1021/acschemneuro.3c00281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
The oligomeric form of amyloid-β peptide (Aβ42) plays a crucial role in the pathogenesis of Alzheimer's disease (AD) and is responsible for cognitive deficits. The soluble oligomers are believed to be more toxic compared to the fibril form. Protein-L-isoaspartyl methyltransferase (PIMT) is a repair enzyme that converts aberrant isoAsp residues, formed spontaneously on isomerization of normal Asp and Asn residues, back to typical Asp. It was shown to inhibit the fibrillization of Aβ42 (containing three Asp residues), and here, we investigate its effect on the size, conformation, and toxicity of Aβ42 oligomers (AβO). Far-UV CD indicated a shift in the conformational feature of AβOs from the random coil to β-sheet in the presence of PIMT. Binding of bis-ANS to different AβOs (obtained using different concentrations of Aβ42 monomer) indicated the correlation of size of oligomers to hydrophobicity: the smallest AβO having the highest hydrophobicity is the most toxic. Dynamic light scattering showed an increase in size of AβO with the addition of PIMT, a contrasting role to that on Aβ fibril. Assays using PC12-derived neurons showed the neuroprotective role of PIMT against AβO-induced toxicity. Furthermore, we have elaborated on the molecular mechanism of the antifibrillar action of PIMT and how this function is correlated with its enzymatic activity. PIMT has a more pronounced effect on AβO as compared to a small heat shock protein, pointing to its importance for the amelioration of the adverse effect of both Aβ42 oligomers and fibrils.
Collapse
Affiliation(s)
- Tanaya Chatterjee
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| | - Gaurav Das
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Barun K Chatterjee
- Department of Physics, Bose Institute, 93/1 A.P.C. Road, Kolkata 700054, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Pinak Chakrabarti
- Department of Biochemistry, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata 700054, India
| |
Collapse
|
4
|
Xing C, Zheng X, Deng T, Zeng L, Liu X, Chi X. The Role of Cyclodextrin in the Construction of Nanoplatforms: From Structure, Function and Application Perspectives. Pharmaceutics 2023; 15:pharmaceutics15051536. [PMID: 37242778 DOI: 10.3390/pharmaceutics15051536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclodextrins (CyDs) in nano drug delivery systems have received much attention in pursuit of good compatibility, negligible toxicity, and improved pharmacokinetics of drugs. Their unique internal cavity has widened the application of CyDs in drug delivery based on its advantages. Besides this, the polyhydroxy structure has further extended the functions of CyDs by inter- and intramolecular interactions and chemical modification. Furthermore, the versatile functions of the complex contribute to alteration of the physicochemical characteristics of the drugs, significant therapeutic promise, a stimulus-responsive switch, a self-assembly capability, and fiber formation. This review attempts to list recent interesting strategies regarding CyDs and discusses their roles in nanoplatforms, and may act as a guideline for developing novel nanoplatforms. Future perspectives on the construction of CyD-based nanoplatforms are also discussed at the end of this review, which may provide possible direction for the construction of more rational and cost-effective delivery vehicles.
Collapse
Affiliation(s)
- Chengyuan Xing
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoming Zheng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Tian Deng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Ling Zeng
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xin Liu
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
- Department of Laboratory Medicine, The Second Xiangya Hospital of Central South University, Changsha 410008, China
| | - Xinjin Chi
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
5
|
Adak A, Das G, Gupta V, Khan J, Mukherjee N, Mondal P, Roy R, Barman S, Gharai PK, Ghosh S. Evolution of Potential Antimitotic Stapled Peptides from Multiple Helical Peptide Stretches of the Tubulin Heterodimer Interface: Helix-Mimicking Stapled Peptide Tubulin Inhibitors. J Med Chem 2022; 65:13866-13878. [PMID: 36240440 DOI: 10.1021/acs.jmedchem.2c01116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein-protein interactions play a crucial role in microtubule dynamics. Microtubules are considered as a key target for the design and development of anticancer therapeutics, where inhibition of tubulin-tubulin interactions plays a crucial role. Here, we focused on a few key helical stretches at the interface of α,β-tubulin heterodimers and developed a structural mimic of these helical peptides, which can serve as potent inhibitors of microtubule polymerization. To induce helicity, we have made stapled analogues of these sequences. Thereafter, we modified the lead sequences of the antimitotic stapled peptides with halo derivatives. It is observed that halo-substituted stapled peptides follow an interesting trend for the electronegativity of halogen atoms in interaction patterns with tubulin and a correlation in the toxicity profile. Remarkably, we found that para-fluorophenylalanine-modified stapled peptide is the most potent inhibitors, which perturbs microtubule dynamics, induces apoptotic death, and inhibits the growth of melanoma.
