1
|
Hashemi-Afzal F, Fallahi H, Bagheri F, Collins MN, Eslaminejad MB, Seitz H. Advancements in hydrogel design for articular cartilage regeneration: A comprehensive review. Bioact Mater 2025; 43:1-31. [PMID: 39318636 PMCID: PMC11418067 DOI: 10.1016/j.bioactmat.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
This review paper explores the cutting-edge advancements in hydrogel design for articular cartilage regeneration (CR). Articular cartilage (AC) defects are a common occurrence worldwide that can lead to joint breakdown at a later stage of the disease, necessitating immediate intervention to prevent progressive degeneration of cartilage. Decades of research into the biomedical applications of hydrogels have revealed their tremendous potential, particularly in soft tissue engineering, including CR. Hydrogels are highly tunable and can be designed to meet the key criteria needed for a template in CR. This paper aims to identify those criteria, including the hydrogel components, mechanical properties, biodegradability, structural design, and integration capability with the adjacent native tissue and delves into the benefits that CR can obtain through appropriate design. Stratified-structural hydrogels that emulate the native cartilage structure, as well as the impact of environmental stimuli on the regeneration outcome, have also been discussed. By examining recent advances and emerging techniques, this paper offers valuable insights into developing effective hydrogel-based therapies for AC repair.
Collapse
Affiliation(s)
- Fariba Hashemi-Afzal
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Hooman Fallahi
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104 USA
| | - Fatemeh Bagheri
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, 14115-111, Iran
| | - Maurice N. Collins
- School of Engineering, Bernal Institute and Health Research Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 16635-148, Iran
| | - Hermann Seitz
- Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
- Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
2
|
Llewellyn J, Charrier A, Cuciniello R, Helfer E, Dono R. Substrate stiffness alters layer architecture and biophysics of human induced pluripotent stem cells to modulate their differentiation potential. iScience 2024; 27:110557. [PMID: 39175774 PMCID: PMC11340605 DOI: 10.1016/j.isci.2024.110557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/10/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024] Open
Abstract
Lineage-specific differentiation of human induced pluripotent stem cells (hiPSCs) relies on complex interactions between biochemical and physical cues. Here we investigated the ability of hiPSCs to undergo lineage commitment in response to inductive signals and assessed how this competence is modulated by substrate stiffness. We showed that Activin A-induced hiPSC differentiation into mesendoderm and its derivative, definitive endoderm, is enhanced on gel-based substrates softer than glass. This correlated with changes in tight junction formation and extensive cytoskeletal remodeling. Further, live imaging and biophysical studies suggested changes in cell motility and interfacial contacts underlie hiPSC layer reshaping on soft substrates. Finally, we repurposed an ultra-soft silicone gel, which may provide a suitable substrate for culturing hiPSCs at physiological stiffnesses. Our results provide mechanistic insight into how epithelial mechanics dictate the hiPSC response to chemical signals and provide a tool for their efficient differentiation in emerging stem cell therapies.
Collapse
Affiliation(s)
- Jack Llewellyn
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, NeuroMarseille, Marseille, France
- Aix Marseille University, CNRS, CINAM, Turing Centre for Living Systems, 13009 Marseille, France
| | - Anne Charrier
- Aix Marseille University, CNRS, CINAM, Turing Centre for Living Systems, 13009 Marseille, France
| | - Rossana Cuciniello
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, NeuroMarseille, Marseille, France
| | - Emmanuèle Helfer
- Aix Marseille University, CNRS, CINAM, Turing Centre for Living Systems, 13009 Marseille, France
| | - Rosanna Dono
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, NeuroMarseille, Marseille, France
| |
Collapse
|
3
|
Ma H, Zhang T. Histone demethylase KDM3B mediates matrix stiffness-induced osteogenic differentiation of adipose-derived stem cells. Arch Biochem Biophys 2024; 757:110028. [PMID: 38768746 DOI: 10.1016/j.abb.2024.110028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Biomechanical signals in the extracellular niche are considered promising for programming the lineage specification of stem cells. Recent studies have reported that biomechanics, such as the microstructure of nanomaterials, can induce adipose-derived stem cells (ASCs) to differentiate into osteoblasts, mediating gene regulation at the epigenetic level. Therefore, in this study, transcriptome expression levels of histone demethylases in ASCs were screened after treatment with different matrix stiffnesses, and histone lysine demethylase 3B (KDM3B) was found to promote osteogenic differentiation of ASCs in response to matrix stiffness, indicating a positive modulatory effect on this biological process. ASCs exhibited widespread and polygonal shapes with a distinct bundle-like expression of vinculin parallel to the axial cytoskeleton along the cell margins on the stiff matrix rather than round shapes with a smeared and shorter expression on the soft matrix. Comparatively rigid polydimethylsiloxane material directed ASCs into an osteogenic phenotype in inductive culture media via the upregulation of osteocalcin, alkaline phosphatase, and runt-related transcription factor 2. Treatment with KDM3B-siRNA decreased the expression of osteogenic differentiation markers and impaired mitochondrial dynamics and mitochondrial membrane potential. These results illustrate the critical role of KDM3B in the biomechanics-induced osteogenic commitment of ASCs and provide new avenues for the further application of stem cells as potential therapeutics for bone regeneration.
Collapse
Affiliation(s)
- Huangshui Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, PR China.
| |
Collapse
|
4
|
Tai Y, Goodrich R, Maldonado M, Ortiz J, Martinez J, Ico G, Ko A, Shih HP, Nam J. Nanofiber-microwell cell culture system for spatially patterned differentiation of pluripotent stem cells in 3D. Mater Today Bio 2024; 26:101109. [PMID: 38883422 PMCID: PMC11180340 DOI: 10.1016/j.mtbio.2024.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/04/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024] Open
Abstract
The intricate interplay between biochemical and physical cues dictates pluripotent stem cell (PSC) differentiation to form various tissues. While biochemical modulation has been extensively studied, the role of biophysical microenvironments in early lineage commitment remains elusive. Here, we introduce a novel 3D cell culture system combining electrospun nanofibers with microfabricated polydimethylsiloxane (PDMS) patterns. This system enables the controlled formation of semispherical human induced pluripotent stem cell (hiPSC) colonies, facilitating the investigation of local mechanical stem cell niches on mechano-responsive signaling and lineage specification. Our system unveiled spatially organized RhoA activity coupled with actin-myosin cable formation, suggesting mechano-dependent hiPSC behaviors. Nodal network analysis of RNA-seq data revealed RhoA downstream regulation of YAP signaling, DNA histone modifications, and patterned germ layer specification. Notably, altering colony morphology through controlled PDMS microwell shaping effectively modulated the spatial distribution of mechano-sensitive mediators and subsequent differentiation. This study provides a cell culture platform to decipher the role of biophysical cues in early embryogenesis, offering valuable insights for material design in tissue engineering and regenerative medicine applications.
Collapse
Affiliation(s)
- Youyi Tai
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Robyn Goodrich
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Maricela Maldonado
- Department of Biomedical Engineering, California State University Long Beach, CA, 90840, USA
| | - Jessica Ortiz
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Jeniree Martinez
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Gerardo Ico
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Angel Ko
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| | - Hung Ping Shih
- Department of Translational Research and Cellular Therapeutics, City of Hope, CA, 91010, USA
| | - Jin Nam
- Department of Bioengineering, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
5
|
Song J, Zeng X, Li C, Yin H, Mao S, Ren D. Alteration in cartilage matrix stiffness as an indicator and modulator of osteoarthritis. Biosci Rep 2024; 44:BSR20231730. [PMID: 38014522 PMCID: PMC10794814 DOI: 10.1042/bsr20231730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Osteoarthritis (OA) is characterized by cartilage degeneration and destruction, leading to joint ankylosis and disability. The major challenge in diagnosing OA at early stage is not only lack of clinical symptoms but also the insufficient histological and immunohistochemical signs. Alteration in cartilage stiffness during OA progression, especially at OA initiation, has been confirmed by growing evidences. Moreover, the stiffness of cartilage extracellular matrix (ECM), pericellular matrix (PCM) and chondrocytes during OA development are dynamically changed in unique and distinct fashions, revealing possibly inconsistent conclusions when detecting cartilage matrix stiffness at different locations and scales. In addition, it will be discussed regarding the mechanisms through which OA-related cartilage degenerations exhibit stiffened or softened matrix, highlighting some critical events that generally incurred to cartilage stiffness alteration, as well as some typical molecules that participated in constituting the mechanical properties of cartilage. Finally, in vitro culturing chondrocytes in various stiffness-tunable scaffolds provided a reliable method to explore the matrix stiffness-dependent modulation of chondrocyte metabolism, which offers valuable information on optimizing implant scaffolds to maximally promote cartilage repair and regeneration during OA. Overall, this review systematically and comprehensively elucidated the current progresses in the relationship between cartilage stiffness alteration and OA progression. We hope that deeper attention and understanding in this researching field will not only develop more innovative methods in OA early detection and diagnose but also provide promising ideas in OA therapy and prognosis.
Collapse
Affiliation(s)
- Jing Song
- Qingdao University Affiliated Qingdao Women and Children’s Hospital, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| | - Xuemin Zeng
- The Affiliated Hospital of Qingdao University, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| | - Chenzhi Li
- The Affiliated Hospital of Qingdao University, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| | - Hongyan Yin
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, CN, China
| | - Sui Mao
- Institute of Hybrid Materials, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong, CN, China
| | - Dapeng Ren
- The Affiliated Hospital of Qingdao University, Department of Stomatology Medical Center, Qingdao University, Qingdao, Shandong, CN, China
| |
Collapse
|
6
|
Zhou C, Yang Y, Duan M, Chen C, Pi C, Zhang D, Liu X, Xie J. Biomimetic Fibers Based on Equidistant Micropillar Arrays Determines Chondrocyte Fate via Mechanoadaptability. Adv Healthc Mater 2023; 12:e2301685. [PMID: 37596884 DOI: 10.1002/adhm.202301685] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/02/2023] [Indexed: 08/20/2023]
Abstract
It is recognized that the changes in the physical properties of extracellular matrix (ECM) result in fine-tuned cell responses including cell morphology, proliferation and differentiation. In this study, a novel patterned equidistant micropillar substrate based on polydimethylsiloxane (PDMS) is designed to mimic the collagen fiber-like network of the cartilage matrix. By changing the component of the curing agent to an oligomeric base, micropillar substrates with the same topology but different stiffnesses are obtained and it is found that chondrocytes seeded onto the soft micropillar substrate maintain their phenotype by gathering type II collagen and aggrecan more effectively than those seeded onto the stiff micropillar substrate. Moreover, chondrocytes sense and respond to micropillar substrates with different stiffnesses by altering the ECM-cytoskeleton-focal adhesion axis. Further, it is found that the soft substrate-preserved chondrocyte phenotype is dependent on the activation of Wnt/β-catenin signaling. Finally, it is indicated that the changes in osteoid-like region formation and cartilage phenotype loss in the stiffened sclerotic area of osteoarthritis cartilage to validate the changes triggered by micropillar substrates with different stiffnesses. This study provides the cell behavior changes that are more similar to those of real chondrocytes at tissue level during the transition from a normal state to a state of osteoarthritis.
