1
|
Li J, Wang F, Zhang H, Cao D, Guan R. One-pot synthesis of fluorescent nanoprobes based on D-cys-based CDs and quantitative detection of lysine enantiomers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126143. [PMID: 40267581 DOI: 10.1016/j.saa.2025.126143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 03/30/2025] [Indexed: 04/25/2025]
Abstract
The recognition of amino acid enantiomers is of great significance in drug research and disease diagnosis. However, the similar physical and chemical properties of enantiomers make chiral recognition challenging. Optical characterization is a promising approach to distinguish enantiomers. Carbon dots (CDs) have attracted widespread attention due to their simple synthesis, high economic benefits, and good biocompatibility. Chiral carbon dots, as fluorescent probes, have gradually received more attraction. Here, a fluorescence probe (CYS-CDs + Cu2+) was constructed using D-Cys as chiral source to synthesize chiral carbon dots (CYS-CDs), and Cu2+ as inducer to recognize the chirality of lysine enantiomers(L-/D-Lys). And then, based on the ability of Cu2+ to quench the fluorescence of CYS-CDs and L-Lysine (L-Lys) could restore the fluorescence of the CYS-CDs + Cu2+ probe, so achieve an "on-off-on" detection mode to detect L-Lys. On the contrary, D-Lys cannot restore the fluorescence of CYS-CDs + Cu2+. The probe can distinguish lysine enantiomers not only by fluorescence spectra but also by circular dichroism spectra. And, the probe can be used for the quantitative detection of L-Lys by fluorescence method, of which the detection range is 0-520 μM, and the limit of detection is only 13.70 μM. In addition, a paper-based fluorescent senor was constructed on this basis. This work may be of practical significance to expand the recognition method of amino acid enantiomers.
Collapse
Affiliation(s)
- Jinqiu Li
- School of Materials Science & Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Fanghao Wang
- School of Materials Science & Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Hao Zhang
- School of Materials Science & Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Duxia Cao
- School of Materials Science & Engineering, University of Jinan, Jinan, Shandong 250022, China.
| | - Ruifang Guan
- School of Materials Science & Engineering, University of Jinan, Jinan, Shandong 250022, China.
| |
Collapse
|
2
|
Feng DQ, Zhang W, Yu Z, Li H, Fang B, Liu G. A target-response ratiometric or turn-off fluorescent dual-mode platform for simultaneous detection of multiple anticancer drugs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 338:126173. [PMID: 40203577 DOI: 10.1016/j.saa.2025.126173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
The anthracycline including doxorubicin (DOX), daunorubicin (DAU) and mitoxantrone (MTX) plays crucial roles in human health due to their notably clinical efficacy in various malignant tumors. There is few molecular probe and abiotic sensor that can simultaneously discriminate among anthracycline drugs. Herein, a target-response ratiometric and turn-off fluorescent dual-mode platform was designed for simultaneous detection of multiple anticancer drugs based on blue-emitting carbon dots (BCDs). In the presence of anthracycline, specific absorption and formation of the BCDs-anthracycline conjugate was achieved via electrostatic interaction and hydrophobic force, leading to ratiometric signal or quenched fluorescent response, thereby achieving ratiometric or turn-off dual-mode detection. Specifically, the introduction of both DOX and DAU produce ratiometric response of BCDs due to fluorescence resonance energy transfer (FRET) and dynamic quenching while MTX only induce reduced fluorescent response attribute to photoinduced electron transfer (PET) and dynamic quenching. The linear range calculated is 1-98, 1-91 and 1-77 μM for DOX, DAU and MTX, respectively, with a limit of detection of 0.02, 0.05 and 0.06 μM. Taking advantage of target-response self-verification ratiometric and sensitive fluorescent detection, the dual-mode platform was proposed and applied for successful discrimination of anthracycline drugs. This study opens a new path for multiplex drugs analysis in a facile and rapid way.
Collapse
Affiliation(s)
- Da-Qian Feng
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Wenfeng Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Zhendi Yu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Hengye Li
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Bo Fang
- Yancheng Tongwei Solar Energy Co., Ltd, Yancheng 224000, China
| | - Guoliang Liu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| |
Collapse
|
3
|
Ghosh S, Anand A, Chattopadhyay S. A fluorescent nonconjugated zwitterionic polymer dot: hydrothermal synthesis and application in the nano-molar sensing of 2,4,6-trinitrophenol. NANOSCALE 2025; 17:11071-11081. [PMID: 40223538 DOI: 10.1039/d5nr00455a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Developing nonconjugated polymer dot-based sensors with high quantum yield for a targeted application is a challenging research field. Herein, we report the synthesis of a zwitterionic polymer dot (PD PAMAM 2.5, average diameter 12 nm), which contains a poly(aminoamide) core and amine and acid groups on the surface. The molecular structure and functionalities of the polymer dot were carefully established using various spectroscopic techniques, including NMR, FTIR, and XPS. The polymer dot revealed greenish blue/aqua emission (λmax = 470 nm) with a quantum yield of 28%. The mechanism for the synthesis of polymer dot with respect to its structure and fluorescence property was examined using a combination of techniques, including NMR, zeta potential and fluorescence spectrometry. The application of the fluorescent polymer dot for the selective detection of 2,4,6-trinitrophenol was studied in detail. The limit of detection was determined to be 0.77 nM, which was the best value among the current state-of-the-art. Furthermore, application of the polymer dot in real life scenarios was demonstrated using real life wastewater samples and a paper-based strip-test method.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801106, Bihar, India.
| | - Aayush Anand
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801106, Bihar, India.
| | - Subrata Chattopadhyay
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna 801106, Bihar, India.