Collapse
Affiliation(s)
- Anindyasundar Adak
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Gaurav Das
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Varsha Gupta
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Juhee Khan
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
| | - Prasenjit Mondal
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Rajsekhar Roy
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
| | - Surajit Barman
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Prabir Kumar Gharai
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700 032, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India.,Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology Jodhpur, NH 62, Surpura Bypass Road, Karwar, Jodhpur, Rajasthan 342037, India
| |
Collapse
|
6
|
Sheng TM, Kumar PV. A New Approach for β-Cyclodextrin Conjugated Drug Delivery System in Cancer Therapy. Curr Drug Deliv 2021; 19:266-300. [PMID: 34620064 DOI: 10.2174/1567201818666211006103452] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/19/2021] [Accepted: 09/03/2021] [Indexed: 11/22/2022]
Abstract
Natural cyclodextrins (CDs) are macrocyclic starch molecules discovered a decade ago, in which α-, β-, and γ-CD were commonly used. They originally acted as pharmaceutical excipients to enhance the aqueous solubility and alter the physicochemical properties of drugs that fall under class II and IV categories according to the Biopharmaceutics Classification System (BPS). The industrial significance of CDs became apparent during the 1970s as scientists started to discover more of CD's potential in chemical modifications and the formation of inclusion complexes. CDs can help in masking and prolonging the half-life of drugs used in cancer. Multiple optimization techniques were discovered to prepare the derivatives of CDs and increase their complexation and drug delivery efficiency. In recent years, due to the advancement of nanotechnology in pharmaceutical sectors, there has been growing interest in CDs. This review mainly focuses on the formulation of cyclodextrin conjugated nanocarriers using graphenes, carbon nanotubes, nanosponges, hydrogels, dendrimers, and polymers to achieve drug-release characteristics specific to cells. These approaches benefit the discovery of novel anti-cancer treatments, solubilization of new drug compounds, and cell specific drug delivery properties. Due to these unique properties of CDs, they are essential in achieving and enhancing tumor-specific cancer treatment.
Collapse
Affiliation(s)
- Teng Meng Sheng
- Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, 56000 Kuala Lumpur. Malaysia
| | - Palanirajan Vijayaraj Kumar
- Faculty of Pharmaceutical Sciences, UCSI University, No. 1, Jalan Menara Gading, Taman Connaught, Cheras, 56000 Kuala Lumpur. Malaysia
| |
Collapse
|
7
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
8
|
Torchio A, Cassino C, Lavella M, Gallina A, Stefani A, Boffito M, Ciardelli G. Injectable supramolecular hydrogels based on custom-made poly(ether urethane)s and α-cyclodextrins as efficient delivery vehicles of curcumin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112194. [PMID: 34225848 DOI: 10.1016/j.msec.2021.112194] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/07/2021] [Accepted: 05/15/2021] [Indexed: 10/21/2022]
Abstract
A strategy to enhance drug effectiveness while minimizing controversial effects consists in exploiting host-guest interactions. Moreover, these phenomena can induce the self-assembly of physical hydrogels as effective tools to treat various pathologies (e.g., chronic wounds or cancer). Here, two Poloxamers®/Pluronics® (P407/F127 and P188/F68) were utilized to synthesize various LEGO-like poly(ether urethane)s (PEUs) to develop a library of tunable and injectable supramolecular hydrogels for drug delivery. Three PEUs were synthesized by chain extending Poloxamer/Pluronic with 1,6-cyclohexanedimethanol or N-Boc serinol. Other two amino-functionalized and highly responsive polymers were obtained thorough Boc-group cleavage. For hydrogel design, the spontaneous self-assembly of the poly(ethylene oxide) domains of PEUs with α-cyclodextrins was exploited to form poly(pseudo)rotaxanes (PPRs). PPR-derived channel-like crystals were characterized by X-Ray powder diffraction, Infra-Red and Proton Nuclear Magnetic Resonance spectroscopies. Cytocompatible hydrogel formulations were designed at PEU concentrations between 1% and 5% w/v and α-cyclodextrin at 10% w/v. Supramolecular gels showed good mechanical performances (storage modulus up to 20 kPa) coupled with marked thixotropic and self-healing properties (mechanical recovery over 80% within 30 s after cyclic rupture) as assessed through rheology. Hydrogels exhibited stability and high responsiveness in watery environment up to 5 days: the release of less stable components as suitable drug carriers was coupled with high swelling (doubling the content of fluids with respect to their dry mass) and shape retention. Curcumin was encapsulated into the hydrogels at high concentration (80 μg ml-1) through its complexation with α-cyclodextrins and delivery tests showed controllable and progressive release profiles up to four days.