Collapse
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Yueyi Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Cheng Chen
- College of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610064, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610064, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
7
|
Liu Y, Yuan Z, Liu S, Zhong X, Wang Y, Xie R, Song W, Ren L. Bioactive Phenylboronic Acid-Functionalized Hyaluronic Acid Hydrogels Induce Chondro-Aggregates and Promote Chondrocyte Phenotype. Macromol Biosci 2023; 23:e2300153. [PMID: 37400079 DOI: 10.1002/mabi.202300153] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/15/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Hydrogels are extensively investigated as biomimetic extracellular matrix (ECM) scaffolds in tissue engineering. The physiological properties of ECM affect cellular behaviors, which is an inspiration for cell-based therapies. Photocurable hyaluronic acid (HA) hydrogel (AHAMA-PBA) modified with 3-aminophenylboronic acid, sodium periodate, and methacrylic anhydride simultaneously is constructed in this study. Chondrocytes are then cultured on the surface of the hydrogels to evaluate the effect of the physicochemical properties of the hydrogels on modulating cellular behaviors. Cell viability assays demonstrate that the hydrogel is non-toxic to chondrocytes. The existence of phenylboronic acid (PBA) moieties enhances the interaction of chondrocytes and hydrogel, promoting cell adhesion and aggregation through filopodia. RT-PCR indicates that the gene expression levels of type II collagen, Aggrecan, and Sox9 are significantly up-regulated in chondrocytes cultured on hydrogels. Moreover, the mechanical properties of the hydrogels have a significant effect on the cell phenotype, with soft gels (≈2 kPa) promoting chondrocytes to exhibit a hyaline phenotype. Overall, PBA-functionalized HA hydrogel with low stiffness exhibits the best effect on promoting the chondrocyte phenotype, which is a promising biomaterial for cartilage regeneration.
Collapse
Affiliation(s)
- Ying Liu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Zhongrun Yuan
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Sa Liu
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Xiupeng Zhong
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Yanyan Wang
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Renjian Xie
- School of Medical Information Engineering, Key Laboratory of Biomaterials and Bio-Fabrication in Tissue Engineering of Jiangxi Province, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of the Ministry of Education, Gannan Medical University, Ganzhou, 341000, China
| | - Wenjing Song
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Li Ren
- School of Materials Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
8
|
Zheng G, Xue C, Cao F, Hu M, Li M, Xie H, Yu W, Zhao D. Effect of the uronic acid composition of alginate in alginate/collagen hybrid hydrogel on chondrocyte behavior. Front Bioeng Biotechnol 2023; 11:1118975. [PMID: 36959903 PMCID: PMC10027720 DOI: 10.3389/fbioe.2023.1118975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction: Developing a culture system that can effectively maintain chondrocyte phenotype and functionalization is a promising strategy for cartilage repair. Methods: An alginate/collagen (ALG/COL) hybrid hydrogel using different guluronate/mannuronate acid ratio (G/M ratio) of alginates (a G/M ratio of 64/36 and a G/M ratio of 34/66) with collagen was developed. The effects of G/M ratios on the properties of hydrogels and their effects on the chondrocytes behaviors were evaluated. Results: The results showed that the mechanical stiffness of the hydrogel was significantly affected by the G/M ratios of alginate. Chondrocytes cultured on Mid-G/M hydrogels exhibited better viability and phenotype preservation. Moreover, RT-qPCR analysis showed that the expression of cartilage-specific genes, including SOX9, COL2, and aggrecan was increased while the expression of RAC and ROCK1 was decreased in chondrocytes cultured on Mid-G/M hydrogels. Conclusion: These findings demonstrated that Mid-G/M hydrogels provided suitable matrix conditions for cultivating chondrocytes and may be useful in cartilage tissue engineering. More importantly, the results indicated the importance of taking alginate G/M ratios into account when designing alginate-based composite materials for cartilage tissue engineering.
Collapse
Affiliation(s)
- Guoshuang Zheng
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Chundong Xue
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Fang Cao
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Minghui Hu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Maoyuan Li
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
| | - Hui Xie
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Weiting Yu
- Laboratory of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- *Correspondence: Dewei Zhao, ; Weiting Yu,
| | - Dewei Zhao
- National-Local Joint Engineering Laboratory for the Development of Orthopedic Implant Materials, Dalian, China
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- *Correspondence: Dewei Zhao, ; Weiting Yu,
| |
Collapse
|
9
|
Pendyala M, Woods PS, Brubaker DK, Blaber EA, Schmidt TA, Chan DD. Endogenous production of hyaluronan, PRG4, and cytokines is sensitive to cyclic loading in synoviocytes. PLoS One 2022; 17:e0267921. [PMID: 36576921 PMCID: PMC9797074 DOI: 10.1371/journal.pone.0267921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
Synovial fluid is composed of hyaluronan and proteoglycan-4 (PRG4 or lubricin), which work synergistically to maintain joint lubrication. In diseases like osteoarthritis, hyaluronan and PRG4 concentrations can be altered, resulting in lowered synovial fluid viscosity, and pro-inflammatory cytokine concentrations within the synovial fluid increase. Synovial fibroblasts within the synovium are responsible for contributing to synovial fluid and can be targeted to improve endogenous production of hyaluronan and PRG4 and to alter the cytokine profile. We cyclically loaded SW982 synoviocytes to 0%, 5%, 10%, or 20% strain for three hours at 1 Hz. To assess the impact of substrate stiffness, we compared the 0% strain group to cells grown on tissue culture plastic. We measured the expression of hyaluronan turnover genes, hyaluronan localization within the cell layer, hyaluronan concentration, PRG4 concentration, and the cytokine profile within the media. Our results show that the addition of cyclic loading increased HAS3 expression, but not in a magnitude-dependent response. Hyaluronidase expression was impacted by strain magnitude, which is exemplified by the decrease in hyaluronan concentration due to cyclic loading. We also show that PRG4 concentration is increased at 5% strain, while higher strain magnitude decreases overall PRG4 concentration. Finally, 10% and 20% strain show a distinct, more pro-inflammatory cytokine profile when compared to the unloaded group. Multivariate analysis showed distinct separation between certain strain groups in being able to predict strain group, hyaluronan concentration, and PRG4 concentration from gene expression or cytokine concentration data, highlighting the complexity of the system. Overall, this study shows that cyclic loading can be used tool to modulate the endogenous production of hyaluronan, PRG4, and cytokines from synovial fibroblasts.
Collapse
Affiliation(s)
- Meghana Pendyala
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
| | - Paige S Woods
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Douglas K Brubaker
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Regenstrief Center for Healthcare Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Elizabeth A Blaber
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Blue Marble Space Institute of Science at NASA Ames Research Center, Moffett Field, California, United States of America
| | - Tannin A Schmidt
- Department of Biomedical Engineering, University of Connecticut Health Center, Farmington, Connecticut, United States of America
| | - Deva D Chan
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York, United States of America
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
10
|
Al-Maslamani NA, Oldershaw R, Tew S, Curran J, D’Hooghe P, Yamamoto K, Horn HF. Chondrocyte De-Differentiation: Biophysical Cues to Nuclear Alterations. Cells 2022; 11:cells11244011. [PMID: 36552775 PMCID: PMC9777101 DOI: 10.3390/cells11244011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Autologous chondrocyte implantation (ACI) is a cell therapy to repair cartilage defects. In ACI a biopsy is taken from a non-load bearing area of the knee and expanded in-vitro. The expansion process provides the benefit of generating a large number of cells required for implantation; however, during the expansion these cells de-differentiate and lose their chondrocyte phenotype. In this review we focus on examining the de-differentiation phenotype from a mechanobiology and biophysical perspective, highlighting some of the nuclear mechanics and chromatin changes in chondrocytes seen during the expansion process and how this relates to the gene expression profile. We propose that manipulating chondrocyte nuclear architecture and chromatin organization will highlight mechanisms that will help to preserve the chondrocyte phenotype.
Collapse
Affiliation(s)
- Noor A. Al-Maslamani
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
- Correspondence:
| | - Rachel Oldershaw
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Simon Tew
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Jude Curran
- Department of Mechanical, Materials and Aerospace Engineering, School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
| | - Pieter D’Hooghe
- Department of Orthopaedic Surgery, Aspetar Orthopaedic and Sports Medicine Hospital, Doha P.O. Box 29222, Qatar
| | - Kazuhiro Yamamoto
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Henning F. Horn
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| |
Collapse
|
11
|
Ribeiro S, Pugliese E, Korntner SH, Fernandes EM, Gomes ME, Reis RL, O'Riordan A, Bayon Y, Zeugolis DI. Assessing the combined effect of surface topography and substrate rigidity in human bone marrow stem cell cultures. Eng Life Sci 2022; 22:619-633. [PMID: 36247829 PMCID: PMC9550738 DOI: 10.1002/elsc.202200029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/11/2022] Open
Abstract
The combined effect of surface topography and substrate rigidity in stem cell cultures is still under-investigated, especially when biodegradable polymers are used. Herein, we assessed human bone marrow stem cell response on aliphatic polyester substrates as a function of anisotropic grooved topography and rigidity (7 and 12 kPa). Planar tissue culture plastic (TCP, 3 GPa) and aliphatic polyester substrates were used as controls. Cell morphology analysis revealed that grooved substrates caused nuclei orientation/alignment in the direction of the grooves. After 21 days in osteogenic and chondrogenic media, the 3 GPa TCP and the grooved 12 kPa substrate induced significantly higher calcium deposition and alkaline phosphatase (ALP) activity and glycosaminoglycan (GAG) deposition, respectively, than the other groups. After 14 days in tenogenic media, the 3 GPa TCP upregulated four and downregulated four genes; the planar 7 kPa substrate upregulated seven genes and downregulated one gene; and the grooved 12 kPa substrate upregulated seven genes and downregulated one gene. After 21 days in adipogenic media, the softest (7 kPa) substrates induced significantly higher oil droplet deposition than the other substrates and the grooved substrate induced significantly higher droplet deposition than the planar. Our data pave the way for more rational design of bioinspired constructs.
Collapse
Affiliation(s)
- Sofia Ribeiro
- MedtronicSofradim ProductionTrevouxFrance
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
| | - Eugenia Pugliese
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
| | - Stefanie H. Korntner
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
| | - Emanuel M. Fernandes
- 3B's Research GroupI3Bs – Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveParkParque de Ciência e TecnologiaZona Industrial da GandraBarcoGuimarãesPortugal
- ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Manuela E. Gomes
- 3B's Research GroupI3Bs – Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveParkParque de Ciência e TecnologiaZona Industrial da GandraBarcoGuimarãesPortugal
- ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Rui L. Reis
- 3B's Research GroupI3Bs – Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAveParkParque de Ciência e TecnologiaZona Industrial da GandraBarcoGuimarãesPortugal
- ICVS/3B's – PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | | | - Yves Bayon
- MedtronicSofradim ProductionTrevouxFrance
| | - Dimitrios I. Zeugolis
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM)National University of Ireland Galway (NUI Galway)GalwayIreland
- RegenerativeModular & Developmental Engineering Laboratory (REMODEL)Charles Institute of DermatologyConway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials EngineeringUniversity College Dublin (UCD)DublinIreland
| |
Collapse
|
12
|
Yi B, Xu Q, Liu W. An overview of substrate stiffness guided cellular response and its applications in tissue regeneration. Bioact Mater 2022; 15:82-102. [PMID: 35386347 PMCID: PMC8940767 DOI: 10.1016/j.bioactmat.2021.12.005] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023] Open
Abstract
Cell-matrix interactions play a critical role in tissue repair and regeneration. With gradual uncovering of substrate mechanical characteristics that can affect cell-matrix interactions, much progress has been made to unravel substrate stiffness-mediated cellular response as well as its underlying mechanisms. Yet, as a part of cell-matrix interaction biology, this field remains in its infancy, and the detailed molecular mechanisms are still elusive regarding scaffold-modulated tissue regeneration. This review provides an overview of recent progress in the area of the substrate stiffness-mediated cellular responses, including 1) the physical determination of substrate stiffness on cell fate and tissue development; 2) the current exploited approaches to manipulate the stiffness of scaffolds; 3) the progress of recent researches to reveal the role of substrate stiffness in cellular responses in some representative tissue-engineered regeneration varying from stiff tissue to soft tissue. This article aims to provide an up-to-date overview of cell mechanobiology research in substrate stiffness mediated cellular response and tissue regeneration with insightful information to facilitate interdisciplinary knowledge transfer and enable the establishment of prognostic markers for the design of suitable biomaterials. Substrate stiffness physically determines cell fate and tissue development. Rational design of scaffolds requires the understanding of cell-matrix interactions. Substrate stiffness depends on scaffold molecular-constituent-structure interaction. Substrate stiffness-mediated cellular responses vary in different tissues.
