1
|
Lychko I, Padrão I, Eva AV, Domingos CAO, Costa HMAD, Dias AMGC, Roque ACA. Cephalopod proteins for bioinspired and sustainable biomaterials design. Mater Today Bio 2025; 31:101644. [PMID: 40130040 PMCID: PMC11931252 DOI: 10.1016/j.mtbio.2025.101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025] Open
Abstract
Nature offers a boundless source of inspiration for designing bio-inspired technologies and advanced materials. Cephalopods, including octopuses, squids, and cuttlefish, exhibit remarkable biological adaptations, such as dynamic camouflage for predator evasion and communication, as well as robust prey-capturing tools, including beaks and sucker-ring teeth that operate under extreme mechanical stresses in aqueous environments. Central to these remarkable traits are structural proteins that serve as versatile polymeric materials. From a materials science perspective, proteins present unique opportunities due to their genetically encoded sequences, enabling access to a diversity of sequences and precise control over polymer composition and properties. This intrinsic programmability allows scalable, environmentally sustainable production through recombinant biotechnology, in contrast to petroleum-derived polymers. This review highlights recent advances in understanding cephalopod-specific proteins, emphasizing their potential for creating next-generation bioengineered materials and driving sustainable innovation in biomaterials science.
Collapse
Affiliation(s)
- Iana Lychko
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Inês Padrão
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Afonso Vicente Eva
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Catarina Alexandra Oliveira Domingos
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Henrique Miguel Aljustrel da Costa
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Ana Margarida Gonçalves Carvalho Dias
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Ana Cecília Afonso Roque
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
2
|
Kong Z, Boahen EK, Kim DJ, Li F, Kim JS, Kweon H, Kim SY, Choi H, Zhu J, Bin Ying W, Kim DH. Ultrafast underwater self-healing piezo-ionic elastomer via dynamic hydrophobic-hydrolytic domains. Nat Commun 2024; 15:2129. [PMID: 38459042 PMCID: PMC10923942 DOI: 10.1038/s41467-024-46334-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/22/2024] [Indexed: 03/10/2024] Open
Abstract
The development of advanced materials capable of autonomous self-healing and mechanical stimulus sensing in aquatic environments holds great promise for applications in underwater soft electronics, underwater robotics, and water-resistant human-machine interfaces. However, achieving superior autonomous self-healing properties and effective sensing simultaneously in an aquatic environment is rarely feasible. Here, we present an ultrafast underwater molecularly engineered self-healing piezo-ionic elastomer inspired by the cephalopod's suckers, which possess self-healing properties and mechanosensitive ion channels. Through strategic engineering of hydrophobic C-F groups, hydrolytic boronate ester bonds, and ions, the material achieves outstanding self-healing efficiencies, with speeds of 94.5% (9.1 µm/min) in air and 89.6% (13.3 µm/min) underwater, coupled with remarkable pressure sensitivity (18.1 kPa-1) for sensing performance. Furthermore, integration of this mechanosensitive device into an underwater submarine for signal transmission and light emitting diode modulation demonstrates its potential for underwater robotics and smarter human-machine interactions.
Collapse
Affiliation(s)
- Zhengyang Kong
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Elvis K Boahen
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Dong Jun Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Fenglong Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Joo Sung Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hyukmin Kweon
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - So Young Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hanbin Choi
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Jin Zhu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Wu Bin Ying
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Do Hwan Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea.