Collapse
Affiliation(s)
- Alessandro Torchio
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Department of Surgical Sciences, Università degli Studi di Torino, Corso Dogliotti, 14, 10126 Torino, Italy
| | - Claudio Cassino
- Department of Science and Technological Innovation, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Mario Lavella
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Department of Management, Information and Production Engineering (DIGIP), Università degli Studi di Bergamo, Viale G. Marconi, 5, 24044 Dalmine, BG, Italy
| | - Andrea Gallina
- Department of Science and Technological Innovation, Università del Piemonte Orientale "A. Avogadro", Viale Teresa Michel 11, 15121 Alessandria, Italy
| | - Alice Stefani
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy; Chemical and Biological Laboratory Safe S.r.l., Via di Mezzo 48, 41037 Mirandola, MO, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
9
|
Stuart-Walker W, Mahon CS. Glycomacromolecules: Addressing challenges in drug delivery and therapeutic development. Adv Drug Deliv Rev 2021; 171:77-93. [PMID: 33539854 DOI: 10.1016/j.addr.2021.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
Carbohydrate-based materials offer exciting opportunities for drug delivery. They present readily available, biocompatible components for the construction of macromolecular systems which can be loaded with cargo, and can enable targeting of a payload to particular cell types through carbohydrate recognition events established in biological systems. These systems can additionally be engineered to respond to environmental stimuli, enabling triggered release of payload, to encompass multiple modes of therapeutic action, or to simultaneously fulfil a secondary function such as enabling imaging of target tissue. Here, we will explore the use of glycomacromolecules to deliver therapeutic benefits to address key health challenges, and suggest future directions for development of next-generation systems.
Collapse
|
10
|
Möller K, Macaulay B, Bein T. Curcumin Encapsulated in Crosslinked Cyclodextrin Nanoparticles Enables Immediate Inhibition of Cell Growth and Efficient Killing of Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:489. [PMID: 33672006 PMCID: PMC7919290 DOI: 10.3390/nano11020489] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022]
Abstract
The efficiency of anti-cancer drugs is commonly determined by endpoint assays after extended incubation times, often after days. Here we demonstrate that curcumin encapsulated in crosslinked cyclodextrin nanoparticles (CD-NP) acts extremely rapidly on cell metabolism resulting in an immediate and complete inhibition of cell growth and in efficient cancer-cell killing only few hours after incubation. This early onset of anti-cancer action was discovered by live-cell high-throughput fluorescence microscopy using an environmental stage. To date, only very few examples of covalently crosslinked nanoscale CD-based (CD-NP) drug carriers exist. Crosslinking cyclodextrins enables the adsorption of unusually high payloads of hydrophobic curcumin (762 µg CC/mg CD-NP) reflecting a molar ratio of 2.3:1 curcumin to cyclodextrin. We have investigated the effect of CD-NP encapsulated curcumin (CD-CC-NP) in comparison to free, DMSO-derived curcumin nanoparticles (CC-NP) on 4 different cell lines. Very short incubations times as low as 1 h were applied and cell responses after medium change were subsequently followed over two days. We show that cell proliferation is inhibited nearly immediately in all cell lines and that a cell- and concentration dependent cancer-cell killing occurs. Anti-cancer effects were similar with free and encapsulated curcumin, however, encapsulation in CD-NP drastically extends the long-term photostability and anti-cancer activity of curcumin. Curcumin-sensitivity is highest in HeLa cells reaching up to 90% cell death under these conditions. Sensitivity decreased from HeLa to T24 to MDA MB-231 cells. Strikingly, the immortalized non-cancerous cell line MCF-10A was robust against curcumin concentrations that were highly toxic to the other cell lines. Our results underline the potential of curcumin as gentle and yet effective natural anti-cancer agent when delivered solvent-free in stabilizing and biocompatible drug carriers such as CD-NP that enable efficient cellular delivery.
Collapse
Affiliation(s)
- Karin Möller
- Department of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstrasse 5–13, 81377 Munich, Germany;
| | | | - Thomas Bein
- Department of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstrasse 5–13, 81377 Munich, Germany;
| |
Collapse
|
11
|
Ashrafizadeh M, Najafi M, Makvandi P, Zarrabi A, Farkhondeh T, Samarghandian S. Versatile role of curcumin and its derivatives in lung cancer therapy. J Cell Physiol 2020; 235:9241-9268. [PMID: 32519340 DOI: 10.1002/jcp.29819] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 12/24/2022]
Abstract