Collapse
|
13
|
Su T, Xu M, Lu F, Chang Q. Adipogenesis or osteogenesis: destiny decision made by mechanical properties of biomaterials. RSC Adv 2022; 12:24501-24510. [PMID: 36128379 PMCID: PMC9425444 DOI: 10.1039/d2ra02841g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022] Open
Abstract
Regenerative medicine affords an effective approach for restoring defect-associated diseases, and biomaterials play a pivotal role as cell niches to support the cell behavior and decide the destiny of cell differentiation. Except for chemical inducers, mechanical properties such as stiffness, pore size and topography of biomaterials play a crucial role in the regulation of cell behaviors and functions. Stiffness may determine the adipogenesis or osteogenesis of mesenchymal stem cells (MSCs) via the translocation of yes-associated protein (YAP) and the transcriptional coactivator with a PDZ-binding motif (TAZ). External forces transmit through cytoskeleton reorientation to assist nuclear deformation and molecule transport, meanwhile, signal pathways including the Hippo, FAK/RhoA/ROCK, and Wnt/β-catenin have been evidenced to participate in the mechanotransduction. Different pore sizes not only tailor the scaffold stiffness but also conform to the requirements of cell migration and vessels in-growth. Topography guides cell geometry along with mobility and determines the cell fate ascribed to micro/nano-scale contact. Herein, we highlight the recent progress in exploring the regulation mechanism by the physical properties of biomaterials, which might lead to more innovative regenerative strategies for adipose or bone tissue repair.
Collapse
Affiliation(s)
- Ting Su
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 510515 China
| | - Mimi Xu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 510515 China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 510515 China
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University 510515 China
| |
Collapse
|
14
|
Nabizadeh Z, Nasrollahzadeh M, Daemi H, Baghaban Eslaminejad M, Shabani AA, Dadashpour M, Mirmohammadkhani M, Nasrabadi D. Micro- and nanotechnology in biomedical engineering for cartilage tissue regeneration in osteoarthritis. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2022; 13:363-389. [PMID: 35529803 PMCID: PMC9039523 DOI: 10.3762/bjnano.13.31] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/24/2022] [Indexed: 05/12/2023]
Abstract
Osteoarthritis, which typically arises from aging, traumatic injury, or obesity, is the most common form of arthritis, which usually leads to malfunction of the joints and requires medical interventions due to the poor self-healing capacity of articular cartilage. However, currently used medical treatment modalities have reported, at least in part, disappointing and frustrating results for patients with osteoarthritis. Recent progress in the design and fabrication of tissue-engineered microscale/nanoscale platforms, which arises from the convergence of stem cell research and nanotechnology methods, has shown promising results in the administration of new and efficient options for treating osteochondral lesions. This paper presents an overview of the recent advances in osteochondral tissue engineering resulting from the application of micro- and nanotechnology approaches in the structure of biomaterials, including biological and microscale/nanoscale topographical cues, microspheres, nanoparticles, nanofibers, and nanotubes.
Collapse
Affiliation(s)
- Zahra Nabizadeh
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Hamed Daemi
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cell and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ali Akbar Shabani
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Mehdi Dadashpour
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Majid Mirmohammadkhani
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Davood Nasrabadi
- Department of Medical Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
15
|
Microenvironmental stiffness mediates cytoskeleton re-organization in chondrocytes through laminin-FAK mechanotransduction. Int J Oral Sci 2022; 14:15. [PMID: 35277477 PMCID: PMC8917190 DOI: 10.1038/s41368-022-00165-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022] Open
Abstract
AbstractMicroenvironmental biophysical factors play a fundamental role in controlling cell behaviors including cell morphology, proliferation, adhesion and differentiation, and even determining the cell fate. Cells are able to actively sense the surrounding mechanical microenvironment and change their cellular morphology to adapt to it. Although cell morphological changes have been considered to be the first and most important step in the interaction between cells and their mechanical microenvironment, their regulatory network is not completely clear. In the current study, we generated silicon-based elastomer polydimethylsiloxane (PDMS) substrates with stiff (15:1, PDMS elastomer vs. curing agent) and soft (45:1) stiffnesses, which showed the Young’s moduli of ~450 kPa and 46 kPa, respectively, and elucidated a new path in cytoskeleton re-organization in chondrocytes in response to changed substrate stiffnesses by characterizing the axis shift from the secreted extracellular protein laminin β1, focal adhesion complex protein FAK to microfilament bundling. We first showed the cellular cytoskeleton changes in chondrocytes by characterizing the cell spreading area and cellular synapses. We then found the changes of secreted extracellular linkage protein, laminin β1, and focal adhesion complex protein, FAK, in chondrocytes in response to different substrate stiffnesses. These two proteins were shown to be directly interacted by Co-IP and colocalization. We next showed that impact of FAK on the cytoskeleton organization by showing the changes of microfilament bundles and found the potential intermediate regulators. Taking together, this modulation axis of laminin β1-FAK-microfilament could enlarge our understanding about the interdependence among mechanosensing, mechanotransduction, and cytoskeleton re-organization.
Collapse
|
16
|
Zhang J, Zhang M, Lin R, Du Y, Wang L, Yao Q, Zannettino A, Zhang H. Chondrogenic preconditioning of mesenchymal stem/stromal cells within a magnetic scaffold for osteochondral repair. Biofabrication 2022; 14. [PMID: 35226893 DOI: 10.1088/1758-5090/ac5935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 12/11/2022]
Abstract
Stem cell therapy using mesenchymal stromal/stem cells (MSCs) represents a novel approach to treating severe diseases, including osteoarthritis (OA). However, the therapeutic benefit of MSCs is highly dependent on their differentiation state, which can be regulated by many factors. Herein, three-dimensional (3D) magnetic scaffolds were successfully fabricated by incorporating magnetic nanoparticles (MNPs) into electrospun gelatin nanofibers. When positioned near a rotating magnet (f= 0.5 Hz), the magnetic scaffolds with the embedded MSCs were driven upward/downward in the culture container to induce mechanical stimulation to MSCs due to spatial confinement and fluid flow. The extracellular matrix-mimicking scaffold and the alternating magnetic field significantly enhanced chondrogenesis instead of osteogenesis. Furthermore, the fibre topography could be tuned with different compositions of the coating layer on MNPs, and the topography had a significant impact on MSC differentiation. Selective up-regulation of chondrogenesis-related genes (COL2A1andACAN) was found for the magnetic scaffolds with citric acid-coated MNPs (CAG). In contrast, osteogenesis-related genes (RUNX2andSPARC) were selectively and significantly up-regulated for the magnetic scaffolds with polyvinylpyrrolidone-coated MNPs (PVPG). Prior to implantation in vivo, chondrogenic preconditioning of MSCs within the CAG scaffolds under a dynamic magnetic field resulted in superior osteochondral repair. Hence, the magnetic scaffolds together with an in-house rotating magnet device could be a novel platform to initiate multiple stimuli on stem cell differentiation for effective repair of osteochondral defects.
Collapse
Affiliation(s)
- Jiabin Zhang
- Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510275, CHINA
| | - Ming Zhang
- Department of Orthopedics, Zhongda Hospital, School of Medicine, Southeast University, Department of Orthopedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing , Jiangsu Province, China, Nangjing, Jiangsu, 210009, CHINA
| | - Rongcai Lin
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing, 210006, CHINA
| | - Yuguang Du
- Institute of Process Engineering Chinese Academy of Sciences, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China, Beijing, Beijing, 100190, CHINA
| | - Liming Wang
- Department of Orthopaedic Surgery Nanjing First Hospital, Nanjing Medical University, Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing, Jiangsu Province, 210006, CHINA
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing, 210006, CHINA
| | - Andrew Zannettino
- Adelaide Medical School Research, The University of Adelaide, Adelaide, Australia, Adelaide, South Australia, 5005, AUSTRALIA
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, CA 91711, USA, 535 Watson Drive, Claremont, CA, USA, Claremont, California, 91711, UNITED STATES
| |
Collapse
|
17
|
Hou M, Bai B, Tian B, Ci Z, Liu Y, Zhou G, Cao Y. Cartilage Regeneration Characteristics of Human and Goat Auricular Chondrocytes. Front Bioeng Biotechnol 2022; 9:766363. [PMID: 34993186 PMCID: PMC8724709 DOI: 10.3389/fbioe.2021.766363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/01/2021] [Indexed: 11/13/2022] Open
Abstract
Although cartilage regeneration technology has achieved clinical breakthroughs, whether auricular chondrocytes (AUCs) represent optimal seed cells to achieve stable cartilage regeneration is not clear. In this study, we systematically explore biological behaviors of human- and goat-derived AUCs during in vitro expansion as well as cartilage regeneration in vitro and in vivo. To eliminate material interference, a cell sheet model was used to evaluate the feasibility of dedifferentiated AUCs to re-differentiate and regenerate cartilage in vitro and in vivo. We found that the dedifferentiated AUCs could re-differentiate and regenerate cartilage sheets under the chondrogenic medium system, and the generated chondrocyte sheets gradually matured with increased in vitro culture time (2, 4, and 8 weeks). After the implantation of cartilage sheets with different in vitro culture times in nude mice, optimal neocartilage was formed in the group with 2 weeks in vitro cultivation. After in vivo implantation, ossification only occurred in the group with goat-regenerated cartilage sheet of 8 weeks in vitro cultivation. These results, which were confirmed in human and goat AUCs, suggest that AUCs are ideal seed cells for the clinical translation of cartilage regeneration under the appropriate culture system and culture condition.
Collapse
Affiliation(s)
- Mengjie Hou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| | - Baoshuai Bai
- National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
| | - Baoxing Tian
- Department of Breast Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng Ci
- National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
| | - Yu Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
| | - Guangdong Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China.,Research Institute of Plastic Surgery, Wei Fang Medical College, Weifang, China
| | - Yilin Cao
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Tissue Engineering Center of China, Shanghai, China
| |
Collapse
|
18
|
Wang Q, Xie J, Zhou C, Lai W. Substrate stiffness regulates the differentiation profile and functions of osteoclasts via cytoskeletal arrangement. Cell Prolif 2021; 55:e13172. [PMID: 34953003 PMCID: PMC8780927 DOI: 10.1111/cpr.13172] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 02/05/2023] Open
Abstract
Objectives Aging and common diseases alter the stiffness of bone tissue, causing changes to the microenvironment of the mechanosensitive bone cells. Osteoclasts, the sole bone‐resorbing cells, play a vital role in bone remodeling. This study was performed to elucidate the mechanism through which osteoclasts sense and react to substrate stiffness signals. Materials and methods We fabricated polydimethylsiloxane (PDMS) substrates of different stiffness degrees for osteoclast formation progressed from osteoclast precursors including bone marrow‐derived macrophages (BMMs) and RAW264.7 monocytes. Osteoclast differentiation in response to the stiffness signals was determined by examining the cell morphology, fusion/fission activities, transcriptional profile, and resorption function. Cytoskeletal changes and mechanosensitive adhesion molecules were also assessed. Results Stiffer PDMS substrates accelerated osteoclast differentiation, firstly observed by variations in their morphology and fusion/fission activities. Upregulation of canonical osteoclast markers (Nfatc1, Acp5, Ctsk, Camk2a, Mmp9, Rela, and Traf6) and the fusion master regulator DC‐stamp were detected on stiffer substrates, with similar increases in their bone resorption functions. Additionally, the activation of cytoskeleton‐associated adhesion molecules, including fibronectin and integrin αvβ3, followed by biochemical signaling cascades of paxillin, FAK, PKC, and RhoA, was detected on the stiffer substrates. Conclusions This is the first study to provide evidence proving that extracellular substrate stiffness is a strong determinant of osteoclast differentiation and functions. Higher stiffness upregulated the differentiation profile and activity of osteoclasts, revealing the mechanical regulation of osteoclast activity in bone homeostasis and diseases.