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
3
|
Cai A, Abdali Z, Saldanha DJ, Aminzare M, Dorval Courchesne NM. Endowing textiles with self-repairing ability through the fabrication of composites with a bacterial biofilm. Sci Rep 2023; 13:11389. [PMID: 37452128 PMCID: PMC10349112 DOI: 10.1038/s41598-023-38501-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
To address the increasing environmental footprint of the fast-growing textile industry, self-repairing textile composites have been developed to allow torn or damaged textiles to restore their morphological, mechanical, and functional features. A sustainable way to create these textile composites is to introduce a coating material that is biologically derived, biodegradable, and can be produced through scalable processes. Here, we fabricated self-repairing textile composites by integrating the biofilms of Escherichia coli (E. coli) bacteria into conventional knitted textiles. The major structural protein component in E. coli biofilm is a matrix of curli fibers, which has demonstrated extraordinary abilities to self-assemble into mechanically strong macroscopic structures and self-heal upon contact with water. We demonstrated the integration of biofilm through three simple, fast, and scalable methods: adsorption, doctor blading, and vacuum filtration. We confirmed that the composites were breathable and mechanically strong after the integration, with improved Young's moduli or elongation at break depending on the fabrication method used. Through patching and welding, we showed that after rehydration, the composites made with all three methods effectively healed centimeter-scale defects. Upon observing that the biofilm strongly attached to the textiles by covering the extruding textile fibers from the self-repair failures, we proposed that the strength of the self-repairs relied on both the biofilm's cohesion and the biofilm-textile adhesion. Considering that curli fibers are genetically-tunable, the fabrication of self-repairing curli-expressing biofilm-textile composites opens new venues for industrially manufacturing affordable, durable, and sustainable functional textiles.
Collapse
Affiliation(s)
- Anqi Cai
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 0C5, Canada
| | - Zahra Abdali
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 0C5, Canada
| | - Dalia Jane Saldanha
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 0C5, Canada
| | - Masoud Aminzare
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 0C5, Canada
| | | |
Collapse
|
4
|
Wu SD, Chuang WT, Ho JC, Wu HC, Hsu SH. Self-Healing of Recombinant Spider Silk Gel and Coating. Polymers (Basel) 2023; 15:polym15081855. [PMID: 37112001 PMCID: PMC10141599 DOI: 10.3390/polym15081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Self-healing properties, originating from the natural healing process, are highly desirable for the fitness-enhancing functionality of biomimetic materials. Herein, we fabricated the biomimetic recombinant spider silk by genetic engineering, in which Escherichia coli (E. coli) was employed as a heterologous expression host. The self-assembled recombinant spider silk hydrogel was obtained through the dialysis process (purity > 85%). The recombinant spider silk hydrogel with a storage modulus of ~250 Pa demonstrated autonomous self-healing and high strain-sensitive properties (critical strain ~50%) at 25 °C. The in situ small-angle X-ray scattering (in situ SAXS) analyses revealed that the self-healing mechanism was associated with the stick-slip behavior of the β-sheet nanocrystals (each of ~2-4 nm) based on the slope variation (i.e., ~-0.4 at 100%/200% strains, and ~-0.9 at 1% strain) of SAXS curves in the high q-range. The self-healing phenomenon may occur through the rupture and reformation of the reversible hydrogen bonding within the β-sheet nanocrystals. Furthermore, the recombinant spider silk as a dry coating material demonstrated self-healing under humidity as well as cell affinity. The electrical conductivity of the dry silk coating was ~0.4 mS/m. Neural stem cells (NSCs) proliferated on the coated surface and showed a 2.3-fold number expansion after 3 days of culture. The biomimetic self-healing recombinant spider silk gel and thinly coated surface may have good potential in biomedical applications.
Collapse
Affiliation(s)
- Shin-Da Wu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wei-Tsung Chuang
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - Jo-Chen Ho
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsuan-Chen Wu
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 350, Taiwan
| |
Collapse
|
5
|
Shuib RK, Mohd Nizam NH, Abd Aziz A. A facile approach to fabricate room temperature intrinsic self-healing fabrics. JOURNAL OF INDUSTRIAL TEXTILES 2023; 53:152808372311617. [DOI: 10.1177/15280837231161765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Self-healing fabrics have garnered a lot of attention due to their recovering functionality upon damage. This work describes a facile technique for developing a novel self-healing coating with the goal of producing autonomous intrinsic self-healing fabrics that can recover from damage at room temperature without the use of external stimuli. The coating was developed using natural rubber latex (NRL) and consisted of a dynamic reversible metal thiolate ionic network. The formation of the reversible ionic network was assessed by Differential Scanning Calorimetry (DSC), Ultraviolet-visible spectroscopy (UV-vis), Fourier Transform Infrared (FTIR) and zeta potential analysis. Scanning electron microscope (SEM) images revealed that the coating impregnated the fibres of the fabric and improved their structural integrity. The morphology of the punctured area revealed that intermolecular diffusion had occurred during the recovery and the sample had completely healed. The results also showed that the tensile strength, tear strength and puncture strength of the fabric achieved 100% healing efficiency when the damaged fabrics were brought into contact with each other and allowed to be healed at room temperature. This technology is expected to open up a new avenue in the textile industry.