Lung cancer is a main cause of death all over the world with a high incidence rate. Metastasis into neighboring and distant tissues as well as resistance of cancer cells to chemotherapy demand novel strategies in lung cancer therapy. Curcumin is a naturally occurring nutraceutical compound derived from Curcuma longa (turmeric) that has great pharmacological effects, such as anti-inflammatory, neuroprotective, and antidiabetic. The excellent antitumor activity of curcumin has led to its extensive application in the treatment of various cancers. In the present review, we describe the antitumor activity of curcumin against lung cancer. Curcumin affects different molecular pathways such as vascular endothelial growth factors, nuclear factor-κB (NF-κB), mammalian target of rapamycin, PI3/Akt, microRNAs, and long noncoding RNAs in treatment of lung cancer. Curcumin also can induce autophagy, apoptosis, and cell cycle arrest to reduce the viability and proliferation of lung cancer cells. Notably, curcumin supplementation sensitizes cancer cells to chemotherapy and enhances chemotherapy-mediated apoptosis. Curcumin can elevate the efficacy of radiotherapy in lung cancer therapy by targeting various signaling pathways, such as epidermal growth factor receptor and NF-κB. Curcumin-loaded nanocarriers enhance the bioavailability, cellular uptake, and antitumor activity of curcumin. The aforementioned effects are comprehensively discussed in the current review to further direct studies for applying curcumin in lung cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pooyan Makvandi
- Institute for Polymers, Composites and Biomaterials (IPCB), National Research Council (CNR), Naples, Italy
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, Turkey
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Healthy Ageing Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
12
|
Cheng Z, Lu X, Feng B. A review of research progress of antitumor drugs based on tubulin targets. Transl Cancer Res 2020; 9:4020-4027. [PMID: 35117769 PMCID: PMC8797889 DOI: 10.21037/tcr-20-682] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022]
Abstract
Microtubules exist in all eukaryotic cells and are one of the critical components that make up the cytoskeleton. Microtubules play a crucial role in supporting cell morphology, cell division, and material transport. Tubulin modulators can promote microtubule polymerization or cause microtubule depolymerization. The modulators interfere with the mitosis of cells and inhibit cell proliferation. Tubulin mainly has three binding domains, namely, paclitaxel, vinca and colchicine binding domains, which are the best targets for the development of anticancer drugs. Currently, drugs for tumor therapy have been developed for these three domains. However, due to its narrow therapeutic window, poor selectivity, and susceptibility to drug resistance, it has severely limited clinical applications. The method of combined medication, the change of administration method, the modification of compound structure, and the research and development of new targets have all changed the side effects of tubulin drugs to a certain extent. In this review, we briefly introduce a basic overview of tubulin and the main mechanism of anti-tumor. Secondly, we focus on the application of drugs which developed based on the three domains of tubulin to various cancers in various fields. Finally, we further provide the development progress of tubulin inhibitors currently in clinical trials.
Collapse
Affiliation(s)
- Ziqi Cheng
- College of Life Science and Technology, Dalian University, Dalian, China
| | - Xuan Lu
- College of Life Science and Technology, Dalian University, Dalian, China
| | - Baomin Feng
- College of Life Science and Technology, Dalian University, Dalian, China
| |
Collapse
|
13
|
Tian B, Hua S, Liu J. Cyclodextrin-based delivery systems for chemotherapeutic anticancer drugs: A review. Carbohydr Polym 2020; 232:115805. [DOI: 10.1016/j.carbpol.2019.115805] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
|
14
|
Jin B, Zhou X, Zhou S, Liu Y, Zheng Z, Liang Y, Chen S. Nano-encapsulation of curcumin using soy protein hydrolysates - tannic acid complexes regulated by photocatalysis: a study on the storage stability and in vitro release. J Microencapsul 2019; 36:385-398. [PMID: 31238757 DOI: 10.1080/02652048.2019.1637473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Purpose: To evaluate the feasibility of soy protein hydrolysates (SPH)-tannic acid (TA) complex nanoparticle obtained by photocatalysis (SPH-T (P)) to construct curcumin (Cur) delivery vehicles. Methods: The interaction behaviour of SPH-T (P) was investigated using Fourier transform infra-red, X-ray diffraction and differential scanning calorimeter analyzes. Formation and stability of the complexes were characterised by particle size, morphology, zeta potential, and in vitro release. Results: Negatively charged Cur-loaded complex with small size (<100 nm), spherical cluster shape and uniform size distribution were formed through the driving force of electrostatic attraction, followed by hydrogen bonding. The presence of photocatalysis in the complexes significantly improved the storage stability and in vitro sustained release of curcumin by enhancing the hydrogen bonding, hydrophobic effects and π-π stacking interactions between SPH and TA. Conclusion: SPH-T (P) would be a useful and promising delivery vehicle for encapsulating, protecting, and delivering hydrophobic nutraceuticals.