| |
Collapse
|
4
|
Wu H, Liu A, Liu M, Shi L, Wang Q, Zhou T. A cucurbit[6]uril-based fluorescence supramolecular assembly for information encryption and visualization detection of nitro compounds and antibiotics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124906. [PMID: 39111032 DOI: 10.1016/j.saa.2024.124906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
A novel CB[6]-based supramolecular assembly [K(ANS)(CB[6])2(DMF)2(H2O)0.5] (1) (CB[6] = cucurbit[6]uril, ANS- = 8-amino-1-naphthalene sulfonic acid ion) was successfully synthesized under solvothermal condition. Performance studies have shown that 1 exhibited excellent chemical stability and recycling performance. Meanwhile, 1 exhibited remarkable potential as a fluorescence sensor for the detection of 2,4,6-trinitrophenol (TNP), 4-nitrophenol (4-NP), and rifampicin (RFP) in both aqueous environments and practical samples. This sensing capability is achieved through fluorescence quenching, which offers fast response times and exceptional sensitivity, with detection limits of 0.19 μM for both TNP and 4-NP, and 0.21 μM for RFP. Even more remarkably, an anti-counterfeiting ink based on 1 and a portable test hydrogel were devised for encrypting information and visually detecting using a smartphone application. This work has the potential to expand the utilization of CB[6]-based materials in optical applications.
Collapse
Affiliation(s)
- Haijiao Wu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, PR China
| | - Ailun Liu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, PR China
| | - Mei Liu
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, PR China.
| | - Lulu Shi
- College of Material Science and Engineering, Huaqiao University, Engineering Research Center of Environment-Friendly Functional Materials, Ministry of Education, Xiamen 361021, PR China
| | - Qiqi Wang
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, PR China
| | - Tingting Zhou
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, PR China
| |
Collapse
|
5
|
Radhakrishnan K, Kumar JV, Bhagyalakshmi J, Devanesan S, Mythili R, Reddy IN, Bai C. Sustainable synthesis of fluorescent polymer carbon dots@PVA for sensitive chlortetracycline detection. LUMINESCENCE 2024; 39:e4846. [PMID: 39090987 DOI: 10.1002/bio.4846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Antibiotic residues persist in the environment and represent serious health hazards; thus, it is important to develop sensitive and effective detection techniques. This paper presents a bio-inspired way to make water-soluble fluorescent polymer carbon dots (PCDs@PVA) by heating biomass precursors and polyvinyl alcohol (PVA) together. For example, the synthesized PCDs@PVA are very stable with enhanced emission intensity. This property was observed in a wide range of environmental conditions, including those with changing temperatures, pH levels, UV light, and ionic strength. PCDs@PVA detected the antibiotic chlortetracycline (CTCs) with great selectivity against structurally related compounds and a low detection limit of 20 nM, demonstrating outstanding sensitivity and specificity. We confirmed the sensor's practical application through real sample analysis, yielding recovery rates of 98%-99% in samples of milk, honey, and river water. The synthesized PCDs@PVA fluorescence sensor was successfully used for CTCs detection in real samples.
Collapse
Affiliation(s)
- Kothalam Radhakrishnan
- Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore, India
- Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore, India
| | - J Vinoth Kumar
- BioNanocomposite Research Center, Department of Food and Nutrition, Kyung Hee University, Seoul, Republic of Korea
| | - J Bhagyalakshmi
- Department of Veterinary Anatomy, NTR College of Veterinary Science, Gannavaram, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - R Mythili
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - I Neelakanta Reddy
- School of Mechanical Engineering, College of Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Cheolho Bai
- School of Mechanical Engineering, College of Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
6
|
Barboza-Ramos I, Karuk Elmas SN, Schanze KS. Fluorogenic sensors. SENSORY POLYMERS 2024:181-223. [DOI: 10.1016/b978-0-443-13394-7.00005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
7
|
Yang L, Ma J, Yang B. Fluorescent Carbon Dots Derived From Soy Sauce for Picric Acid Detection and Cell Imaging. J Fluoresc 2023; 33:1981-1993. [PMID: 36933123 DOI: 10.1007/s10895-023-03207-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
Picric acid (PA) is a powerful nitro-aromatic explosive that harms the environment and human health. Developing non-toxic and low-cost sensors for the rapid detection of PA is essential. An environment-friendly fluorescent probe for PA detection is designed based on carbon dots (CDs) directly separated from edible soy sauce by silica gel column chromatography. Neither organic reagents nor heating process was needed to prepare CDs. The obtained CDs exhibit bright blue fluorescence, good water solubility, and photostability. The fluorescent probe for PA was developed according to the CD's fluorescence can be significantly quenched via the inner filter effect between CDs and PA. The linear range was 0.2-24 µM with a limit of detection of 70 nM. This proposed method was successfully employed to detect PA in the real water samples with satisfactory recoveries between 98.0-104.0%. Moreover, the CDs were suitable for fluorescence imaging of HeLa cells owing to their low toxicity and good biocompatibility.
Collapse
Affiliation(s)
- Lingjuan Yang
- College of Chemical Engineering and Technology, Tianshui Normal University, 741001, Tianshui, Gansu, China
| | - Jie Ma
- College of Chemical Engineering and Technology, Tianshui Normal University, 741001, Tianshui, Gansu, China.
| | - Benqun Yang
- College of Chemical Engineering and Technology, Tianshui Normal University, 741001, Tianshui, Gansu, China
| |
Collapse
|
8
|
Giordano MG, Seganti G, Bartoli M, Tagliaferro A. An Overview on Carbon Quantum Dots Optical and Chemical Features. Molecules 2023; 28:molecules28062772. [PMID: 36985743 PMCID: PMC10051812 DOI: 10.3390/molecules28062772] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Carbon quantum dots are the materials of a new era with astonishing properties such as high photoluminescence, chemical tuneability and high biocompatibility. Since their discovery, carbon quantum dots have been described as nanometric high-fluorescent carbon nanoparticles, but this definition has become weaker year after year. Nowadays, the classification and the physical explanation of carbon quantum dots optical properties and their chemical structure remain matter of debate. In this review, we provide a clear discussion on these points, providing a starting point for the rationalization of their classification and a comprehensive view on the optical and chemical features of carbon quantum dots.