Collapse
Affiliation(s)
- Raa Khimi Shuib
- School of Materials and Mineral Resources Engineering, USM Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Nuraina Hanim Mohd Nizam
- School of Materials and Mineral Resources Engineering, USM Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Azniwati Abd Aziz
- School of Industrial Technology, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia
| |
Collapse
|
6
|
Zhu M, Yu J, Li Z, Ding B. Self‐Healing Fibrous Membranes. Angew Chem Int Ed Engl 2022; 61:e202208949. [DOI: 10.1002/anie.202208949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Miaomiao Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering Nanjing Forestry University Nanjing 210037 China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
- Innovation Center for Textile Science and Technology Donghua University Shanghai 201620 China
| | - Zhaoling Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
- Key Laboratory of Textile Science and Technology Ministry of Education College of Textiles Donghua University Shanghai 201620 China
- Innovation Center for Textile Science and Technology Donghua University Shanghai 201620 China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University Shanghai 201620 China
- Innovation Center for Textile Science and Technology Donghua University Shanghai 201620 China
| |
Collapse
|
7
|
Zhu M, Yu J, Li Z, Ding B. Self‐Healing Fibrous Membranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Miaomiao Zhu
- Donghua University College of Materials Science and Engineering CHINA
| | - Jianyong Yu
- Donghua University Innovation Center for Textile Science and Technology CHINA
| | - Zhaoling Li
- Donghua University College of Textiles CHINA
| | - Bin Ding
- Donghua University College of Textiles 2999 North Renmin Road, Songjiang District 201620 Shanghai CHINA
| |
Collapse
|
8
|
Arnold J, Chapman J, Arnold M, Dinu CZ. Hyaluronic Acid Allows Enzyme Immobilization for Applications in Biomedicine. BIOSENSORS 2022; 12:bios12010028. [PMID: 35049657 PMCID: PMC8773612 DOI: 10.3390/bios12010028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/28/2022]
Abstract
Enzymes are proteins that control the efficiency and effectiveness of biological reactions and systems, as well as of engineered biomimetic processes. This review highlights current applications of a diverse range of enzymes for biofuel production, plastics, and chemical waste management, as well as for detergent, textile, and food production and preservation industries respectively. Challenges regarding the transposition of enzymes from their natural purpose and environment into synthetic practice are discussed. For example, temperature and pH-induced enzyme fragilities, short shelf life, low-cost efficiency, poor user-controllability, and subsequently insufficient catalytic activity were shown to decrease pertinence and profitability in large-scale production considerations. Enzyme immobilization was shown to improve and expand upon enzyme usage within a profit and impact-oriented commercial world and through enzyme-material and interfaces integration. With particular focus on the growing biomedical market, examples of enzyme immobilization within or onto hyaluronic acid (HA)-based complexes are discussed as a definable way to improve upon and/or make possible the next generation of medical undertakings. As a polysaccharide formed in every living organism, HA has proven beneficial in biomedicine for its high biocompatibility and controllable biodegradability, viscoelasticity, and hydrophilicity. Complexes developed with this molecule have been utilized to selectively deliver drugs to a desired location and at a desired rate, improve the efficiency of tissue regeneration, and serve as a viable platform for biologically accepted sensors. In similar realms of enzyme immobilization, HA’s ease in crosslinking allows the molecule to user-controllably enhance the design of a given platform in terms of both chemical and physical characteristics to thus best support successful and sustained enzyme usage. Such examples do not only demonstrate the potential of enzyme-based applications but further, emphasize future market trends and accountability.
Collapse
Affiliation(s)
- Jackie Arnold
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26505, USA; (J.A.); (J.C.)
| | - Jordan Chapman
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26505, USA; (J.A.); (J.C.)
| | - Myra Arnold
- Department of Sociology and Anthropology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV 26505, USA;
- Department of Business Incubator, John Chambers College of Business and Economics, West Virginia University, Morgantown, WV 26505, USA
| | - Cerasela Zoica Dinu
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, WV 26505, USA; (J.A.); (J.C.)