Collapse
Affiliation(s)
- Qingxuan Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenli Lai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Wang Q, Duan M, Liao J, Xie J, Zhou C. Are Osteoclasts Mechanosensitive Cells? J Biomed Nanotechnol 2021; 17:1917-1938. [PMID: 34706793 DOI: 10.1166/jbn.2021.3171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Skeleton metabolism is a process in which osteoclasts constantly remove old bone and osteoblasts form new osteoid and induce mineralization; disruption of this balance may cause diseases. Osteoclasts play a key role in bone metabolism, as osteoclastogenesis marks the beginning of each bone remodeling cycle. As the only cell capable of bone resorption, osteoclasts are derived from the monocyte/macrophage hematopoietic precursors that terminally adhere to mineralized extracellular matrix, and they subsequently break down the extracellular compartment. Bone is generally considered the load-burdening tissue, bone homeostasis is critically affected by mechanical conductions, and the bone cells are mechanosensitive. The functions of various bone cells under mechanical forces such as chondrocytes and osteoblasts have been reported; however, the unique bone-resorbing osteoclasts are less studied. The oversuppression of osteoclasts in mechanical studies may be because of its complicated differentiation progress and flexible structure, which increases difficulty in targeting mechanical structures. This paper will focus on recent findings regarding osteoclasts and attempt to uncover proposed candidate mechanosensing structures in osteoclasts including podosome-associated complexes, gap junctions and transient receptor potential family (ion channels). We will additionally describe possible mechanotransduction signaling pathways including GTPase ras homologue family member A (RhoA), Yes-associated protein/transcriptional co-activator with PDZ-binding motif (TAZ), Ca2+ signaling and non-canonical Wnt signaling. According to numerous studies, evaluating the possible influence of various physical environments on osteoclastogenesis is conducive to the study of bone homeostasis.
Collapse
Affiliation(s)
- Qingxuan Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Jingfeng Liao
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
20
|
Graceffa V. Physical and mechanical cues affecting biomaterial-mediated plasmid DNA delivery: insights into non-viral delivery systems. J Genet Eng Biotechnol 2021; 19:90. [PMID: 34142237 PMCID: PMC8211807 DOI: 10.1186/s43141-021-00194-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Whilst traditional strategies to increase transfection efficiency of non-viral systems aimed at modifying the vector or the polyplexes/lipoplexes, biomaterial-mediated gene delivery has recently sparked increased interest. This review aims at discussing biomaterial properties and unravelling underlying mechanisms of action, for biomaterial-mediated gene delivery. DNA internalisation and cytoplasmic transport are initially discussed. DNA immobilisation, encapsulation and surface-mediated gene delivery (SMD), the role of extracellular matrix (ECM) and topographical cues, biomaterial stiffness and mechanical stimulation are finally outlined. MAIN TEXT Endocytic pathways and mechanisms to escape the lysosomal network are highly variable. They depend on cell and DNA complex types but can be diverted using appropriate biomaterials. 3D scaffolds are generally fabricated via DNA immobilisation or encapsulation. Degradation rate and interaction with the vector affect temporal patterns of DNA release and transgene expression. In SMD, DNA is instead coated on 2D surfaces. SMD allows the incorporation of topographical cues, which, by inducing cytoskeletal re-arrangements, modulate DNA endocytosis. Incorporation of ECM mimetics allows cell type-specific transfection, whereas in spite of discordances in terms of optimal loading regimens, it is recognised that mechanical loading facilitates gene transfection. Finally, stiffer 2D substrates enhance DNA internalisation, whereas in 3D scaffolds, the role of stiffness is still dubious. CONCLUSION Although it is recognised that biomaterials allow the creation of tailored non-viral gene delivery systems, there still are many outstanding questions. A better characterisation of endocytic pathways would allow the diversion of cell adhesion processes and cytoskeletal dynamics, in order to increase cellular transfection. Further research on optimal biomaterial mechanical properties, cell ligand density and loading regimens is limited by the fact that such parameters influence a plethora of other different processes (e.g. cellular adhesion, spreading, migration, infiltration, and proliferation, DNA diffusion and release) which may in turn modulate gene delivery. Only a better understanding of these processes may allow the creation of novel robust engineered systems, potentially opening up a whole new area of biomaterial-guided gene delivery for non-viral systems.
Collapse
Affiliation(s)
- Valeria Graceffa
- Cellular Health and Toxicology Research Group (CHAT), Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland.
- Department of Life Sciences, Institute of Technology Sligo, Ash Ln, Bellanode, Sligo, Ireland.
| |
Collapse
|
21
|
Zhang W, Zhang S, Zhang W, Yue Y, Qian W, Wang Z. Matrix stiffness and its influence on pancreatic diseases. Biochim Biophys Acta Rev Cancer 2021; 1876:188583. [PMID: 34139274 DOI: 10.1016/j.bbcan.2021.188583] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 01/12/2023]
Abstract
The matrix stiffness of the extracellular matrix(ECM), which is the slow elastic force on cells, has gradually become investigated. And a higher stiffness could induce changes in cell biological behaviors and activation of internal signaling pathways. Imbalanced stiffness of ECM is associated with a number of diseases, including pancreatic disease. In this review, we discuss the components of the ECM and the increased stiffness caused by unbalanced ECM changes. Next, we describe how matrix stiffness transmits mechanical signals and what signaling pathways are altered within the cell in detail. Finally, we discuss the effect of ECM on the behavior of pancreatic diseases from the perspective of matrix stiffness.
Collapse
Affiliation(s)
- Weifan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi Province, China
| | - Simei Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi Province, China
| | - Wunai Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi Province, China
| | - Yangyang Yue
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi Province, China
| | - Weikun Qian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi Province, China
| | - Zheng Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 710061 Xi'an, Shaanxi Province, China.
| |
Collapse
|
22
|
Abbass MMS, El-Rashidy AA, Sadek KM, Moshy SE, Radwan IA, Rady D, Dörfer CE, Fawzy El-Sayed KM. Hydrogels and Dentin-Pulp Complex Regeneration: From the Benchtop to Clinical Translation. Polymers (Basel) 2020; 12:E2935. [PMID: 33316886 PMCID: PMC7763835 DOI: 10.3390/polym12122935] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Dentin-pulp complex is a term which refers to the dental pulp (DP) surrounded by dentin along its peripheries. Dentin and dental pulp are highly specialized tissues, which can be affected by various insults, primarily by dental caries. Regeneration of the dentin-pulp complex is of paramount importance to regain tooth vitality. The regenerative endodontic procedure (REP) is a relatively current approach, which aims to regenerate the dentin-pulp complex through stimulating the differentiation of resident or transplanted stem/progenitor cells. Hydrogel-based scaffolds are a unique category of three dimensional polymeric networks with high water content. They are hydrophilic, biocompatible, with tunable degradation patterns and mechanical properties, in addition to the ability to be loaded with various bioactive molecules. Furthermore, hydrogels have a considerable degree of flexibility and elasticity, mimicking the cell extracellular matrix (ECM), particularly that of the DP. The current review presents how for dentin-pulp complex regeneration, the application of injectable hydrogels combined with stem/progenitor cells could represent a promising approach. According to the source of the polymeric chain forming the hydrogel, they can be classified into natural, synthetic or hybrid hydrogels, combining natural and synthetic ones. Natural polymers are bioactive, highly biocompatible, and biodegradable by naturally occurring enzymes or via hydrolysis. On the other hand, synthetic polymers offer tunable mechanical properties, thermostability and durability as compared to natural hydrogels. Hybrid hydrogels combine the benefits of synthetic and natural polymers. Hydrogels can be biofunctionalized with cell-binding sequences as arginine-glycine-aspartic acid (RGD), can be used for local delivery of bioactive molecules and cellularized with stem cells for dentin-pulp regeneration. Formulating a hydrogel scaffold material fulfilling the required criteria in regenerative endodontics is still an area of active research, which shows promising potential for replacing conventional endodontic treatments in the near future.
Collapse
Affiliation(s)
- Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Aiah A. El-Rashidy
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Khadiga M. Sadek
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| | - Sara El Moshy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Israa Ahmed Radwan
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Dina Rady
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (M.M.S.A.); (S.E.M.); (I.A.R.); (D.R.)
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
| | - Karim M. Fawzy El-Sayed
- Stem Cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt; (A.A.E.-R.); (K.M.S.)
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, 24105 Kiel, Germany;
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
23
|
Lin CC, Chiu JY. A novel γ-PGA composite gellan membrane containing glycerol for guided bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111404. [PMID: 33255007 DOI: 10.1016/j.msec.2020.111404] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 11/19/2022]
Abstract
An ideal barrier membrane design should incorporate the function of a delivery vehicle for transporting drugs and osteoinductive factors to where the body is under inflammation. In the present study, a functional hydrogel-based barrier membrane is fabricated using calcium-form poly-γ-glutamic acid (γ-PGA) and glycerol blending into gellan gum. The concentration of the calcium-form poly-γ-glutamic acid (γ-PGA) and the glycerol ratio are studied for improving practicability in easy-handling and expanding the coverage area. Gellan gum-based membranes with uniformly distributed calcium aggregates are not only successfully manufactured but also providing excellent characteristics for protein adsorption, bioactivity, and bone cell maturation. Our composite gellan gum-based membranes were tested including to their morphology, mechanical properties, swelling behavior, protein adsorption, drug diffusion, and lysozyme degradation. The biocompatibility, proliferation, and osteoblastic response of membranes were examined by osteoblast-like (MG63) cells. Our results indicate that adequate physical cross-linking with γ-PGA improves the original mechanical properties and delays degradation. Growing glycerol ratio not only enhances the elongation at break and diffusion rate, but it also changes the tensile strength and the remaining weight. In vitro biocompatibility tests, an adequate ratio of γ-PGA modification significantly enhances the proliferation, the secretion of alkaline phosphatase (ALP) and mineralization. However, worth noting is the glycerol-modified membrane cannot bear a close resemblance with the non-glycerol group in the high level of osteoblastic response. In general, these tunable materials with biocompatibility, biodegradability, and positive osteoblastic responses were poised to be possible candidates for bone defect repair.