Collapse
Affiliation(s)
- Marco Giuseppe Giordano
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Giulia Seganti
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Mattia Bartoli
- Center for Sustainable Future Technologies (CSFT), Istituto Italiano di Tecnologia (IIT), Via Livorno 60, 10144 Turin, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy
| | - Alberto Tagliaferro
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, 50121 Florence, Italy
- Faculty of Science, Ontario Tech University, 2000 Simcoe Street North, Oshawa, ON L1G 0C5 T, Canada
| |
Collapse
|
9
|
Nayak S, Guleria K, Sen A, Banerjee S, Subramanian R, Das P. Chemically induced crosslinked enhanced emission of carbon polymer dots discerning healthy and cancer cells through pH-dependent tunable photoluminescence. J Mater Chem B 2023; 11:594-605. [PMID: 36533540 DOI: 10.1039/d2tb01836e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemically induced crosslinked enhanced emission (CEE) of urea and citric acid-derived carbon polymer dot (CPD) nanoparticles is established here with a rare zero linker approach, i.e. without the use of any separate crosslinkers. Such chemical CEE like any chemical reaction was achieved through amide bond formation using carbodiimide chemistry, pointing towards the feasibility of developing a general methodology for their formation through engineering the nanoparticle surface functionality. Exhaustive characterization was done to pinpoint the structure, morphology, and photophysics of the CPDs and concurrently eliminate the possibility of the involvement and interference by molecular fluorophores for the unique optical tuning of the CPDs. The structure-photophysics relation was further restated through theoretical studies involving density functional theory (DFT) that correlated significantly well with the experimental findings. Most interestingly, the CPDs revealed pH responsiveness due to the formation or hydrolysis of amide bonds with acid or base, respectively, which was manifested through a spectacular change in fluorescence emission visible to the naked eye through UV illumination. This distinct pH-dependent photoluminescence properties of CPDs opens up an enormous opportunity for interesting applications, including discriminating normal and cancerous cells, which we demonstrate herein as a proof of concept through in vitro imaging.
Collapse
Affiliation(s)
- Suman Nayak
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, 801106, Bihar, India.
| | - Kanika Guleria
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, 801106, Bihar, India.
| | - Abhik Sen
- Department of Molecular Biology, ICMR-Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India
| | - Subhrajeet Banerjee
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, 801106, Bihar, India.
| | - Ranga Subramanian
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, 801106, Bihar, India.
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Bihta, Patna, 801106, Bihar, India.
| |
Collapse
|
10
|
Fernandes RF, Atvars TD, Temperini ML. Exploring the non-traditional fluorescence emission of non-conjugated polymers dots for sensing pesticides. REACT FUNCT POLYM 2023. [DOI: 10.1016/j.reactfunctpolym.2022.105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Santiwat T, Sornkaew N, Srikittiwanna K, Sukwattanasinitt M, Niamnont N. Electrospun nanofiber sheets mixed with a novel triphenylamine-pyrenyl salicylic acid fluorophore for the selective detection of picric acid. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Li D, Lv P, Han XW, Jia Z, Zheng M, Feng HT. A Highly Efficient Fluorescent Sensor Based on AIEgen for Detection of Nitrophenolic Explosives. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010181. [PMID: 36615375 PMCID: PMC9821835 DOI: 10.3390/molecules28010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
The detection of nitrophenolic explosives is important in counterterrorism and environmental protection, but it is still a challenge to identify the nitroaromatic compounds among those with a similar structure. Herein, a simple tetraphenylethene (TPE) derivative with aggregation-induced emission (AIE) characteristics was synthesized and used as a fluorescent sensor for the detection of nitrophenolic explosives (2, 4, 6-trinitrophenol, TNP and 2, 4-dinitrophenol, DNP) in water solution and in a solid state with a high selectivity. Meanwhile, it was found that only hydroxyl containing nitrophenolic explosives caused obvious fluorescence quenching. The sensing mechanism was investigated by using fluorescence titration and 1H NMR spectra. This simple AIE-active probe can potentially be applied to the construction of portable detection devices for explosives.
Collapse
Affiliation(s)
- Dongmi Li
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471000, China
- Correspondence: (D.L.); (H.-T.F.)
| | - Panpan Lv
- AIE Research Center, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Xiao-Wen Han
- AIE Research Center, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Zhilei Jia
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471000, China
| | - Min Zheng
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471000, China
| | - Hai-Tao Feng
- AIE Research Center, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
- Correspondence: (D.L.); (H.-T.F.)
| |
Collapse
|
13
|
Preparation of fluorescein-modified polymer dots and their application in chiral discrimination of lysine enantiomers. Mikrochim Acta 2022; 190:29. [PMID: 36522482 DOI: 10.1007/s00604-022-05608-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/03/2022] [Indexed: 12/23/2022]
Abstract
Fluorescein-functionalized fluorescent polymer dots (F-PDs) were prepared by a facile one-pot method by magnetic stirring under mild conditions based on carboxymethylcellulose (CMC) and fluorescein as the precursors. The obtained F-PDs exhibited a nanoscale size of 3.2 ± 1.1 nm, excellent water solubility, and bright yellow fluorescence emission with a fluorescence quantum yield of 12.0%. The fluorescent probe displays rapid and sensitive chiral discrimination for lysine focused on different complexation abilities between lysine enantiomers and Cu2+. The concentration of L-lysine in the range 4 to 14 mM (R2 = 0.997) was measured by the fluorescence intensity ratio (I513/I429); the exitation wavelength was set to λex = 365 nm. The detection limit was 0.28 mM (3σ/slope). Importantly, this sensor accurately predicted the enantiomeric excess (ee) of lysine enantiomers at the designed concentration (lysine: 20 mM; Cu2+: 10 mM) ranges. The proposed sensor was successfully applied to determine L-lys (recovery: 95.8-101%; RSD: 0.465-3.34%) and ee values (recovery: 98.5-102%; RSD: 2.61-3.21%) in human urine samples using the standard addition method.