- Correspondence:
| |
Collapse
|
9
|
Lu R, Zhang X, Cheng X, Zan X, Geng W. Secondary Structure-Dominated Layer-by-Layer Growth Mode of Protein Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13000-13011. [PMID: 34723563 DOI: 10.1021/acs.langmuir.1c02062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Benefiting from the luxury functions of proteins, protein coatings have been extended to various applications, including tissue engineering scaffolds, drug delivery, antimicrobials, sensing and diagnostic equipment, food packaging, etc. Fast construction of protein coatings is always interesting to materials science and significant to industrialization. Here, we report a layer-by-layer (LbL) multilayer-constructed coating of tannic acid (TA) and lysozyme (Lyz), in which the secondary conformations of Lyz dominate the growth rate of the TA/Lyz coating. As well characterized by various techniques (quartz crystal microbalance with dissipation (QCM-D), circular dichroism (CD) spectra, Fourier transform infrared (FTIR) spectroscopy, atomic force microscopy (AFM), contact angle, etc.), TA-induced conformational transition of Lyz to α-helices occurs at pH 8 from other secondary structures (β-sheets, β-turns, and random coils), which leads to the very fast growth of TA/Lyz with a number of deposited bilayers, with thicknesses of more than 90 nm for six bilayers. In contrast to the leading conformation of α-helices at pH 8, Lyz displayed multiple conformations (α-helices, β-sheets, β-turns, and random coils) at pH 6, which resulted in coating thicknesses of less than 30 nm for six bilayers. By the addition of NaCl, Tween 20, and urea, we further confirmed that the secondary conformations of Lyz relied greatly on the interactions between TA and Lyz and dominated the growth rate of the multilayers. We believe that these findings will help to understand the transformation of secondary conformations by TA or other polyphenols and inspire a new route to quickly build protein coatings.
Collapse
Affiliation(s)
- Ruofei Lu
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqiang Zhang
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxiu Cheng
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingjie Zan
- Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Wujun Geng
- Wenzhou Key Laboratory of Perioperative Medicine, Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| |
Collapse
|
10
|
Kwak TJ, Jung H, Allen BD, Demirel MC, Chang WJ. Dielectrophoretic separation of randomly shaped protein particles. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Kienle DF, Chaparro Sosa AF, Kaar JL, Schwartz DK. Polyelectrolyte Multilayers Enhance the Dry Storage and pH Stability of Physically Entrapped Enzymes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22640-22649. [PMID: 32352745 DOI: 10.1021/acsami.0c04964] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyelectrolyte multilayers (PEMs) are attractive materials for immobilizing enzymes due to their unique ionic environment, which can prevent unfolding. Here, we demonstrated that the stability to dry storage and elevated pH were significantly enhanced when negatively charged nitroreductase (NfsB) was embedded in a PEM by depositing alternating layers of the enzyme and polycation (PC) onto porous silica particles. The PC strength (i.e., pKa) and the surface charge of the film were varied to probe the effects that internal and surface chemistry had on the pH stability of the entrapped NfsB. All films showed enhanced activity retention at elevated pH (>6), and inactivation at reduced pH (<6) similar to NfsB in solution, indicating that the primary stabilizing effect of immobilization was achieved through ionic interactions between NfsB and the PC and not through changes to the surface charge of the NfsB. Additionally, films that were stored dry at 4 °C for 1 month retained full activity, while those stored at room temperature lost 30% activity. Remarkably, at 50 °C, above the NfsB melting temperature, 40% activity was retained after 1 month of dry storage. Our results suggest that internal film properties are significantly more important than surface charge, which had minor effects on activity. Specifically, immobilization with the weak PC, poly(l-lysine), increased the optimal pH and the activity of immobilized NfsB (which we attribute to greater permeability), relative to immobilization with the strong PC, poly(diallyldimethylammonium chloride). However, NfsB was leached from the PLL film to a greater extent. Overall, these observations demonstrate that internal ionic cross-linking is key to the stabilizing effects of PEMs and that the pH response can be tuned by controlling the number of cross-links (e.g., by changing the strength of the PC). However, this may be at the cost of reduced loading, illustrating the necessity of simultaneously optimizing enzyme loading, internal ionic cross-linking, and substrate transport.