Collapse
Affiliation(s)
- Chi-Chang Lin
- Department of Chemical and Material Engineering, Tunghai University, Taichung 40704, Taiwan.
| | - Jiun-Yan Chiu
- Department of Chemical and Material Engineering, Tunghai University, Taichung 40704, Taiwan
| |
Collapse
|
24
|
Wang J, Huang C, Wang Y, Chen Y, Ding Z, Yang C, Chen L. Exploration of the single-walled carbon nanotubes’ influence for cartilage repair. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Zhang Q, Sun Y, He C, Shi F, Cheng M. Fabrication of 3D Ordered Structures with Multiple Materials via Macroscopic Supramolecular Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002025. [PMID: 33304756 PMCID: PMC7709987 DOI: 10.1002/advs.202002025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/30/2020] [Indexed: 05/05/2023]
Abstract
Integration of diverse materials into 3D ordered structures is urgently required for advanced manufacture owing to increase in demand for high-performance products. Most additive manufacturing techniques mainly focus on simply combining different equipment, while interfacial binding of distinctive materials remains a fundamental problem. Increasing studies on macroscopic supramolecular assembly (MSA) have revealed efficient interfacial interactions based on multivalency of supramolecular interactions facilitated by a "flexible spacing coating." To demonstrate facile fabrication of 3D heterogeneous ordered structures, the combination of MSA and magnetic field-assisted alignment has been developed as a new methodology for in situ integration of a wide range of materials, including elastomer, resin, plastics, metal, and quartz glass, with modulus ranging from tens of MPa to over 70 GPa. Assembly of single material, coassembly of two to four distinctive materials, and 3D alignment of "bridge-like" and "cross-stacked" heterogeneous structures are demonstrated. This methodology has provided a new solution to mild and efficient assembly of multiple materials at the macroscopic scale, which holds promise for advanced fabrication in fields of tissue engineering, electronic devices, and actuators.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Yingzhi Sun
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Chengzhi He
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Feng Shi
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| | - Mengjiao Cheng
- State Key Laboratory of Chemical Resource Engineering & Beijing Laboratory of Biomedical Materials & Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
26
|
Zhang X, Liu Y, Luo C, Zhai C, Li Z, Zhang Y, Yuan T, Dong S, Zhang J, Fan W. Crosslinker-free silk/decellularized extracellular matrix porous bioink for 3D bioprinting-based cartilage tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 118:111388. [PMID: 33254994 DOI: 10.1016/j.msec.2020.111388] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/14/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023]
Abstract
As cartilage tissue lacks the innate ability to mount an adequate regeneration response, damage to it is detrimental to the quality of life of the subject. The emergence of three-dimensional bioprinting (3DBP) technology presents an opportunity to repair articular cartilage defects. However, widespread adoption of this technique has been impeded by difficulty in preparing a suitable bioink and the toxicity inherent in the chemical crosslinking process of most bioinks. Our objective was to develop a crosslinker-free bioink with the same biological activity as the original cartilage extracellular matrix (ECM) and good mechanical strength. We prepared bioinks containing different concentrations of silk fibroin and decellularized extracellular matrix (SF-dECM bioinks) mixed with bone marrow mesenchymal stem cells (BMSCs) for 3D bioprinting. SF and dECM interconnect with each other through physical crosslinking and entanglement. A porous structure was formed by removing the polyethylene glycol from the SF-dECM bioink. The results showed the SF-dECM construct had a suitable mechanical strength and degradation rate, and the expression of chondrogenesis-specific genes was found to be higher than that of the SF control construct group. Finally, we confirmed that a SF-dECM construct that was designed to release TGF-β3 had the ability to promote chondrogenic differentiation of BMSCs and provided a good cartilage repair environment, suggesting it is an ideal scaffold for cartilage tissue engineering.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yang Liu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chunyang Luo
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chenjun Zhai
- Department of Orthopedics, Yixing People's Hospital, Yixing, Jiangsu 214200, China
| | - Zuxi Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yi Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tao Yuan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shilei Dong
- Key Lab of Biofabrication of AnHui Higher Education Institution Centre for Advanced Biofabrication, Hefei, Anhui 230601, China
| | - Jiyong Zhang
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Weimin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
27
|
Cai L, Liu W, Cui Y, Liu Y, Du W, Zheng L, Pi C, Zhang D, Xie J, Zhou X. Biomaterial Stiffness Guides Cross-talk between Chondrocytes: Implications for a Novel Cellular Response in Cartilage Tissue Engineering. ACS Biomater Sci Eng 2020; 6:4476-4489. [PMID: 33455172 DOI: 10.1021/acsbiomaterials.0c00367] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The exquisite cartilage architecture maintains an orderly dynamic equilibrium as a result of the interplay between chondrocyte functions and the unique extracellular matrix (ECM) microenvironment. Numerous studies have demonstrated that extracellular cues, including topological, mechanical, and biochemical properties of the underlying substrates, dictate the chondrocyte behaviors. Consequently, developing advanced biomaterials with the desired characteristics which could achieve the biointerface between cells and the surrounded matrix close to the physiological conditions becomes a great hotspot in bioengineering. However, how the substrate stiffness influences the intercellular communication among chondrocytes is still poorly reported. We used polydimethylsiloxane with varied stiffnesses as a cell culture substrate to elucidate a novel cell-to-cell communication in a collective of chondrocytes. First, morphological images collected using scanning electron microscopy revealed that the tunable substrate stiffnesses directed the changes in intercellular links among chondrocytes. Next, fibronectin, which played a vital role in the connection of ECM components or linkage of ECM to chondrocytes, was shown to be gathered along cell-cell contact areas and was changed with the tunable substrate stiffnesses. Furthermore, transmembrane junctional proteins including connexin 43 (Cx43) and pannexin 1 (Panx1), which are responsible for gap junction formation in cell-to-cell communication, were mediated by the tunable substrate stiffnesses. Finally, through a scrape loading/dye transfer assay, we revealed cell-to-cell communication changes in a living chondrocyte population in response to the tunable substrate stiffnesses via cell-to-cell fluorescent molecule transport. Taken together, this novel cell-to-cell communication regulated by biomaterial stiffness could help us to increase the understanding of cell behaviors under biomechanical control and may ultimately lead to refining cell-based cartilage tissue engineering.
Collapse
Affiliation(s)
- Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenjing Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yujia Cui
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liwei Zheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
28
|
Selig M, Lauer JC, Hart ML, Rolauffs B. Mechanotransduction and Stiffness-Sensing: Mechanisms and Opportunities to Control Multiple Molecular Aspects of Cell Phenotype as a Design Cornerstone of Cell-Instructive Biomaterials for Articular Cartilage Repair. Int J Mol Sci 2020; 21:E5399. [PMID: 32751354 PMCID: PMC7432012 DOI: 10.3390/ijms21155399] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/23/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Since material stiffness controls many cell functions, we reviewed the currently available knowledge on stiffness sensing and elucidated what is known in the context of clinical and experimental articular cartilage (AC) repair. Remarkably, no stiffness information on the various biomaterials for clinical AC repair was accessible. Using mRNA expression profiles and morphology as surrogate markers of stiffness-related effects, we deduced that the various clinically available biomaterials control chondrocyte (CH) phenotype well, but not to equal extents, and only in non-degenerative settings. Ample evidence demonstrates that multiple molecular aspects of CH and mesenchymal stromal cell (MSC) phenotype are susceptible to material stiffness, because proliferation, migration, lineage determination, shape, cytoskeletal properties, expression profiles, cell surface receptor composition, integrin subunit expression, and nuclear shape and composition of CHs and/or MSCs are stiffness-regulated. Moreover, material stiffness modulates MSC immuno-modulatory and angiogenic properties, transforming growth factor beta 1 (TGF-β1)-induced lineage determination, and CH re-differentiation/de-differentiation, collagen type II fragment production, and TGF-β1- and interleukin 1 beta (IL-1β)-induced changes in cell stiffness and traction force. We then integrated the available molecular signaling data into a stiffness-regulated CH phenotype model. Overall, we recommend using material stiffness for controlling cell phenotype, as this would be a promising design cornerstone for novel future-oriented, cell-instructive biomaterials for clinical high-quality AC repair tissue.
Collapse
Affiliation(s)
- Mischa Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Jasmin C. Lauer
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
- Faculty of Biology, University of Freiburg, Schaenzlestrasse 1, D-79104 Freiburg, Germany
| | - Melanie L. Hart
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center—Albert-Ludwigs-University of Freiburg, 79085 Freiburg im Breisgau, Germany; (M.S.); (J.C.L.); (M.L.H.)
| |
Collapse
|
29
|
Zhang D, Li X, Pi C, Cai L, Liu Y, Du W, Yang W, Xie J. Osteoporosis-decreased extracellular matrix stiffness impairs connexin 43-mediated gap junction intercellular communication in osteocytes. Acta Biochim Biophys Sin (Shanghai) 2020; 52:517-526. [PMID: 32286624 DOI: 10.1093/abbs/gmaa025] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/20/2019] [Accepted: 02/24/2020] [Indexed: 02/05/2023] Open
Abstract
Osteocytes are the main sensitive and responsive cells for mechanical stimuli in bone. The connexin family enables them to communicate with each other via forming functional gap junctions. However, how osteoporosis-impaired extracellular mechanical property modulates gap junction intercellular communication in osteocytes remains elusive. In this study, we established an ovariectomy (OVX)-induced osteoporosis mouse model in vivo and a polydimethylsiloxane (PDMS)-based cell culture substrate model in vitro to explore the influence of extracellular matrix (ECM) stiffness on cell-to-cell communication in osteocytes. Firstly, we established an OVX-induced osteoporosis mouse model by characterizing the changes in radiography, morphology and histochemistry of femurs. Our results showed that osteoporosis decreased the bone matrix stiffness together with the changes including the loss of osteocytes and the decrease of protein markers. Meanwhile, the dendritic process interconnection and channel-forming protein, Cx43, were reduced in osteoporosis mice. Next we mimicked ECM stiffness changes in vitro by using PDMS substrates at ratios 1:5 for normal stiffness and 1:45 for osteoporosis stiffness. Our results showed that the decreased ECM stiffness reduced the number of dendritic processes in a single cell and gap junctions between adjacent osteocytes. We further detected the decreased expression of Cx43, in the substrate with decreased stiffness. Finally, we found that gap junction-based intercellular communication was reduced in living osteocytes in the substrate with decreased stiffness. This study demonstrates the correlation between ECM mechanical property and cell-to-cell communication in osteocytes and might pave the way for further exploration of osteoporosis in terms of biomechanics.
Collapse
Affiliation(s)
- Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Xin Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Wei Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Wenbin Yang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
- National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| |
Collapse
|
30
|
Zhou C, Zhang D, Du W, Zou J, Li X, Xie J. Substrate mechanics dictate cell-cell communication by gap junctions in stem cells from human apical papilla. Acta Biomater 2020; 107:178-193. [PMID: 32105834 DOI: 10.1016/j.actbio.2020.02.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
Abstract
It is recognized that the interaction between cells and their physical microenvironment plays a fundamental role in controlling cell behaviors and even in determining cell fate. Any change in the physical properties of the extracellular matrix (ECM), such as its topography, geometry, and stiffness, controls this interaction. In the current study, we revealed a potent interconnection between the cell-matrix interaction and cell-cell communication that is mediated by interface stiffness, and elucidated this process in stem cells from human apical papilla (hSCAPs) in terms of mechanosensing, mechanotransduction, and gap junction-mediated cell-cell communication. We first fabricated polydimethylsiloxane (PDMS) substrates with the same topography and geometry but different stiffnesses and found that the cell morphology of the hSCAPs actively changed to adapt to the difference in substrate stiffness. We also found that the hSCAPs secreted more fibronectin in response to the stiff substrate. The focal adhesion plaques were changed by altering the expression of focal adhesion kinase (FAK) and paxillin. The FAK and paxillin bound to connexin 43 and, as a result, altered the gap junction formation. By performing a Lucifer yellow transfer assay, we further confirmed that the interface stiffness mediated cell-cell communication in living hSCAPs through changes in gap junction tunnels. The intrinsic mechanism that mediated cell-cell communication by extracellular stiffness show the great influence of the interaction between cells and their external physical microenvironment and stress the importance of microenvironmental mechanics in organ development and diseases. STATEMENT OF SIGNIFICANCE: Biochemical factors could direct cell behaviors such as cell proliferation, migration, differentiation, cell cycling and apoptosis. Likewise, biophysical factors could also determine cell behaviors in all biological processes. In the current study, we revealed a potent interconnection between the cell-matrix interaction and cell-cell communication by elucidating the whole process from cell mechanosensing, mechanotransduction to gap junction-mediated cell-cell communication. This process occurs in a collective of cells but not in that of a single cell. Biophysical properties of ECM induced cell-to-cell communication indicates the importance of microenvironmental mechanics in organ development and diseases. These findings should be of great interest in all biological fields, especially in biomaterials - cell/molecular biology involved in the interactions between the cell and its matrix.