Collapse
|
14
|
Li X, Yan X, Wang C, Ma Y, Jiang Y, Wang R, Shi D, Li Z, Zhu G, Tan B. Green synthesis of surface-group-tunable red emissive carbon dots and their applications for Fe3+ and pyrophosphate detection. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Zhao B, Li SL, Gu YN, Sun QZ, Liu H. A stable turn-off fluorescence sensor for nitroaromatic explosives and Fe3+ detection based on a 3D strontium coordination polymer. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
16
|
Wu H, Wang G, Cai Z, Li D, Xiao F, Lei D, Dai Z, Dou X. Polyethyleneimine-capped copper nanoclusters for detection and discrimination of 2,4,6-trinitrotoluene and 2,4,6-trinitrophenol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4485-4494. [PMID: 36317750 DOI: 10.1039/d2ay01311h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The detection and discrimination of 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenol (TNP) from analogues are of great importance to global security and are full of challenges in the field of trace sensing. Here, benefitting from the strong electrophilicity of TNT, a sensing strategy is established by synthesizing polyethyleneimine capped copper nanoclusters (PEI-Cu NCs) with abundant -NH2 groups. By carefully controlling the size and structure of PEI-Cu NCs, Förster resonance energy transfer (FRET) from PEI-Cu NCs to the Meisenheimer complex occurs resulting from their spectral overlap when detecting TNT, while, due to the energy level match of TNP with PEI-Cu NCs, as well as the strong affinity between its -OH and -NH2 in PEI-Cu NCs, photo-induced electron transfer (PET) is feasibly expected. As a result, TNT and TNP could be detected from 26 types of analogues and cations with a limit of detection (LOD) of 26.57 and 12.82 nM, respectively. Besides, owing to the brown color of the Meisenheimer complex, the discrimination of TNT and TNP could be additionally realized by colorimetric detection. We expect that the proposed methodology would not only shine light on the detection and discrimination of TNT and TNP that mitigate against public security concerns, but also pave a way for the deep understanding of FRET and PET related fluorescence quenching mechanisms from the aspect of controllable sensing material design and synthesis.
Collapse
Affiliation(s)
- Haotian Wu
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangfa Wang
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
| | - Zhenzhen Cai
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
| | - Dezhong Li
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
| | - Fangfang Xiao
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Lei
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
| | - Zhuohua Dai
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xincun Dou
- Xinjiang Key Laboratory of Explosives Safety Science, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830000, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Sun Z, Qing M, Fan YZ, Yan H, Li NB, Luo HQ. Quadruple analyte responsive platform: Point-of-care testing and multi-coding logic computation based on metal ions recognition and selective response. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129331. [PMID: 35709623 DOI: 10.1016/j.jhazmat.2022.129331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
While it is recognized that instrumentation techniques can provide precise and sensitive solutions to heavy metal ion monitoring, it remains challenging to transform laboratory testing into a convenient, on-site, and quantitative sensing platform for point-of-care testing (POCT) in a resource-constrained setting. To address these limitations, an affordable and user-friendly colorimetric POCT sensing system is proposed here for selectively monitoring four metal ions (Fe3+, Co2+, Pb2+, and Cd2+) based on the sulfur quantum dots (S dots). Quadruple distinct visual signals (green, brown, precipitation, and bright yellow) are presented on the fabricated paper-based analytical devices (PADs) when mixing S dots and metal ions. The high-quality photographs of the PADs are captured by a scanner, while a smartphone App converts visual signals to HSV values. The quantitative analysis relies on the digital colorimetric reading, and the limits of detection are 0.59, 0.47, 0.82, and 0.53 μM for Fe3+, Co2+, Cd2+, and Pb2+, respectively. This metal ions-responsive platform is engineered as a smart strategy for multiple logic operations (YES, NOT, AND, INHIBIT, and NOR) by integrating multi-responsive blocks into the S dots with encoded patterns, which improves the computing capability. Accordingly, this strategy demonstrates its potential for on-site environmental testing and sophisticated molecular computation.
Collapse
Affiliation(s)
- Zhe Sun
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Min Qing
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yu Zhu Fan
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
| | - Hang Yan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Nian Bing Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Hong Qun Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
18
|
Pavankumar BB, Ranjan P, Jha PC, Sivaramakrishna A. New Oxoquinoline‐Imidazole Based Fluorescence Signaling Switches for the Determination of Zn
2+
/F
−
(OFF‐ON), and Fe
3+
/Picric Acid (ON‐OFF): Applications in Anticancer Activity. ChemistrySelect 2022. [DOI: 10.1002/slct.202201875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- B. B. Pavankumar
- Department of Chemistry, School of Advanced Sciences Vellore Institute of Technology (VIT) Vellore 632 014, Tamil Nadu India
| | - Prabodh Ranjan
- School of Applied Material Sciences Central University of Gujarat, Sector-30, Gandhinagar Gujarat India
- Department of Chemical Engineering Indian Institute of Technology Madras Chennai India
| | - Prakash C. Jha
- School of Applied Material Sciences Central University of Gujarat, Sector-30, Gandhinagar Gujarat India
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Sciences Vellore Institute of Technology (VIT) Vellore 632 014, Tamil Nadu India
| |
Collapse
|
19
|
Wang M, Liu M, Nong S, Song W, Zhang X, Shen S, Jian G, Chen X, Li Z, Xu L. Highly Luminescent Nucleoside-Based N, P-Doped Carbon Dots for Sensitive Detection of Ions and Bioimaging. Front Chem 2022; 10:906806. [PMID: 35747344 PMCID: PMC9210210 DOI: 10.3389/fchem.2022.906806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/28/2022] [Indexed: 12/28/2022] Open
Abstract
The efficient detection of Fe3+ and MnO4− in a water environment is very important and challenging due to their harmful effects on the health of humanity and environmental systems. Good biocompatibility, sensitivity, selectivity, and superior photophysical properties were important attributes of carbon dot-based CDs sensors for sensing applications. In this work, we synthesized N, P-co-doped carbon dots (N/P CDs) with guanosine 5′-monophosphate (GMP) as a green carbon source, with high fluorescence quantum yield in water (QY, 53.72%). First, the luminescent N/P CDs showed a three-state “on-off-on” fluorescence response upon the sequential addition of Fe3+ and F−, with a low detection limit of 12 nM for Fe3+ and 8.5 nM for F−, respectively. Second, the N/P CDs also exhibited desirable selectivity and sensitivity for toxic MnO4− detection with the limit of detection of 18.2 nM, through a turn-off mechanism. Moreover, the luminescent N/P CDs successfully monitored the aforementioned ions in environmental water samples and in Escherichia coli.