Collapse
Affiliation(s)
- Daniel F Kienle
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Andres F Chaparro Sosa
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Joel L Kaar
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| | - Daniel K Schwartz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
12
|
Kikuchi Y, Pena-Francesch A, Vural M, Demirel MC. Highly Conductive Self-Healing Biocomposites Based on Protein Mediated Self-Assembly of PEDOT:PSS Films. ACS APPLIED BIO MATERIALS 2020; 3:2507-2515. [DOI: 10.1021/acsabm.0c00207] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yusuke Kikuchi
- Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Abdon Pena-Francesch
- Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mert Vural
- Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Melik C. Demirel
- Center for Research on Advanced Fiber Technologies (CRAFT), Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
13
|
Song X, Wang JP, Song Y, Qi T, Liang Li G. Bioinspired Healable Mechanochromic Function from Fluorescent Polyurethane Composite Film. ChemistryOpen 2020; 9:272-276. [PMID: 32140381 PMCID: PMC7050239 DOI: 10.1002/open.201900295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/20/2019] [Indexed: 12/21/2022] Open
Abstract
Camouflage and wound healing are two vital functions for cephalopods to survive from dangerous ocean risks. Inspired by these dual functions, herein, we report a new type of healable mechanochromic (HMC) material. The bifunctional HMC material consists of two tightly bonded layers. One layer is composed of polyvinyl alcohol (PVA) and titanium dioxide (TiO2) for shielding. Another layer contains supramolecular hydrogen bonding polymers and fluorochromes for healing. The as‐synthesized HMC material exhibits a tunable and reversible mechanochromic function due to the strain‐induced surface structure of composite film. The mechanochromic function can be further restored after damage because of the incorporated healable polyurethane. The healing efficiency of the damaged HMC materials can even reach 98 % at 60 °C for 6 h. The bioinspired HMC material is expected to have potential applications in the information encryption and flexible displays.
Collapse
Affiliation(s)
- Xiaoke Song
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology Institute of Process Engineering, Chinese Academy of Sciences Beijing 100049 P. R. China.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun-Peng Wang
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology Institute of Process Engineering, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yan Song
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology Institute of Process Engineering, Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tao Qi
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology Institute of Process Engineering, Chinese Academy of Sciences Beijing 100049 P. R. China.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Guo Liang Li
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology Institute of Process Engineering, Chinese Academy of Sciences Beijing 100049 P. R. China.,University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
14
|
Pena-Francesch A, Demirel MC. Squid-Inspired Tandem Repeat Proteins: Functional Fibers and Films. Front Chem 2019; 7:69. [PMID: 30847338 PMCID: PMC6393770 DOI: 10.3389/fchem.2019.00069] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/25/2019] [Indexed: 02/05/2023] Open
Abstract
Production of repetitive polypeptides that comprise one or more tandem copies of a single unit with distinct amorphous and ordered regions have been an interest for the last couple of decades. Their molecular structure provides a rich architecture that can micro-phase-separate to form periodic nanostructures (e.g., lamellar and cylindrical repeating phases) with enhanced physicochemical properties via directed or natural evolution that often exceed those of conventional synthetic polymers. Here, we review programmable design, structure, and properties of functional fibers and films from squid-inspired tandem repeat proteins, with applications in soft photonics and advanced textiles among others.