Collapse
|
31
|
Sumi T, Yamamoto H, Hirano-Iwata A. Suppression of hypersynchronous network activity in cultured cortical neurons using an ultrasoft silicone scaffold. SOFT MATTER 2020; 16:3195-3202. [PMID: 32096811 DOI: 10.1039/c9sm02432h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The spontaneous activity pattern of cortical neurons in dissociated culture is characterized by burst firing that is highly synchronized among a wide population of cells. The degree of synchrony, however, is excessively higher than that in cortical tissues. Here, we employed polydimethylsiloxane (PDMS) elastomers to establish a novel system for culturing neurons on a scaffold with an elastic modulus resembling brain tissue, and investigated the effect of the scaffold's elasticity on network activity patterns in cultured rat cortical neurons. Using whole-cell patch clamp to assess the scaffold effect on the development of synaptic connections, we found that the amplitude of excitatory postsynaptic current, as well as the frequency of spontaneous transmissions, was reduced in neuronal networks grown on an ultrasoft PDMS with an elastic modulus of 0.5 kPa. Furthermore, the ultrasoft scaffold was found to suppress neural correlations in the spontaneous activity of the cultured neuronal network. The dose of GsMTx-4, an antagonist of stretch-activated cation channels (SACs), required to reduce the generation of the events below 1.0 event per min on PDMS substrates was lower than that for neurons on a glass substrate. This suggests that the difference in the baseline level of SAC activation is a molecular mechanism underlying the alteration in neuronal network activity depending on scaffold stiffness. Our results demonstrate the potential application of PDMS with biomimetic elasticity as cell-culture scaffold for bridging the in vivo-in vitro gap in neuronal systems.
Collapse
Affiliation(s)
- Takuma Sumi
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.
| | - Hideaki Yamamoto
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan. and WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Ayumi Hirano-Iwata
- Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan. and WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
32
|
Bai M, Cai L, Li X, Ye L, Xie J. Stiffness and topography of biomaterials dictate cell-matrix interaction in musculoskeletal cells at the bio-interface: A concise progress review. J Biomed Mater Res B Appl Biomater 2020; 108:2426-2440. [PMID: 32027091 DOI: 10.1002/jbm.b.34575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/30/2019] [Accepted: 01/19/2020] [Indexed: 02/05/2023]
Abstract
Mutually interacted musculoskeletal tissues work together within the physiological environment full of varieties of external stimulus. Consistent with the locomotive function of the tissues, musculoskeletal cells are remarkably mechanosensitive to the physical cues. Signals like extracellular matrix (ECM) stiffness, topography, and geometry can be sensed and transduced into intracellular signaling cascades to trigger a series of cell responses, including cell adhesion, cell phenotype maintenance, cytoskeletal reconstruction, and stem cell differentiation (Du et al., 2011; Murphy et al., 2014; Lv et al., 2015; Kim et al., 2016; Kumar et al., 2017). With the development of tissue engineering and regenerative medicine, the potent effects of ECM physical properties on cell behaviors at the cell-matrix interface are drawing much attention. To mimic the interaction between cell and its ECM physical properties, developing advanced biomaterials with desired characteristics which could achieve the biointerface between cells and the surrounded matrix close to the physiological conditions becomes a great hotspot. In this review, based on the current publications in the field of biointerfaces, we systematically summarized the significant roles of stiffness and topography on musculoskeletal cell behaviors. We hope to shed light on the importance of physical cues in musculoskeletal tissue engineering and provide up to date strategies towards the natural or artificial replication of physiological microenvironment.
Collapse
Affiliation(s)
- Mingru Bai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Yan J, Chen X, Pu C, Zhao Y, Liu X, Liu T, Pan G, Lin J, Pei M, Yang H, He F. Synovium stem cell-derived matrix enhances anti-inflammatory properties of rabbit articular chondrocytes via the SIRT1 pathway. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110286. [PMID: 31753397 PMCID: PMC9805357 DOI: 10.1016/j.msec.2019.110286] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 09/13/2019] [Accepted: 10/05/2019] [Indexed: 01/03/2023]
Abstract
Autologous chondrocyte implantation (ACI) is a promising approach to repair cartilage defects; however, the cartilage trauma-induced inflammatory environment compromises its clinical outcomes. Cell-derived decellularized extracellular matrix (DECM) has been used as a culture substrate for mesenchymal stem cells (MSCs) to improve the cell proliferation and lineage-specific differentiation. In this study, DECM deposited by synovium-derived MSCs was used as an in vitro expansion system for rabbit articular chondrocytes and the response of DECM-expanded chondrocytes to pro-inflammatory cytokines such as interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) was evaluated. Compared with those grown on tissue culture polystyrene (TCPS), the proliferation rate was significantly improved in DECM-expanded chondrocytes. TCPS- and DECM-expanded chondrocytes were isolated and induced to redifferentiation in a high-density pellet culture. DECM-expanded chondrocytes exerted a stronger resistance to 1 ng/mL of IL-1β than TCPS-expanded cells, but the production of cartilage matrix in both groups was inhibited by 5 ng/mL of IL-1β. When exposed to 1 or 5 ng/mL of TNF-α, DECM-expanded chondrocytes showed higher levels of cartilage matrix synthesis than TCPS-expanded cells. In addition, the gene expression of IL-1β- or TNF-α-induced matrix degrading enzymes (MMP3, MMP9, MMP13, and ADAMTS5) was significantly lower in DECM-expanded chondrocytes than TCPS-expanded cells. Furthermore, we found that SIRT1 inhibition by nicotinamide completely counteracted the protective effect of DECM on chondrocytes in the presence of IL-1β or TNF-α, indicating that the SIRT1 signaling pathway was involved in the DECM-mediated enhancement of anti-inflammatory properties of chondrocytes. Taken together, this work suggests that stem cell-derived DECM is a superior culture substrate for in vitro chondrocyte expansion by improving proliferation and enhancing the anti-inflammatory properties of chondrocytes. DECM-expanded chondrocytes with enhanced anti-inflammatory properties hold great potential in clinically ACI-based cartilage repair.
Collapse
Affiliation(s)
- Jinku Yan
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China,Clinical Sample Bank, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Xi Chen
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Chengbo Pu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Yilang Zhao
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Xiaozhen Liu
- Clinical Sample Bank, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Tao Liu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China,Corresponding Authors: Tao Liu, M.D., Ph.D., Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou 215006, Jiangsu, China. Telephone: +86-512-67781420; Fax: +86-512-67781165;
| | - Guoqing Pan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jun Lin
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics and Division of Exercise Physiology, West Virginia University, Morgantown, WV 26506, USA
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China
| | - Fan He
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China,Orthopaedic Institute, Medical College, Soochow University, Suzhou 215007, China,Fan He, Ph.D., Orthopaedic Institute, Soochow University, No.708 Renmin Road, Suzhou 215007, Jiangsu, China. Telephone: +86-512-67781420; Fax: +86-512-67781165;
| |
Collapse
|
34
|
Tee CA, Yang Z, Yin L, Wu Y, Han J, Lee EH. Improved zonal chondrocyte production protocol integrating size-based inertial spiral microchannel separation and dynamic microcarrier culture for clinical application. Biomaterials 2019; 220:119409. [DOI: 10.1016/j.biomaterials.2019.119409] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 10/26/2022]
|
35
|
Chu G, Yuan Z, Zhu C, Zhou P, Wang H, Zhang W, Cai Y, Zhu X, Yang H, Li B. Substrate stiffness- and topography-dependent differentiation of annulus fibrosus-derived stem cells is regulated by Yes-associated protein. Acta Biomater 2019; 92:254-264. [PMID: 31078765 DOI: 10.1016/j.actbio.2019.05.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 01/02/2023]
Abstract
Annulus fibrosus (AF) tissue engineering has attracted increasing attention as a promising therapy for degenerative disc disease (DDD). However, regeneration of AF still faces many challenges due to the tremendous complexity of this tissue and lack of in-depth understanding of the structure-function relationship at cellular level within AF is highly required. In light of the fact that AF is composed of various types of cells and has gradient mechanical, topographical and biochemical features along the radial direction. In this study, we aimed to achieve directed differentiation of AF-derived stem cells (AFSCs) by mimicking the mechanical and topographical features of native AF tissue. AFSCs were cultured on four types of electrospun poly(ether carbonate urethane)urea (PECUU) scaffolds with various stiffness and fiber size (soft, small size; stiff, small size; soft, large size and stiff, large size). The results show that with constant fiber size, the expression level of the outer AF (oAF) phenotypic marker genes in AFSCs increased with the scaffold stiffness, while that of inner AF (iAF) phenotypic marker genes showed an opposite trend. When scaffold stiffness was fixed, the expression of oAF phenotypic marker genes in AFSCs increased with fiber size. While the expression of iAF phenotypic marker genes decreased. Such substrate stiffness- and topography-dependent changes of AFSCs was in accordance with the genetic and biochemical distribution of AF tissue from the inner to outer regions. Further, we found that the Yes-associated protein (YAP) was translocated to the nucleus in AFSCs cultured with increasing stiffness and fiber size of scaffolds, yet it remained mostly phosphorylated and cytosolic in cells on soft scaffolds with small fiber size. Inhibition of YAP down-regulated the expression of tendon/ligament-related genes, whereas expression of the cartilage-related genes was upregulated. The results illustrate that matrix stiffness is a potent regulator of AFSC differentiation. Moreover, we reveal that fiber size of scaffolds induced changes in cell adhesions and determined cell shape, spreading area, and extracellular matrix expression. In all, both mechanical property and topography features of scaffolds regulate AFSC differentiation, possibly through a YAP-dependent mechanotransduction mechanism. STATEMENT OF SIGNIFICANCE: Physical cues such as mechanical properties, topographical and geometrical features were shown to profoundly impact the growth and differentiation of cultured stem cells. Previously, we have found that the differentiation of annulus fibrosus-derived stem cells (AFSCs) could be regulated by the stiffness of scaffold. In this study, we fabricated four types of poly(ether carbonate urethane)urea (PECUU) scaffolds with controlled stiffness and fiber size to explore the potential of induced differentiation of AFSCs. We found that AFSCs are able to present different gene expression patterns simply as a result of the stiffness and fiber size of scaffold material. This work has, for the first time, demonstrated that larger-sized and higher-stiffness substrates increase the amount of vinculin assembly and activate YAP signaling in pre-differentiated AFSCs. The present study affords an in-depth comprehension of materiobiology, and be helpful for explain the mechanism of YAP mechanosensing in AF in response to biophysical effects of materials.
Collapse
Affiliation(s)
- Genglei Chu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Pinghui Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yan Cai
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xuesong Zhu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China; China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, China.
| |
Collapse
|
36
|
Zhou C, Zhang D, Zou J, Li X, Zou S, Xie J. Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the Human Apical Papilla via the Processes of Mechanosensing and Mechanotransduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26448-26459. [PMID: 31251564 DOI: 10.1021/acsami.9b07147] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
37
|
Zhou C, Wang Q, Zhang D, Cai L, Du W, Xie J. Compliant substratum modulates vinculin expression in focal adhesion plaques in skeletal cells. Int J Oral Sci 2019; 11:18. [PMID: 31152146 PMCID: PMC6544630 DOI: 10.1038/s41368-019-0052-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/29/2019] [Accepted: 04/29/2019] [Indexed: 02/05/2023] Open
Abstract
The biophysical properties of the extracellular matrix (ECM) dictate tissue-specific cell behaviour. In the skeleton system, bone shows the potential to adapt its architecture and contexture to environmental rigidity via the bone remodelling process, which involves chondrocytes, osteoblasts, osteoclasts, osteocytes and even peripheral bone marrow-derived stem/stromal cells (BMSCs). In the current study, we generated stiff (~1 014 ± 56) kPa, Young's modulus) and soft (~46 ± 11) kPa silicon-based elastomer polydimethylsiloxane (PDMS) substrates by mixing curing agent into oligomeric base at 1:5 and 1:45 ratios, respectively, and investigated the influence of substrate stiffness on the cell behaviours by characterizing cell spreading area, cell cytoskeleton and cell adhesion capacity. The results showed that the cell spreading areas of chondrocytes, osteoblasts, osteoclasts, osteocytes and BMSCs were all reduced in the soft substrate relative to those in the stiff substrate. F-actin staining confirmed that the cytoskeleton was also changed in the soft group compared to that in the stiff group. Vinculin in focal adhesion plaques was significantly decreased in response to soft substrate compared to stiff substrate. This study establishes the potential correlation between microenvironmental mechanics and the skeletal system, and the results regarding changes in cell spreading area, cytoskeleton and cell adhesion further indicate the important role of biomechanics in the cell-matrix interaction.