Collapse
Affiliation(s)
- Mengru Wang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Mengling Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Shuli Nong
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Wenzhu Song
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Xianpeng Zhang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Shuang Shen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Guohong Jian
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Xiangyao Chen
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
| | - Zhanchao Li
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
- *Correspondence: Li Xu, ; Zhanchao Li ,
| | - Li Xu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, China
- Guangdong Pharmaceutical University−University of Hong Kong Joint Biomedical Innovation Platform, Zhongshan, China
- *Correspondence: Li Xu, ; Zhanchao Li ,
| |
Collapse
|
20
|
Water-soluble non-conjugated polymer dots with strong green fluorescence for sensitive detection of organophosphate pesticides. Anal Chim Acta 2022; 1206:339792. [DOI: 10.1016/j.aca.2022.339792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/19/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022]
|
21
|
Wang Z, Mathew A, Liu H. Silsesquioxane-based porous polymer derived from organic chromophore with AIE characteristics for selective detection of 2,4-dinitrophenol and Ru3+. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
22
|
Pan Y, Wang C, Fu Z, Wang GE, Xu G. Fluorescence sensing of nitrophenol explosives using a two-dimensional organic-metal chalcogenide fully covered with functional groups. Chem Commun (Camb) 2022; 58:4615-4618. [PMID: 35311844 DOI: 10.1039/d2cc00834c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new 2D fluorescent organic-metal chalcogenide (OMC), CdClHT (HT = 4-hydroxythiophenol), evenly covered with phenol groups is reported. CdClHT represents unparalleled selectivity and the highest sensitivity towards 2,4,6-trinitrophenol (TNP) (KSV = 2.16 × 107 m-1, experimental LOD = 2 nM), among all reported 2D conjugated polymer (CP) luminescent detectors.
Collapse
Affiliation(s)
- Yu Pan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), No. 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China. .,University of Chinese Academy of Sciences (UCAS), No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Chengpeng Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), No. 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China.
| | - Zhihua Fu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), No. 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China. .,University of Chinese Academy of Sciences (UCAS), No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Guang-E Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), No. 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China. .,University of Chinese Academy of Sciences (UCAS), No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Gang Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), No. 155 Yangqiao Road West, Fuzhou, Fujian, 350002, P. R. China. .,University of Chinese Academy of Sciences (UCAS), No. 19A Yuquan Road, Beijing 100049, P. R. China
| |
Collapse
|
23
|
Bu T, Bai F, Zhao S, Sun X, Jia P, He K, Wang Y, Li Q, Wang L. Dual-Modal Immunochromatographic Test for Sensitive Detection of Zearalenone in Food Samples Based On Biosynthetic Staphylococcus aureus-Mediated Polymer Dot Nanocomposites. Anal Chem 2022; 94:5546-5554. [PMID: 35348339 DOI: 10.1021/acs.analchem.1c04721] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rapid detection of toxins is of great significance to food security and human health. In this work, a dual-modality immunochromatographic test (DICT) mediated by Staphylococcus aureus (SA)-biosynthesized polymer dots (SABPDs) was constructed for sensitive monitoring of zearalenone (ZEN) in agro products. The SABPDs as potent microorganism nanoscaffolds with excellent solubility, brightness, and stability were ingeniously fabricated employing hydroquinone and SA as precursors in the Schiff base reaction and a self-assembly technique. Thanks to the fact that they not only preserved an intact microsphere for loading Fc regions of monoclonal antibodies (mAbs) and the affinity of their labeled mAbs to antigen but also generated superb colorimetric-fluorescent dual signals, the versatile SABPDs manifested unique possibilities as the new carriers for dual-readout ICT with remarkable enhancement in sensitivity in ZEN screening (limit of detection = 0.036 ng/mL, which was 31-fold lower than that of traditional gold nanoparticle-based ICT). Ultimately, the proposed immunosensor performed well in millet and corn samples with satisfactory recoveries, demonstrating its potential for point-of-care testing. This work offers a bio-friendly strategy for biosynthesizing cell-based PD vehicles with bimodal signals for food safety analysis.