Collapse
Affiliation(s)
- Bei Jin
- a School of Chemistry and Chemical Engineering , Lingnan Normal University , Zhanjiang , China
| | - Xiaosong Zhou
- a School of Chemistry and Chemical Engineering , Lingnan Normal University , Zhanjiang , China
| | - Shanshan Zhou
- a School of Chemistry and Chemical Engineering , Lingnan Normal University , Zhanjiang , China
| | - Yuan Liu
- a School of Chemistry and Chemical Engineering , Lingnan Normal University , Zhanjiang , China
| | - Zhiyuan Zheng
- a School of Chemistry and Chemical Engineering , Lingnan Normal University , Zhanjiang , China
| | - Yuxin Liang
- a School of Chemistry and Chemical Engineering , Lingnan Normal University , Zhanjiang , China
| | - Siting Chen
- a School of Chemistry and Chemical Engineering , Lingnan Normal University , Zhanjiang , China
| |
Collapse
|
15
|
Barman S, Das G, Gupta V, Mondal P, Jana B, Bhunia D, Khan J, Mukherjee D, Ghosh S. Dual-Arm Nanocapsule Targets Neuropilin-1 Receptor and Microtubule: A Potential Nanomedicine Platform. Mol Pharm 2019; 16:2522-2531. [PMID: 31009223 DOI: 10.1021/acs.molpharmaceut.9b00123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Surajit Barman
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Gaurav Das
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Varsha Gupta
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Prasenjit Mondal
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Batakrishna Jana
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Debmalya Bhunia
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Juhee Khan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Deepshikha Mukherjee
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Structural Biology & Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Barman S, Das G, Mondal P, Pradhan K, Bhunia D, Khan J, Kar C, Ghosh S. Power of Tyrosine Assembly in Microtubule Stabilization and Neuroprotection Fueled by Phenol Appendages. ACS Chem Neurosci 2019; 10:1506-1516. [PMID: 30565916 DOI: 10.1021/acschemneuro.8b00497] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Microtubules play a crucial role in maintenance of structure, function, axonal extensions, cargo transport, and polarity of neurons. During neurodegenerative diseases, microtubule structure and function get severely damaged due to destabilization of its major structural proteins. Therefore, design and development of molecules that stabilize these microtubule networks have always been an important strategy for development of potential neurotherapeutic candidates. Toward this venture, we designed and developed a tyrosine rich trisubstituted triazine molecule (TY3) that stabilizes microtubules through close interaction with the taxol binding site. Detailed structural investigations revealed that the phenolic protons are the key interacting partners of tubulin. Interestingly, we found that this molecule is noncytotoxic in PC12 derived neurons, stabilizes microtubules against nocodazole induced depolymerization, and increases expression of acetylated tubulin (Ac-K40), an important marker of tubulin stability. Further, results show that TY3 significantly induces neurite sprouting as compared to the untreated control as well as the two other analogues (TS3 and TF3). It also possesses anti-Aβ fibrillation properties as confirmed by ThT assay, which leads to its neuroprotective effect against amyloidogenic induced toxicity caused through nerve growth factor (NGF) deprivation in PC12 derived neurons. Remarkably, our results reveal that it reduces the expression of TrkA (pY490) associated with NGF deprived amyloidogenesis, which further proves that it is a potent amyloid β inhibitor. Moreover, it promoted the health of the rat primary cortical neurons through higher expression of key neuronal markers such as MAP2 and Tuj1. Finally, we observed that it has good serum stability and has the ability to cross the blood-brain barrier (BBB). Overall, our work indicates the importance of phenolic -OH in promoting neuroprotection and its importance could be implemented in the development of future neurotherapeutics.
Collapse
Affiliation(s)
- Surajit Barman
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
| | - Gaurav Das
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, Campus 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Prasenjit Mondal
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, Campus 4 Raja S. C. Mullick Road, Kolkata 700032, India
| | - Krishnangsu Pradhan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
| | - Debmalya Bhunia
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
| | - Juhee Khan
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
| | - Chirantan Kar
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032 West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology, Campus 4 Raja S. C. Mullick Road, Kolkata 700032, India
| |
Collapse
|
17
|
Gharooni M, Alikhani A, Moghtaderi H, Abiri H, Mashaghi A, Abbasvandi F, Khayamian MA, Miripour ZS, Zandi A, Abdolahad M. Bioelectronics of The Cellular Cytoskeleton: Monitoring Cytoskeletal Conductance Variation for Sensing Drug Resistance. ACS Sens 2019; 4:353-362. [PMID: 30572702 DOI: 10.1021/acssensors.8b01142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Actin and microtubules form cellular cytoskeletal network, which mediates cell shape, motility and proliferation and are key targets for cancer therapy. Changes in cytoskeletal organization dramatically affect mechanical properties of the cells and correlate with proliferative capacity and invasiveness of cancer cells. Changes in the cytoskeletal network expectedly lead to altered nonmechanical material properties including electrical conductivity as well. Here we applied, for the first time, microtubule and actin based electrical measurement to monitor changes in the electrical properties of breast cancer cells upon administration of anti-tubulin and anti-actin drugs, respectively. Semiconductive behavior of microtubules and conductive behavior of actins presented different bioelectrical responses (in similar frequencies) of the cells treated by anti-tubulin with respect to anti-actin drugs. Doped silicon nanowires were applied as the electrodes due to their enhanced interactive surface and compatibility with electronic fabrication process. We found that treatment with Mebendazole (MBZ), a microtubule destabilizing agent, decreases electrical resistance while treatment with Paclitaxel (PTX), a microtubule stabilizing agent, leads to an increase in electrical resistance. In contrast, actin destabilizing agents, Cytochalasin D (CytD), and actin stabilizing agent, Phalloidin, lead to an increased and decreased electrical resistance, respectively. Our study thus provides proof-of-principle of the usage of determining the electrical function of cytoskeletal compartments in grading of cancer as well as drug resistance assays.
Collapse
Affiliation(s)
| | | | | | | | - Alireza Mashaghi
- Leiden Academic Centre for Drug Research, Faculty of Mathematics and Natural Sciences, Leiden University, 2311 EZ, Leiden, The Netherlands
| | - Fereshteh Abbasvandi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX 15179/64311, Tehran, Iran
| | | | | | | | | |
Collapse
|
18
|
Barman S, Das G, Mondal P, Pradhan K, Jana B, Bhunia D, Saha A, Kar C, Ghosh S. Tripodal molecular propellers perturb microtubule dynamics: indole acts as a blade and plays a crucial role in anticancer activity. Chem Commun (Camb) 2019; 55:2356-2359. [PMID: 30724319 DOI: 10.1039/c9cc00074g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An indole-rich tripodal microtubule inhibitor is designed, which binds at the DCVJ site of tubulin and inhibits its polymerization. It causes apoptotic death of cancer cells without affecting normal cells and inhibits the growth of tumors. Finally, STD-NMR and TR-NOESY experiments reveal that the indole appendages play a crucial role in interacting with tubulin.