Collapse
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Linyi Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei Du
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
38
|
Transcriptome-Wide Analysis of Human Chondrocyte Expansion on Synoviocyte Matrix. Cells 2019; 8:cells8020085. [PMID: 30678371 PMCID: PMC6406362 DOI: 10.3390/cells8020085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Human chondrocytes are expanded and used in autologous chondrocyte implantation techniques and are known to rapidly de-differentiate in culture. These chondrocytes, when cultured on tissue culture plastic (TCP), undergo both phenotypical and morphological changes and quickly lose the ability to re-differentiate to produce hyaline-like matrix. Growth on synoviocyte-derived extracellular matrix (SDECM) reduces this de-differentiation, allowing for more than twice the number of population doublings (PD) whilst retaining chondrogenic capacity. The goal of this study was to apply RNA sequencing (RNA-Seq) analysis to examine the differences between TCP-expanded and SDECM-expanded human chondrocytes. Human chondrocytes from three donors were thawed from primary stocks and cultured on TCP flasks or on SDECM-coated flasks at physiological oxygen tension (5%) for 4 passages. During log expansion, RNA was extracted from the cell layer (70–90% confluence) at passages 1 and 4. Total RNA was column-purified and DNAse-treated before quality control analysis and next-generation RNA sequencing. Significant effects on gene expression were observed due to both culture surface and passage number. These results offer insight into the mechanism of how SDECM provides a more chondrogenesis-preserving environment for cell expansion, the transcriptome-wide changes that occur with culture, and potential mechanisms for further enhancement of chondrogenesis-preserving growth.
Collapse
|
39
|
Xie J, Zhang D, Ling Y, Yuan Q, Chenchen Z, Wei D, Zhou X. Substrate elasticity regulates vascular endothelial growth factor A (VEGFA) expression in adipose-derived stromal cells: Implications for potential angiogenesis. Colloids Surf B Biointerfaces 2018; 175:576-585. [PMID: 30580148 DOI: 10.1016/j.colsurfb.2018.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 07/22/2018] [Accepted: 08/16/2018] [Indexed: 02/05/2023]
Abstract
Adipose-derived stromal cells (ASCs) have potential in bioengineering angiogenesis due to their paracrine role in supporting endothelial tubulogenesis and vascular network formation. However, the precise mechanism of the inner angiogenic capacity of ASCs determined by the biophysical properties of the extracellular matrix needs to be further elucidated. In the current study, we fabricated two silicon-based elastomer polydimethylsiloxane (PDMS) substrates with different stiffnesses (stiff substrate, E = 195 kPa and soft substrate, E = 15 kPa) and found there were cytoskeletal changes in ASCs in response to different substrate stiffnesses. We then showed the expression of vinculin in focal adhesion plaques was enhanced and the nuclear translocation of β-catenin signaling was increased in ASCs on the stiff substrate relative to those on the soft substrate. We next used bioinformatics and found the downstream proteins of β-catenin signaling had binding sites in the promoter of vascular endothelial growth factor A (VEGFA), which is responsible for angiogenesis; then, we further confirmed the enhanced endogenous VEGFA expression in ASCs on the stiff substrate relative to that on the soft substrate. Finally, by using ectogenic VEGFA, we showed the stiff substrate could promote angiogenesis of ASCs in the form of more ring-like formations in 2D and vessel-like structure formations in 3D under VEGFA induction compared to that of the soft substrate. This study not only indicates the inner angiogenic capacity of ASCs but also elucidates the influence of substrate elasticity on ASC differentiation in bioengineering angiogenesis.
Collapse
Affiliation(s)
- Jing Xie
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Ling
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhou Chenchen
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Du Wei
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Endodontic Department West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
40
|
Costa E, González-García C, Gómez Ribelles JL, Salmerón-Sánchez M. Maintenance of chondrocyte phenotype during expansion on PLLA microtopographies. J Tissue Eng 2018; 9:2041731418789829. [PMID: 30093985 PMCID: PMC6080075 DOI: 10.1177/2041731418789829] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
Articular chondrocytes are difficult to grow, as they lose their characteristic
phenotype following expansion on standard tissue culture plates. Here, we show
that culturing them on surfaces of poly(L-lactic acid) of well-defined
microtopography allows expansion and maintenance of characteristic chondrogenic
markers. We investigated the dynamics of human chondrocyte dedifferentiation on
the different poly(L-lactic acid) microtopographies by the expression of
collagen type I, collagen type II and aggrecan at different culture times. When
seeded on poly(L-lactic acid), chondrocytes maintained their characteristic
hyaline phenotype up to 7 days, which allowed to expand the initial cell
population approximately six times without cell dedifferentiation. Maintenance
of cell phenotype was afterwards correlated to cell adhesion on the different
substrates. Chondrocytes adhesion occurs via the
α5β1 integrin on
poly(L-lactic acid), suggesting cell–fibronectin interactions. However,
α2β1 integrin is
mainly expressed on the control substrate after 1 day of culture, and the
characteristic chondrocytic markers are lost (collagen type II expression is
overcome by the synthesis of collagen type I). Expanding chondrocytes on
poly(L-lactic acid) might be an effective solution to prevent dedifferentiation
and improving the number of cells needed for autologous chondrocyte
transplantation.
Collapse
Affiliation(s)
- Elisa Costa
- Centre for Biomaterials and Tissue
Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain
| | | | - José Luis Gómez Ribelles
- Centre for Biomaterials and Tissue
Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain
- Biomedical Research Networking Center in
Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
| | - Manuel Salmerón-Sánchez
- Centre for Biomaterials and Tissue
Engineering (CBIT), Universitat Politècnica de València, Valencia, Spain
- Biomedical Research Networking Center in
Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Valencia, Spain
- Centre for the Cellular
Microenvironment, University of Glasgow, Glasgow, UK
- Manuel Salmerón-Sánchez, Centre for the
Cellular Microenvironment, School of Engineering, Rankine Bld, Oakfield Av, G12
8LT, University of Glasgow, Glasgow, UK.
| |
Collapse
|
41
|
Liu N, Zhou M, Zhang Q, Yong L, Zhang T, Tian T, Ma Q, Lin S, Zhu B, Cai X. Effect of substrate stiffness on proliferation and differentiation of periodontal ligament stem cells. Cell Prolif 2018; 51:e12478. [PMID: 30039894 DOI: 10.1111/cpr.12478] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES The aim of this study was to understand the effect of substrate stiffness (a mechanical factor of the extracellular matrix) on periodontal ligament stem cells (PDLSCs) and its underlying mechanism. MATERIALS AND METHODS Elastic substrates were fabricated by mixing 2 components, a base and curing agent in proportions of 10:1, 20:1, 30:1 or 40:1. PDLSC morphology was observed using scanning electron microscopy (SEM). Cell proliferation and differentiation were assessed after PDLSCs was cultured on various elastic substrates. Data were analysed using one-way ANOVA. RESULTS SEM revealed variations in the morphology of PDLSCs cultured on elastic substrates. PDLSC proliferation increased with substrate stiffness (P < .05). Osteogenic differentiation of PDLSCs was higher on stiff substrates. Notch pathway markers were up-regulated in PDLSCs cultured on stiff substrates. CONCLUSIONS Results suggested that the osteogenic differentiation of PDLSCs might be promoted by culturing them in a stiffness-dependent manner, which regulates the Notch pathway. This might provide a new method of enhancing osteogenesis in PDLSCs.
Collapse
Affiliation(s)
- Nanxin Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mi Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Li Yong
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quanquan Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bofeng Zhu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Forensic Genetics, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Wu S, Zheng Q, Xing X, Dong Y, Wang Y, You Y, Chen R, Hu C, Chen J, Gao D, Zhao Y, Wang Z, Xue T, Ren Z, Cui J. Matrix stiffness-upregulated LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:99. [PMID: 29728125 PMCID: PMC5935912 DOI: 10.1186/s13046-018-0761-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 04/13/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Higher matrix stiffness affects biological behavior of tumor cells, regulates tumor-associated gene/miRNA expression and stemness characteristic, and contributes to tumor invasion and metastasis. However, the linkage between higher matrix stiffness and pre-metastatic niche in hepatocellular carcinoma (HCC) is still largely unknown. METHODS We comparatively analyzed the expressions of LOX family members in HCC cells grown on different stiffness substrates, and speculated that the secreted LOXL2 may mediate the linkage between higher matrix stiffness and pre-metastatic niche. Subsequently, we investigated the underlying molecular mechanism by which matrix stiffness induced LOXL2 expression in HCC cells, and explored the effects of LOXL2 on pre-metastatic niche formation, such as BMCs recruitment, fibronectin production, MMPs and CXCL12 expression, cell adhesion, etc. RESULTS: Higher matrix stiffness significantly upregulated LOXL2 expression in HCC cells, and activated JNK/c-JUN signaling pathway. Knockdown of integrin β1 and α5 suppressed LOXL2 expression and reversed the activation of above signaling pathway. Additionally, JNK inhibitor attenuated the expressions of p-JNK, p-c-JUN, c-JUN and LOXL2, and shRNA-c-JUN also decreased LOXL2 expression. CM-LV-LOXL2-OE and rhLOXL2 upregulated MMP9 expression and fibronectin production obviously in lung fibroblasts. Moreover, activation of Akt pathway contributed to LOXL2-induced fibronectin upregulation. LOXL2 in CM as chemoattractant increased motility and invasion of BMCs, implicating a significant role of LOXL2 in BMCs recruitment. Except that, CM-LV-LOXL2-OE as chemoattractant also increased the number of migrated HCC cells, and improved chemokine CXCL12 expression in lung fibroblasts. The number of HCC cells adhered to surface of lung fibroblasts treated with CM-LV-LOXL2-OE was remarkably higher than that of the control cells. These results indicated that the secreted LOXL2 facilitated the motility of HCC cells and strengthened CTCs settlement on the remodeled matrix "soil". CONCLUSION Integrin β1/α5/JNK/c-JUN signaling pathway participates in higher matrix stiffness-induced LOXL2 upregulation in HCC cells. The secreted LOXL2 promotes fibronectin production, MMP9 and CXCL12 expression and BMDCs recruitment to assist pre-metastatic niche formation.