Collapse
Affiliation(s)
- Tong Bu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.,Shenzhen Research Institute Northwest A&F University, Shenzhen 518000, Guangdong, China
| | - Feier Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.,Shenzhen Research Institute Northwest A&F University, Shenzhen 518000, Guangdong, China
| | - Shuang Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.,Shenzhen Research Institute Northwest A&F University, Shenzhen 518000, Guangdong, China
| | - Xinyu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.,Shenzhen Research Institute Northwest A&F University, Shenzhen 518000, Guangdong, China
| | - Pei Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.,Shenzhen Research Institute Northwest A&F University, Shenzhen 518000, Guangdong, China
| | - Kunyi He
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.,Shenzhen Research Institute Northwest A&F University, Shenzhen 518000, Guangdong, China
| | - Ying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.,Shenzhen Research Institute Northwest A&F University, Shenzhen 518000, Guangdong, China
| | - Qing Li
- College of Food Science and Engineering, The Test Center, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.,Shenzhen Research Institute Northwest A&F University, Shenzhen 518000, Guangdong, China
| |
Collapse
|
24
|
Li CH, Wang WF, Stanislas N, Yang JL. Facile preparation of fluorescent water-soluble non-conjugated polymer dots and fabricating an acetylcholinesterase biosensor. RSC Adv 2022; 12:7911-7921. [PMID: 35424765 PMCID: PMC8982230 DOI: 10.1039/d1ra07854b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/26/2022] [Indexed: 11/26/2022] Open
Abstract
Acetylcholinesterase (AChE) has been demonstrated as a crucial enzyme in the development and treatment of Alzheimer's disease (AD). The present work reported the preparation of high fluorescence emission, water-soluble, non-conjugated polymer dots (NCPDs) via Schiff base reaction, and its self-assembly between hyperbranched poly(ethylenimine) (PEI) and pyrogallol in aqueous solutions. A one-pot method was introduced, which made the preparation process of the NCPDs more convenient, energy-efficient, and environmentally friendly. The mechanism of the inherent fluorescence of NCPDs and its fluorescence properties were investigated. This study, for the first time, explored the application of NCPDs to a nanoquencher biosensing system, discovering the reversible quenching effect of MnO2 nanosheets for NCPDs. Furthermore, the quenching mechanism of MnO2 for NCPDs was demonstrated to be an inner filter effect (IFE). The NCPDs-MnO2 biosensing system showed a broader detection range from 12.3 to 3675 U L-1 for AChE and the limit of detection (LOD) was as low as 4.9 U L-1. The sensing system has been applied to screen AChE inhibitors, and the result of the positive drug was highly consistent with previous studies. The established method showed a promising prospect in screening for leading compounds in new drug discoveries for AD.
Collapse
Affiliation(s)
- Cai-Hong Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 P. R. China +86-931-4968385 +86-931-4968385
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei-Feng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 P. R. China +86-931-4968385 +86-931-4968385
| | - Nsanzamahoro Stanislas
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 P. R. China +86-931-4968385 +86-931-4968385
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jun-Li Yang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS) Lanzhou 730000 P. R. China +86-931-4968385 +86-931-4968385
| |
Collapse
|
25
|
Liu X, Han Y, Shu Y, Wang J, Qiu H. Fabrication and application of 2,4,6-trinitrophenol sensors based on fluorescent functional materials. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127987. [PMID: 34896707 DOI: 10.1016/j.jhazmat.2021.127987] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 05/06/2023]
Abstract
2,4,6-Trinitrophenol (TNP) has been widely used for a long time. The adverse effects of TNP on ecological environment and human health have promoted researchers to develop various methods for detecting TNP. Among multifarious technologies utilized for the TNP detection, fluorescence strategy based on different functional materials has become an effective and efficient method attributed to its merits such as preferable sensitivity and selectivity, rapid response speed, simple operation, and lower cost, which is also the focus of review. This review summarizes the development status of fluorescence sensors for TNP in a detailed and systematic way, especially focusing on the research progress since 2015. The sensing properties of fluorescent materials for TNP are the core of this review, including nanomaterials, organic small molecules, emerging supramolecular systems, aggregation induced emission materials and others. Moreover, the development direction and prospect of fluorescence sensing method in the field of TNP detection are introduced and discussed at the end of review.
Collapse
Affiliation(s)
- Xingchen Liu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China; CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yangxia Han
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; College of Chemistry, Zhengzhou University, Zhengzhou 450001, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China.
| |
Collapse
|
26
|
Tahir Waseem M, Muhammad Junaid H, Gul H, Ali Khan Z, Yu C, Anjum Shahzad S. Fluorene based fluorescent and colorimetric sensors for ultrasensitive detection of nitroaromatics in aqueous medium. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
27
|
Takebuchi H, Jin RH. Photoluminescent polymer micelles with thermo-/pH-/metal responsibility and their features in selective optical sensing of Pd(ii) cations. RSC Adv 2022; 12:5720-5731. [PMID: 35425587 PMCID: PMC8981652 DOI: 10.1039/d1ra08756h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 01/27/2023] Open
Abstract
Photoluminescent polymers can be divided into two types of structures: one is the well-known conventional π-conjugated rigid chain polymers bearing π-conjugated chromophores in their side chains, and the other is the common flexible polymers without π-conjugated chromophores in their main or side chains but with a feature of clustering electron-rich and/or dipole groups in their main and/or side chains. In this work, we found a new photoluminescent polymer comprising theophylline (T) and imidazole (I) residues in a suitable ratio in the side chains on the common polystyrenic block (PVB-T/I). We synthesized a block copolymer (denoted as P2) consisting of hydrophobic PVB-T/I and hydrophilic poly(N-isopropylacrylamide), and we investigated its self-assembly into micelles and their micellar features, such as thermo-responsibility, fluorescence emission, pH, and metal ion-dependent photoluminescence, in detail. Especially, the micelles self-assembled from P2 showed intrinsic blue emission which was emitted from the charge transfer association between T and I residues in the intra-chains. Weakening the association by adjustment of the pH or addition of metal ions could evidently reduce the photoluminescence in the micellar state. Very interestingly, among many metal cations, only Pd2+, which can chelate strongly with theophylline, strongly quenched the photoluminescence from the micelles. Therefore, the polymer micelles functioned as an optical sensor for Pd(ii) ion not only by spectroscopy but also with the naked eye.