Collapse
Affiliation(s)
- Abdon Pena-Francesch
- Center for Research on Advanced Fiber Technologies, Materials Research Institute, Pennsylvania State University, University Park, PA, United States
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, United States
| | - Melik C. Demirel
- Center for Research on Advanced Fiber Technologies, Materials Research Institute, Pennsylvania State University, University Park, PA, United States
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
15
|
Kandhari A, Mehringer A, Chiel HJ, Quinn RD, Daltorio KA. Design and Actuation of a Fabric-Based Worm-Like Robot. Biomimetics (Basel) 2019; 4:E13. [PMID: 31105199 PMCID: PMC6477625 DOI: 10.3390/biomimetics4010013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/02/2019] [Accepted: 01/30/2019] [Indexed: 11/25/2022] Open
Abstract
Soft-bodied animals, such as earthworms, are capable of contorting their body to squeeze through narrow spaces, create or enlarge burrows, and move on uneven ground. In many applications such as search and rescue, inspection of pipes and medical procedures, it may be useful to have a hollow-bodied robot with skin separating inside and outside. Textiles can be key to such skins. Inspired by earthworms, we developed two new robots: FabricWorm and MiniFabricWorm. We explored the application of fabric in soft robotics and how textile can be integrated along with other structural elements, such as three-dimensional (3D) printed parts, linear springs, and flexible nylon tubes. The structure of FabricWorm consists of one third the number of rigid pieces as compared to its predecessor Compliant Modular Mesh Worm-Steering (CMMWorm-S), while the structure of MiniFabricWorm consists of no rigid components. This article presents the design of such a mesh and its limitations in terms of structural softness. We experimentally measured the stiffness properties of these robots and compared them directly to its predecessors. FabricWorm and MiniFabricWorm are capable of peristaltic locomotion with a maximum speed of 33 cm/min (0.49 body-lengths/min) and 13.8 cm/min (0.25 body-lengths/min), respectively.
Collapse
Affiliation(s)
- Akhil Kandhari
- Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Anna Mehringer
- Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Hillel J Chiel
- Departments of Biology, Neurosciences and Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Roger D Quinn
- Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Kathryn A Daltorio
- Mechanical and Aerospace Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
16
|
Zappi D, Coria-Oriundo LL, Piccinini E, Gramajo M, von Bilderling C, Pietrasanta LI, Azzaroni O, Battaglini F. The effect of ionic strength and phosphate ions on the construction of redox polyelectrolyte–enzyme self-assemblies. Phys Chem Chem Phys 2019; 21:22947-22954. [DOI: 10.1039/c9cp04037d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The type and concentration of ions present in a solution containing an electroactive polyelectrolyte shape its configuration, adsorption, and electrochemical response.
Collapse
Affiliation(s)
- Daniele Zappi
- INQUIMAE (CONICET)
- Departamento de Química Inorgánica
- Analítica y Química Física
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
| | - Lucy L. Coria-Oriundo
- INQUIMAE (CONICET)
- Departamento de Química Inorgánica
- Analítica y Química Física
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
| | - Esteban Piccinini
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- (UNLP, CONICET)
- 1900 La Plata
- Argentina
| | - Marcos Gramajo
- INQUIMAE (CONICET)
- Departamento de Química Inorgánica
- Analítica y Química Física
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
| | - Catalina von Bilderling
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- (UNLP, CONICET)
- 1900 La Plata
- Argentina
- Departamento de Física
| | - Lía I. Pietrasanta
- Departamento de Física
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
- C1428EHA Buenos Aires
- Argentina
| | - Omar Azzaroni
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- (UNLP, CONICET)
- 1900 La Plata
- Argentina
| | - Fernando Battaglini
- INQUIMAE (CONICET)
- Departamento de Química Inorgánica
- Analítica y Química Física
- Facultad de Ciencias Exactas y Naturales
- Universidad de Buenos Aires
| |
Collapse
|
17
|
Buck CC, Dennis PB, Gupta MK, Grant MT, Crosby MG, Slocik JM, Mirau PA, Becknell KA, Comfort KK, Naik RR. Anion‐Mediated Effects on the Size and Mechanical Properties of Enzymatically Crosslinked Suckerin Hydrogels. Macromol Biosci 2018; 19:e1800238. [DOI: 10.1002/mabi.201800238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/31/2018] [Indexed: 01/26/2023]
Affiliation(s)
| | - Patrick B. Dennis
- Materials and Manufacturing Directorate Air Force Research Laboratory 2179 12th St. WPAFB OH 45433 USA
| | - Maneesh K. Gupta