Collapse
Affiliation(s)
- Sifan Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Qiongdan Zheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Xiaoxia Xing
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Yinying Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Yaohui Wang
- Department of Radiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yang You
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Chao Hu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Jie Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Yan Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Zhiming Wang
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Tongchun Xue
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
43
|
Huang H, Tan Y, Ayers DC, Song J. Anionic and Zwitterionic Residues Modulate Stiffness of Photo-Cross-Linked Hydrogels and Cellular Behavior of Encapsulated Chondrocytes. ACS Biomater Sci Eng 2018; 4:1843-1851. [DOI: 10.1021/acsbiomaterials.8b00124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Henry Huang
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655 United States
| | - Yu Tan
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655 United States
| | - David C. Ayers
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655 United States
| | - Jie Song
- Department of Orthopedics and Physical Rehabilitation, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, Massachusetts 01655 United States
| |
Collapse
|
44
|
Sultan S, Mathew AP. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel. NANOSCALE 2018; 10:4421-4431. [PMID: 29451572 DOI: 10.1039/c7nr08966j] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
3-Dimensional (3D) printing provides a unique methodology for the customization of biomedical scaffolds with respect to size, shape, pore structure and pore orientation useful for tissue repair and regeneration. 3D printing was used to fabricate fully bio-based porous scaffolds of a double crosslinked interpenetrating polymer network (IPN) from a hydrogel ink of sodium alginate and gelatin (SA/G) reinforced with cellulose nanocrystals (CNCs). CNCs provided favorable rheological properties required for 3D printing. The 3D printed scaffolds were crosslinked sequentially via covalent and ionic reactions resulting in dimensionally stable hydrogel scaffolds with pore sizes of 80-2125 μm and nanoscaled pore wall roughness (visible from scanning electron microscopy) favorable for cell interaction. The 2D wide angle X-ray scattering studies showed that the nanocrystals orient preferably in the printing direction; the degree of orientation varied between 61-76%. The 3D printing pathways were optimised successfully to achieve 3-dimensional scaffolds (Z axis up to 20 mm) with uniform as well as gradient pore structures. This study demonstrates the potential of 3D printing in developing bio-based scaffolds with controlled pore sizes, gradient pore structures and alignment of nanocrystals for optimal tissue regeneration.
Collapse
Affiliation(s)
- Sahar Sultan
- Division of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.
| | | |
Collapse
|
45
|
Zhou M, Liu NX, Shi SR, Li Y, Zhang Q, Ma QQ, Tian TR, Ma WJ, Cai XX, Lin YF. Effect of tetrahedral DNA nanostructures on proliferation and osteo/odontogenic differentiation of dental pulp stem cells via activation of the notch signaling pathway. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1227-1236. [PMID: 29458214 DOI: 10.1016/j.nano.2018.02.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/23/2018] [Accepted: 02/08/2018] [Indexed: 02/05/2023]
Abstract
Dental pulp stem cells (DPSCs) derived from the human dental pulp tissue have multiple differentiation capabilities, such as osteo/odontogenic differentiation. Therefore, DPSCs are deemed as ideal stem cell sources for tissue regeneration. As new nanomaterials based on DNA, tetrahedral DNA nanostructures (TDNs) have tremendous potential for biomedical applications. Here, the authors aimed to explore the part played by TDNs in proliferation and osteo/odontogenic differentiation of DPSCs, and attempted to investigate if these cellular responses could be driven by activating the canonical Notch signaling pathway. Upon exposure to TDNs, proliferation and osteo/odontogenic differentiation of DPSCs were dramatically enhanced, accompanied by up regulation of Notch signaling. In general, our study suggested that TDNs can significantly promote proliferation and osteo/odontogenic differentiation of DPSCs, and this remarkable discovery can be applied in tissue engineering and regenerative medicine to develop a significant and novel method for bone and dental tissue regeneration.
Collapse
Affiliation(s)
- Mi Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nan-Xin Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Si-Rong Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yong Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Southwest Medical University, Luzhou, China
| | - Qi Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan-Quan Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao-Ran Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wen-Juan Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiao-Xiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun-Feng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
46
|
Zhao D, Li Q, Liu M, Ma W, Zhou T, Xue C, Cai X. Substrate stiffness regulated migration and invasion ability of adenoid cystic carcinoma cells via RhoA/ROCK pathway. Cell Prolif 2018; 51:e12442. [PMID: 29424004 DOI: 10.1111/cpr.12442] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/31/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Human salivary adenoid cystic carcinoma (SACC) is one of the most common malignant tumours of the salivary gland and has strong migratory and invasive ability, which often lead to poor prognosis and lower survival rate. Tumour tissue tends to stiffen during solid tumour progression. This study aimed to investigate the influence of various substrate stiffness on the migration and invasion of SACC. METHODS Salivary adenoid cystic carcinoma cell line ACC2 cells were cultured on polydimethylsiloxane substrates (PDMS) with varying stiffness for investigating the effects of substrate stiffness on the activities of MMPs and TIMPs. The underlying mechanism was also explored. RESULTS When ACC2 cells were cultured on various stiffness of PDMS, the expressions of matrix metalloproteinases 2 (MMP2), MMP9, MMP14, RhoA, Rac1, Rho-associated protein kinase 1 (ROCK1) and ROCK2 were up-regulated with increasing substrate stiffness, whereas that of tissue inhibitor of matrix metalloproteinase 1 (TIMP1), TIMP2 and TIMP4 were down-regulated with increasing substrate stiffness. CONCLUSIONS Our results showed that substrate stiffness regulated the activities of MMPs and TIMPs and then modulate migratory and invasive ability of ACC2 cells via RhoA/ROCK pathway. This work indicate that matrix stiffness played an important role in progression of SACC, which not only can help understand the strong invasive ability of SACC, but also suggested that therapeutically targeting matrix stiffness may help reduce migration and invasion of SACC and improve effective therapies.
Collapse
Affiliation(s)
- Dan Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianshun Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengting Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenjuan Ma
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tengfei Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changyue Xue
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
47
|
Zhang Q, Lin S, Shi S, Zhang T, Ma Q, Tian T, Zhou T, Cai X, Lin Y. Anti-inflammatory and Antioxidative Effects of Tetrahedral DNA Nanostructures via the Modulation of Macrophage Responses. ACS APPLIED MATERIALS & INTERFACES 2018; 10:3421-3430. [PMID: 29300456 DOI: 10.1021/acsami.7b17928] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tetrahedral DNA nanostructures (TDNs) are a new type of nanomaterials that have recently attracted attention in the field of biomedicine. However, the practical application of nanomaterials is often limited owing to the host immune response. Here, the response of RAW264.7 macrophages to TDNs was comprehensively evaluated. The results showed that TDNs had no observable cytotoxicity and could induce polarization of RAW264.7 cells to the M1 type. TDNs attenuated the expression of NO IL-1β (interleukin-1β), IL-6 (interleukin-6), and TNF-α (tumor necrosis factor-α) in LPS-induced RAW264.7 cells by inhibiting MAPK phosphorylation. In addition, TDNs inhibited LPS-induced reactive oxygen species (ROS) production and cell apoptosis by up-regulating the mRNA expression of antioxidative enzyme heme oxygenase-1 (HO-1). The findings of this study demonstrated that TDNs have great potential as a novel theranostic agent because of their anti-inflammatory and antioxidant activities, high bioavailability, and ease of targeting.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Sirong Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Quanquan Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Tengfei Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University , Chengdu 610041, People's Republic of China
| |
Collapse
|
48
|
Liu N, Zhou M, Zhang Q, Zhang T, Tian T, Ma Q, Xue C, Lin S, Cai X. Stiffness regulates the proliferation and osteogenic/odontogenic differentiation of human dental pulp stem cells via the WNT signalling pathway. Cell Prolif 2018; 51:e12435. [PMID: 29341308 DOI: 10.1111/cpr.12435] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 12/13/2017] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVES Researches showed that stiffness of the extracellular matrix can affect the differentiation of many stem cells. Dental pulp stem cells (DPSCs) are a promising type of adult stem cell. However, we know little about whether and how the behaviour of DPSCs is influenced by stiffness. MATERIALS AND METHODS We carried out a study that cultured DPSCs on tunable elasticity polydimethylsiloxane substrates to investigate the influence on morphology, proliferation, osteogenic/odontogenic differentiation and its possible mechanism. RESULTS Soft substrates changed the cell morphology and inhibited the proliferation of DPSCs. Expression of markers related to osteogenic/odontogenic differentiation was significantly increased as the substrate stiffness increased, including ALP (alkaline phosphatase), OCN (osteocalcin), OPN (osteopontin), RUNX-2 (runt-related transcription factor-2), BMP-2 (bone morphogenetic protein-2), DSPP (dentin sialophosphoprotein) and DMP-1 (dentin matrix protein-1). Mechanical properties promote the function of DPSCs related to the Wnt signalling pathway. CONCLUSIONS Our results showed that mechanical factors can regulate the proliferation and differentiation of DPSCs via the WNT signalling pathway. This provides theoretical basis to optimize dental or bone tissue regeneration through increasing stiffness of extracelluar matrix.
Collapse
Affiliation(s)
- Nanxin Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mi Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Taoran Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quanquan Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Changyue Xue
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shiyu Lin
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Yu Z, Xiao C, Huang Y, Chen M, Wei W, Yang X, Zhou H, Bi X, Lu L, Ruan J, Fan X. Enhanced bioactivity and osteoinductivity of carboxymethyl chitosan/nanohydroxyapatite/graphene oxide nanocomposites. RSC Adv 2018; 8:17860-17877. [PMID: 35542061 PMCID: PMC9080497 DOI: 10.1039/c8ra00383a] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/15/2018] [Indexed: 12/26/2022] Open
Abstract
Tissue engineering approaches combine a bioscaffold with stem cells to provide biological substitutes that can repair bone defects and eventually improve tissue functions. The prospective bioscaffold should have good osteoinductivity. Surface chemical and roughness modifications are regarded as valuable strategies for developing bioscaffolds because of their positive effects on enhancing osteogenic differentiation. However, the synergistic combination of the two strategies is currently poorly studied. In this work, a nanoengineered scaffold with surface chemistry (oxygen-containing groups) and roughness (Rq = 74.1 nm) modifications was fabricated by doping nanohydroxyapatite (nHA), chemically crosslinked graphene oxide (GO) and carboxymethyl chitosan (CMC). The biocompatibility and osteoinductivity of the nanoengineered CMC/nHA/GO scaffold was evaluated in vitro and in vivo, and the osteogenic differentiation mechanism of the nanoengineered scaffold was preliminarily investigated. Our data demonstrated that the enhanced osteoinductivity of CMC/nHA/GO may profit from the surface chemistry and roughness, which benefit the β1 integrin interactions with the extracellular matrix and activate the FAK–ERK signaling pathway to upregulate the expression of osteogenic special proteins. This study indicates that the nanocomposite scaffold with surface chemistry and roughness modifications could serve as a novel and promising bone substitute for tissue engineering. The CMC/nHA/GO scaffold with the surface chemistry and roughness dual effects and the release of phosphate and calcium ions synergistically assist the mineralization and facilitate the bone regeneration.![]()
Collapse
|
50
|
Angiogenesis in a 3D model containing adipose tissue stem cells and endothelial cells is mediated by canonical Wnt signaling. Bone Res 2017; 5:17048. [PMID: 29263938 PMCID: PMC5727463 DOI: 10.1038/boneres.2017.48] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/25/2017] [Accepted: 04/10/2017] [Indexed: 02/05/2023] Open
Abstract
Adipose-derived stromal cells (ASCs) have gained great attention in regenerative medicine. Progress in our understanding of adult neovascularization further suggests the potential of ASCs in promoting vascular regeneration, although the specific cues that stimulate their angiogenic behavior remain controversial. In this study, we established a three-dimensional (3D) angiogenesis model by co-culturing ASCs and endothelial cells (ECs) in collagen gel and found that ASC-EC-instructed angiogenesis was regulated by the canonical Wnt pathway. Furthermore, the angiogenesis that occurred in implants collected after injections of our collagen gel-based 3D angiogenesis model into nude mice was confirmed to be functional and also regulated by the canonical Wnt pathway. Wnt regulation of angiogenesis involving changes in vessel length, vessel density, vessel sprout, and connection numbers occurred in our system. Wnt signaling was then shown to regulate ASC-mediated paracrine signaling during angiogenesis through the nuclear translocation of β-catenin after its cytoplasmic accumulation in both ASCs and ECs. This translocation enhanced the expression of nuclear co-factor Lef-1 and cyclin D1 and activated the angiogenic transcription of vascular endothelial growth factor A (VEGFA), basic fibroblast growth factor (bFGF), and insulin-like growth factor 1 (IGF-1). The angiogenesis process in the 3D collagen model appeared to follow canonical Wnt signaling, and this model can help us understand the importance of the canonical Wnt pathway in the use of ASCs in vascular regeneration.
Collapse
|