Collapse
Affiliation(s)
- Haruka Takebuchi
- Department of Material and Life Chemistry, Kanagawa University 3-2-7 Rokkakubashi Yokohama 221-8686 Japan
| | - Ren-Hua Jin
- Department of Material and Life Chemistry, Kanagawa University 3-2-7 Rokkakubashi Yokohama 221-8686 Japan
| |
Collapse
|
28
|
Sun A, Wang C, Li M, Luo J, Liu Y, Yang W, Pan Q. Fluorescent zinc coordination polymer for highly selective and sensitive detection of 2,4,6-trinitrophenol in aqueous media. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Wang H, Wei Z, Vagin SI, Zhang X, Rieger B, Meldrum A. Ultrasensitive Picomolar Detection of Aqueous Acids in Microscale Fluorescent Droplets. ACS Sens 2022; 7:245-252. [PMID: 34936335 DOI: 10.1021/acssensors.1c02076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report on a fluorescent-droplet-based acid-sensing scheme that allows limits of detection below 100 pM for weak acids. The concept is based on a strong partitioning of acid from an aqueous phase into octanol droplets. Using salicylic acid as a demonstration, we show that at a high concentration, the acid partitions into the organic phase by a factor of 260, which is approximately consistent with literature values. However, at lower concentrations, we obtain a partition coefficient as high as 106, which is partly responsible for the excellent sensing performance. The enhanced equilibrium partitioning is likely due to the interaction of the dissociated acid phase with the sensor dye employed for this work. The effect of droplet size was determined, after which we derived a simple model to predict the time dependence of the color change as a function of droplet size. This work shows that color-change fluorescent-droplet-based detection is a promising avenue that can lead to exceptional sensing performance from an aqueous analyte.
Collapse
Affiliation(s)
- Hui Wang
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2M9, Canada
| | - Zixiang Wei
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Sergei I. Vagin
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85747 Garching bei München, Germany
| | - Xuehua Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Bernhard Rieger
- Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85747 Garching bei München, Germany
| | - Alkiviathes Meldrum
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2M9, Canada
| |
Collapse
|
30
|
Ramdass A, Sathish V, Thanasekaran P. AIE or AIE(P)E-active transition metal complexes for highly sensitive detection of nitroaromatic explosives. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
31
|
Innovative ratiometric optical strategy: Nonconjugated polymer dots based fluorescence-scattering dual signal output for sensing mercury ions. Food Chem 2021; 374:131771. [PMID: 34894467 DOI: 10.1016/j.foodchem.2021.131771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/07/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022]
Abstract
A new ratiometric platform was developed for sensing Hg2+, which combined fluorescence and scattering simultaneously. This ratiometric strategy reflected superiorities over conventional methods, since the two independent signals at irrelevant categories meet the requirements of sufficient wavelength separation, stimulation under one excitation, and collection on single instrument. Herein, nonconjugated polymer dots (N-PDs) were served as the recognition unit for Hg2+ with turn-off fluorescence and turn-on scattering. Additionally, two signal collection tactics were proposed to achieve fluorescence and scattering in a window: one was to record down-conversion fluorescence and second-order scattering spectra (FL@SOS), and the other was to gather the fluorescence excited by second-order diffraction light and first-order scattering (SODL-FL@FOS). This ratiometric sensor exhibited outstanding performance toward Hg2+ in the range of 0.1-50 μM with the detection limit of 27 nM. By contrast, the present proposal provided a more ingenious and scalable way to construct ratiometric sensor than traditional approach.
Collapse
|
32
|
Abstract
Conventional π-conjugated luminophores suffer from problems such as emission quenching, biotoxicity, environmental pollution, etc. The emerging nonconjugated and nonaromatic clusteroluminogens (CLgens) are expected to overcome these stubborn drawbacks, so research of CLgens shows great significance not only for practical application but also for the construction of fundamental photophysical theories. This perspective summarizes the unusual features of CLgens in comparison to traditional chromophores, such as nonconjugated molecular structures, unmatched absorption and excitation, excitation-dependent luminescence, multiple emission peaks, and room-temperature phosphorescence. Different from the theory of through-bond conjugation in π-conjugated luminophores, through-space interactions, including through-space n···n interaction and through-space n···π interaction, are regarded as the emitting sources of nonconjugated CLgens. In addition, the formation of network clusters is proposed as an efficient strategy to improve the performance of CLgens, and their potential applications of anticounterfeiting, photoelectronic devices, and bioimaging are prospected.
Collapse
Affiliation(s)
- Haoke Zhang
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou
Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- Guangdong
Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Shenzhen
Institute of Aggregate Science and Technology, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen 518172, China
- Center
for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute,
State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- AIE Institute, Guangzhou 510530, China
| |
Collapse
|
33
|
Zia A, Finnegan JR, Morrow JP, Yin W, Jasieniak JJ, Pentzer E, Thickett S, Davis TP, Kempe K. Intrinsic Green Fluorescent Cross-Linked Poly(ester amide)s by Spontaneous Zwitterionic Copolymerization. Biomacromolecules 2021; 22:4794-4804. [PMID: 34623149 DOI: 10.1021/acs.biomac.1c01087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The spontaneous zwitterionic copolymerization (SZWIP) of 2-oxazolines and acrylic acid affords biocompatible but low molecular weight linear N-acylated poly(amino ester)s (NPAEs). Here, we present a facile one-step approach to prepare functional higher molar mass cross-linked NPAEs using 2,2'-bis(2-oxazoline)s (BOx). In the absence of solvent, insoluble free-standing gels were formed from BOx with different length n-alkyl bridging units, which when butylene-bridged BOx was used possessed an inherent green fluorescence, a behavior not previously observed for 2-oxazoline-based polymeric materials. We propose that this surprising polymerization-induced emission can be classified as nontraditional intrinsic luminescence. Solution phase and oil-in-oil emulsion approaches were investigated as means to prepare solution processable fluorescent NPAEs, with both resulting in water dispersible network polymers. The emulsion-derived system was investigated further, revealing pH-responsive intensity of emission and excellent photostability. Residual vinyl groups were shown to be available for modifications without affecting the intrinsic fluorescence. Finally, these systems were shown to be cytocompatible and to function as fluorescent bioimaging agents for in vitro imaging.