Collapse
Affiliation(s)
- Surajit Barman
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Exhaustive investigation of drug delivery systems to achieve optimal condition of drug release using non-linear generalized artificial neural network method: feedback from the loading step of drug. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2018. [DOI: 10.1007/s13738-018-1397-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
20
|
Nag A, Chakraborty P, Natarajan G, Baksi A, Mudedla SK, Subramanian V, Pradeep T. Bent Keto Form of Curcumin, Preferential Stabilization of Enol by Piperine, and Isomers of Curcumin∩Cyclodextrin Complexes: Insights from Ion Mobility Mass Spectrometry. Anal Chem 2018; 90:8776-8784. [PMID: 29996050 DOI: 10.1021/acs.analchem.7b05231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A detailed examination of collision cross sections (CCSs) coupled with computational methods has revealed new insights into some of the key questions centered around curcumin, one of the most intensively studied natural therapeutic agents. In this study, we have distinguished the structures and conformers of the well-known enol and the far more elusive keto form of curcumin by using ion mobility mass spectrometry (IM MS). The values of the theoretically predicted isomers were compared with the experimental CCS values to confirm their structures. We have identified a bent structure for the keto form and the degree of bending was estimated. Using IM MS, we have also shown that ESI MS reflects the solution phase structures and their relative populations, in this case. Piperine, a naturally occurring heterocyclic compound, is known to increase the bioavailability of curcumin. However, it is still not clearly understood which tautomeric form of curcumin is better stabilized by it. We have identified preferential stabilization of the enol form in the presence of piperine using IM MS. Cyclodextrins (CDs) are used as well-known carriers in the pharmaceutical industry for increasing the stability, solubility, bioavailability, and tolerability of curcumin. However, the crystal structures of supramolecular complexes of curcumin∩CD are unknown. We have determined the structures of different isomers of curcumin∩CD (α- and β-CD) complexes by comparing the CCSs of theoretically predicted structures with the experimentally obtained CCSs, which will further help in understanding the specific role of the structures involved in different biological activities.
Collapse
Affiliation(s)
- Abhijit Nag
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry , Indian Institute of Technology Madras , Chennai - 600036 , India
| | - Papri Chakraborty
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry , Indian Institute of Technology Madras , Chennai - 600036 , India
| | - Ganapati Natarajan
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry , Indian Institute of Technology Madras , Chennai - 600036 , India
| | - Ananya Baksi
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry , Indian Institute of Technology Madras , Chennai - 600036 , India
| | - Sathish Kumar Mudedla
- Chemical Laboratory , CSIR-Central Leather Research Institute , Adyar, Chennai 600020 , India
| | - Venkatesan Subramanian
- Chemical Laboratory , CSIR-Central Leather Research Institute , Adyar, Chennai 600020 , India
| | - Thalappil Pradeep
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry , Indian Institute of Technology Madras , Chennai - 600036 , India
| |
Collapse
|
21
|
Jana B, Mondal P, Saha A, Adak A, Das G, Mohapatra S, Kurkute P, Ghosh S. Designed Tetrapeptide Interacts with Tubulin and Microtubule. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1123-1132. [PMID: 28558224 DOI: 10.1021/acs.langmuir.7b01326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Microtubules regulate eukaryotic cell functions, which have tremendous implication in tumor progression. Thus, the design of novel approaches for controlling microtubule function is extremely important. In this manuscript, a novel tetrapeptide Ser-Leu-Arg-Pro (SLRP) has been designed and synthesized from a small peptide library consisting of 14 tetrapeptides, which perturbs microtubule function through interaction in the "anchor region". We have studied the role of peptides on microtubule function on a chemically functionalized 2D platform. Interestingly, we have found that SLRP binds with tubulin and inhibits the kinesin-driven microtubule motility on a kinesin-immobilized chemically functionalized 2D platform. Further, this peptide modulator interacts with intracellular tubulin/microtubule and depolymerizes the microtubule networks. These interesting findings of perturbation of microtubule function both on engineered platforms and inside the cell by this small peptide modulator inspired us to study the effect of this tetrapeptide on cancer cell proliferation. We found that the novel tetrapeptide modulator causes moderate cytotoxicity to the human breast cancer cell (MCF-7 cell), induces the apoptotic death of MCF-7 cell, and activates the tumor suppressor proteins p53 and cyclin-dependent kinase inhibitor 1 (p21). To the best of our knowledge, this is the shortest peptide discovered, which perturbs microtubule function both on an engineered 2D platform and inside the cell.