- Materials and Manufacturing Directorate Air Force Research Laboratory 2179 12th St. WPAFB OH 45433 USA
| | - Marcus T. Grant
- Joint Task Force Civil Support 1504 Madison Ave, Ft. Eustis VA 23604, USA
| | - Marquise G. Crosby
- Materials and Manufacturing Directorate Air Force Research Laboratory 2179 12th St. WPAFB OH 45433 USA
| | | | - Peter A. Mirau
- Materials and Manufacturing Directorate Air Force Research Laboratory 2179 12th St. WPAFB OH 45433 USA
| | | | - Kristen K. Comfort
- Department of Chemical and Materials Engineering University of Dayton Kettering Laboratories 524, 300 College Park Dayton OH 45469 USA
| | - Rajesh R. Naik
- 711 Human Performance Wing Air Force Research Laboratory WPAFB OH 45433 USA
| |
Collapse
|
18
|
Squid Ring Teeth-coated Mesh Improves Abdominal Wall Repair. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2018; 6:e1881. [PMID: 30254828 PMCID: PMC6143318 DOI: 10.1097/gox.0000000000001881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/08/2018] [Indexed: 01/24/2023]
Abstract
Background Hernia repair is a common surgical procedure with polypropylene (PP) mesh being the standard material for correction because of its durability. However, complications such as seroma and pain are common, and repair failures still approach 15% secondary to poor tissue integration. In an effort to enhance mesh integration, we evaluated the applicability of a squid ring teeth (SRT) protein coating for soft-tissue repair in an abdominal wall defect model. SRT is a biologically derived high-strength protein with strong mechanical properties. We assessed tissue integration, strength, and biocompatibility of a SRT-coated PP mesh in a first-time pilot animal study. Methods PP mesh was coated with SRT (SRT-PP) and tested for mechanical strength against uncoated PP mesh. Cell proliferation and adhesion studies were performed in vitro using a 3T3 cell line. Rats underwent either PP (n = 3) or SRT-PP (n = 6) bridge mesh implantation in an anterior abdominal wall defect model. Repair was assessed clinically and radiographically, with integration evaluated by histology and mechanical testing at 60 days. Results Cell proliferation was enhanced on SRT-PP mesh. This was corroborated in vivo by abdominal wall histology, dramatically diminished craniocaudal mesh contraction, improved strength testing, and higher tissue failure strain. There was no increase in seroma or visceral adhesion formation. No foreign body reactions were noted on liver histology. Conclusions SRT applied as a coating appears to augment mesh-tissue integration and improve abdominal wall stability following bridged repair. Further studies in larger animals will determine its applicability for hernia repair in patients.
Collapse
|
19
|
Raab N, Davis J, Spokoini-Stern R, Kopel M, Banin E, Bachelet I. A symbiotic-like biologically-driven regenerating fabric. Sci Rep 2017; 7:8528. [PMID: 28819314 PMCID: PMC5561142 DOI: 10.1038/s41598-017-09105-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/20/2017] [Indexed: 01/06/2023] Open
Abstract
Living organisms constantly maintain their structural and biochemical integrity by the critical means of response, healing, and regeneration. Inanimate objects, on the other hand, are axiomatically considered incapable of responding to damage and healing it, leading to the profound negative environmental impact of their continuous manufacturing and trashing. Objects with such biological properties would be a significant step towards sustainable technology. In this work we present a feasible strategy for driving regeneration in fabric by means of integration with a bacterial biofilm to obtain a symbiotic-like hybrid - the fabric provides structural framework to the biofilm and supports its growth, whereas the biofilm responds to mechanical tear by synthesizing a silk protein engineered to self-assemble upon secretion from the cells. We propose the term crossbiosis to describe this and other hybrid systems combining organism and object. Our strategy could be implemented in other systems and drive sensing of integrity and response by regeneration in other materials as well.
Collapse
Affiliation(s)
- Neta Raab
- Bionics cluster, Augmanity, Rehovot, Israel.,The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | - Joe Davis
- Department of Genetics and Wyss Institute for Biologically-inspired Engineering, Harvard Medical School, Boston, MA, USA
| | - Rachel Spokoini-Stern
- Bionics cluster, Augmanity, Rehovot, Israel.,The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | | | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan, Israel
| | | |
Collapse
|
20
|
Mehringer A, Kandhari A, Chiel H, Quinn R, Daltorio K. An Integrated Compliant Fabric Skin Softens, Lightens, and Simplifies a Mesh Robot. BIOMIMETIC AND BIOHYBRID SYSTEMS 2017. [DOI: 10.1007/978-3-319-63537-8_27] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|