Collapse
Affiliation(s)
- Batakrishna Jana
- Organic & Medicinal Chemistry Division and ‡Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Prasenjit Mondal
- Organic & Medicinal Chemistry Division and ‡Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Abhijit Saha
- Organic & Medicinal Chemistry Division and ‡Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Anindyasundar Adak
- Organic & Medicinal Chemistry Division and ‡Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Gaurav Das
- Organic & Medicinal Chemistry Division and ‡Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Saswat Mohapatra
- Organic & Medicinal Chemistry Division and ‡Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Prashant Kurkute
- Organic & Medicinal Chemistry Division and ‡Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Surajit Ghosh
- Organic & Medicinal Chemistry Division and ‡Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Biology , 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
22
|
β-Cyclodextrin modified mesoporous silica nanoparticles as a nano-carrier: Response surface methodology to investigate and optimize loading and release processes for curcumin delivery. J Appl Biomed 2017. [DOI: 10.1016/j.jab.2017.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
23
|
Jiang S, Han J, Li T, Xin Z, Ma Z, Di W, Hu W, Gong B, Di S, Wang D, Yang Y. Curcumin as a potential protective compound against cardiac diseases. Pharmacol Res 2017; 119:373-383. [PMID: 28274852 DOI: 10.1016/j.phrs.2017.03.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/16/2017] [Accepted: 03/01/2017] [Indexed: 01/08/2023]
Abstract
Curcumin, which was first used 3000 years ago as an anti-inflammatory agent, is a well-known bioactive compound derived from the active ingredient of turmeric (Curcuma longa). Previous research has demonstrated that curcumin has immense therapeutic potential in a variety of diseases via anti-oxidative, anti-apoptotic, and anti-inflammatory pathways. Cardiac diseases are the leading cause of mortality worldwide and cause considerable harm to human beings. Numerous studies have suggested that curcumin exerts a protective role in the human body whereas its actions in cardiac diseases remain elusive and poorly understood. On the basis of the current evidence, we first give a brief introduction of cardiac diseases and curcumin, especially regarding the effects of curcumin in embryonic heart development. Secondly, we analyze the basic roles of curcumin in pathways that are dysregulated in cardiac diseases, including oxidative stress, apoptosis, and inflammation. Thirdly, actions of curcumin in different cardiac diseases will be discussed, as will relevant clinical trials. Eventually, we would like to discuss the existing controversial opinions and provide a detailed analysis followed by the remaining obstacles, advancement, and further prospects of the clinical application of curcumin. The information compiled here may serve as a comprehensive reference of the protective effects of curcumin in the heart, which is significant to the further research and design of curcumin analogs as therapeutic options for cardiac diseases.
Collapse
Affiliation(s)
- Shuai Jiang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China; Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhenlong Xin
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Wencheng Di
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing, 210008, Jiangsu, China
| | - Wei Hu
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China
| | - Bing Gong
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China
| | - Shouyin Di
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710038, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China.
| | - Yang Yang
- Department of Thoracic and Cardiovascular Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Road, Nanjing 210008, Jiangsu, China; Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, China.
| |
Collapse
|
24
|
Benitez-Medina GE, Amézquita-Valencia M, Cabrera A, Sharma P. Synthesis of 2,3-Disubstituted Indoles from α-Diketones and N-Substituted Anilines: One-Pot Pd-Catalyzed Reductive Amination. ChemCatChem 2017. [DOI: 10.1002/cctc.201601557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- G. Eliad Benitez-Medina
- Instituto de Química; Universidad Nacional Autónoma de México; Ciudad Universitaria, Circuito Exterior, Coyoacán 04510 Ciudad de México México
| | - Manuel Amézquita-Valencia
- Instituto de Química; Universidad Nacional Autónoma de México; Ciudad Universitaria, Circuito Exterior, Coyoacán 04510 Ciudad de México México
| | - Armando Cabrera
- Instituto de Química; Universidad Nacional Autónoma de México; Ciudad Universitaria, Circuito Exterior, Coyoacán 04510 Ciudad de México México
| | - Pankaj Sharma
- Instituto de Química; Universidad Nacional Autónoma de México; Ciudad Universitaria, Circuito Exterior, Coyoacán 04510 Ciudad de México México
| |
Collapse
|
25
|
Amin MA, Nandi S, Mondal P, Mahata T, Ghosh S, Bhattacharyya K. Physical chemistry in a single live cell: confocal microscopy. Phys Chem Chem Phys 2017; 19:12620-12627. [DOI: 10.1039/c7cp02228j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A confocal microscope can be used to differentiate between cancer and non-cancer cells, and to enrich our knowledge of 3D tumor spheroids and drug delivery.
Collapse
Affiliation(s)
- Md. Asif Amin
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science (IACS)
- Jadavpur
- India
| | - Somen Nandi
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science (IACS)
- Jadavpur
- India
| | - Prasenjit Mondal
- Organic and Medicinal Chemistry Division
- Indian Institute of Chemical Biology
- Jadavpur
- India
| | - Tanushree Mahata
- Organic and Medicinal Chemistry Division
- Indian Institute of Chemical Biology
- Jadavpur
- India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry Division
- Indian Institute of Chemical Biology
- Jadavpur
- India
| | - Kankan Bhattacharyya
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhauri
- India
| |
Collapse
|
26
|
Mohapatra S, Saha A, Mondal P, Jana B, Ghosh S, Biswas A, Ghosh S. Synergistic Anticancer Effect of Peptide-Docetaxel Nanoassembly Targeted to Tubulin: Toward Development of Dual Warhead Containing Nanomedicine. Adv Healthc Mater 2017; 6. [PMID: 27782376 DOI: 10.1002/adhm.201600718] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/12/2016] [Indexed: 01/09/2023]
Abstract
Microtubule dynamics play a crucial role in cancer cell division. Various drugs are developed to target microtubule. Although a few of them show potential in treatment of cancer, but success rate is limited due to their poor bioavailability and lack of specificity. Thus, development of highly bioavailable and target specific anticancer drug is extremely necessary. To address these key issues, here, a combination of approaches such as development of a dodecapeptide-docetaxel nanoassembly targeted to tubulin and MUC1 (mucin 1, cell surface associated glycoprotein) targeting oligonucleotide aptamer conjugated liposome for delivering peptide-docetaxel nanoassembly into the breast cancer cell have been demonstrated. These studies reveal that the peptide forms nanoassembly and entraps docetaxel drug. Further, the liposomal formulation of peptide-docetaxel exerts synergistic anticancer effect, activates key mitotic check point proteins, and inhibits bipolar spindle formation, metastatic cancer cell migration, and growth of tumor mimicking 3D multicellular spheroid.
Collapse
Affiliation(s)
- Saswat Mohapatra
- Organic and Medicinal Chemistry Division; Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB); 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-Indian Institute of Chemical Biology Campus; 4, Raja S. C. Mullick Road Kolkata 700 032 West Bengal India
| | - Abhijit Saha
- Organic and Medicinal Chemistry Division; Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB); 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Prasenjit Mondal
- Organic and Medicinal Chemistry Division; Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB); 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-Indian Institute of Chemical Biology Campus; 4, Raja S. C. Mullick Road Kolkata 700 032 West Bengal India
| | - Batakrishna Jana
- Organic and Medicinal Chemistry Division; Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB); 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Subhajit Ghosh
- Organic and Medicinal Chemistry Division; Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB); 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Atanu Biswas
- Organic and Medicinal Chemistry Division; Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB); 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry Division; Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB); 4, Raja S. C. Mullick Road, Jadavpur Kolkata 700032 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-Indian Institute of Chemical Biology Campus; 4, Raja S. C. Mullick Road Kolkata 700 032 West Bengal India
| |
Collapse
|
27
|
Banerjee S, Hwang DJ, Li W, Miller DD. Current Advances of Tubulin Inhibitors in Nanoparticle Drug Delivery and Vascular Disruption/Angiogenesis. Molecules 2016; 21:molecules21111468. [PMID: 27827858 PMCID: PMC6272853 DOI: 10.3390/molecules21111468] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/12/2016] [Accepted: 10/27/2016] [Indexed: 01/05/2023] Open
Abstract
Extensive research over the last decade has resulted in a number of highly potent tubulin polymerization inhibitors acting either as microtubule stabilizing agents (MSAs) or microtubule destabilizing agents (MDAs). These inhibitors have potent cytotoxicity against a broad spectrum of human tumor cell lines. In addition to cytotoxicity, a number of these tubulin inhibitors have exhibited abilities to inhibit formation of new blood vessels as well as disrupt existing blood vessels. Tubulin inhibitors as a vascular disrupting agents (VDAs), mainly from the MDA family, induce rapid tumor vessel occlusion and massive tumor necrosis. Thus, tubulin inhibitors have become increasingly popular in the field of tumor vasculature. However, their pharmaceutical application is halted by a number of limitations including poor solubility and toxicity. Thus, recently, there has been considerable interests in the nanoparticle drug delivery of tubulin inhibitors to circumvent those limitations. This article reviews recent advances in nanoparticle based drug delivery for tubulin inhibitors as well as their tumor vasculature disruption properties.
Collapse
Affiliation(s)
- Souvik Banerjee
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| | - Wei Li
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| | - Duane D Miller
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, 881 Madison Ave. Memphis, TN 38163, USA.
| |
Collapse
|
28
|
Mohapatra S, Nandi S, Chowdhury R, Das G, Ghosh S, Bhattacharyya K. Spectral mapping of 3D multi-cellular tumor spheroids: time-resolved confocal microscopy. Phys Chem Chem Phys 2016; 18:18381-90. [DOI: 10.1039/c6cp02748b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The tumor micro-environment of 3D multicellular spheroids and their interaction with a drug molecule are studied using time resolved confocal microscopy.
Collapse
Affiliation(s)
- Saswat Mohapatra
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Somen Nandi
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Rajdeep Chowdhury
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Gaurav Das
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Kankan Bhattacharyya
- Department of Physical Chemistry
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| |
Collapse
|