Collapse
Affiliation(s)
- Aadarash Zia
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology and Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - John R Finnegan
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology and Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Joshua P Morrow
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology and Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Wenping Yin
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Jacek J Jasieniak
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Emily Pentzer
- Department of Chemistry, Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Stuart Thickett
- School of Natural Sciences, The University of Tasmania, Hobart, TAS 7005, Australia
| | - Thomas P Davis
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology and Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Kristian Kempe
- ARC Centre of Excellence in Convergent Bio-Nano Science & Technology and Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.,Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
34
|
Haghighi Shishavan Y, Amjadi M. A new enhanced chemiluminescence reaction based on polymer dots for the determination of metronidazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 260:119992. [PMID: 34082355 DOI: 10.1016/j.saa.2021.119992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Polymer dots (PDs) with non-conjugated functional groups are attracting nanomaterials due to their ease of synthesis, the biocompatibility of precursors, and low toxicity. In this work, PDs with non-conjugated groups were synthesized with a simple and straightforward method by Schiff base reaction. Then their possible application in the chemiluminescence (CL) reactions was explored. Results were shown that PDs increased the CL intensity of the NaIO4-fluorescein system about 15 times. Regarding the CL mechanism, we proved that the emitting species is fluorescein, which can be excited by the energy transfer from the excited-state PDs. It was observed that CL emission is promoted by the interaction of metronidazole (MND) with the PDs. Therefore, we designed a novel and sensitive assay for MND based on its enhancing effect on NaIO4-fluorescein-PDs CL system. The introduced assay showed a linear response in the range of 5.0-300 nM with a detection limit of 1.5 nM. The method was used for the determination of MND in spiked plasma samples.
Collapse
Affiliation(s)
- Yalda Haghighi Shishavan
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.
| |
Collapse
|
35
|
Adampourezare M, Dehghan G, Hasanzadeh M, Feizi MAH. Identification of DNA methylation by novel optical genosensing: A new platform in epigenetic study using biomedical analysis. J Mol Recognit 2021; 34:e2938. [PMID: 34612542 DOI: 10.1002/jmr.2938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 12/12/2022]
Abstract
Due to the important role of methylation in cancer, the use of sensitive analytical methods for early diagnosis and efficient clinical pharmacotherapy is highly demanded. In this study, an innovative label-free method has been developed for the recognition of methylated DNA in the promoter area of adenomatous polyposis coli gene (APC gene). Also, differentiation of unmethylated DNA (GCGGAGTGCGGGTCGGGAAGCGGA) from methylated cDNA (GC(M)GGAGTGC(M)GGGTC(M)GGGAAGC(M)GGA) was performed using optical synthesized probe (thionine-based polymer). Hybridization of pDNA (TCCGCTTCCCGACCCGCACTCCGC) with various types of cDNA sequences was studied by UV-visible and fluorescence spectroscopy. Also, some of the mismatch sequences {(GC(M)GGAGTAC(M)GGGTC(M)GGGAAGC(M)GGA) and (GCGGAGTACGGGTCGGGAAGCGGA)} were applied as negative control. For this purpose, The synthesized optical probe was characterized by transmission electron microscopy, atomic force microscopy, dynamic light scattering, zeta potential, energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, UV-Vis, and fluorescence spectroscopy. Under optimal conditions, the analytical performance of engineered DNA-based assay was studied and exhibited excellent dynamic range (1 zM to 3 pM) with low limit of quantitation (LLOQ) of 1 zM. The designed DNA-based assay showed a high capability of discriminating methylation, unmethylated and mismatched sequences. The engineered genosensor is simple and inexpensive and can detect DNA methylation with high sensitivity. Therefore, the designed geno-assay could detect DNA methylation significantly and discriminate from unmethylated DNA. It is expected that the proposed geno-assay could be used for the detection of DNA methylation, genetic mutations, epigenetic alterations, and early stage diagnosis of various cancer toward efficient clinical pharmacotherapy.
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Ali Hosseinpoure Feizi
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.,Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
36
|
Zhang S, Wang Y, Yang G. A Facile Strategy for the Preparation of Carboxymethylcellulose‐Derived Polymer Dots and Their Application to Detect Tetracyclines. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Siyu Zhang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University Harbin 150040 China
| | - Ying Wang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University Harbin 150040 China
| | - Guang Yang
- Department of Chemistry and Chemical Engineering, College of Chemistry, Chemical Engineering and Resource Utilization Northeast Forestry University Harbin 150040 China
| |
Collapse
|
37
|
Hyperbranched polyethylenimine–based polymeric nanoparticles: synthesis, properties, and an application in selective response to copper ion. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04885-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Liu J, Fu T, Liu C, Wu F, Wang H. Sensitive detection of picric acid in an aqueous solution using fluorescent nonconjugated polymer dots as fluorescent probes. NANOTECHNOLOGY 2021; 32:355503. [PMID: 34034241 DOI: 10.1088/1361-6528/ac04d1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Nonconjugated polymer dots (NPDs) were successfully used as fluorescent probes to selectively and sensitively detect picric acid (PA). The NPDs were prepared from polyethylenimine and 1,4-phthalaldehyde under mild conditions and had excitation and emission maxima of 351 and 474 nm, respectively. Fluorescence of the NPDs was efficiently quenched by PA through the inner filter effect because of the overlapping PA absorption band and NPD excitation spectrum. The NPDs allowed PA to be determined with a high degree of sensitivity. The linear range was 0-140μM and the detection limit was 0.5μM. The work involved developing a novel method for synthesizing NPDs and a promising platform for determining PA in environmental media.
Collapse
Affiliation(s)
- Jinshui Liu
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Ting Fu
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Chenfu Liu
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, People's Republic of China
| | - Fangfei Wu
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, People's Republic of China
| | - Huaxin Wang
- College of Chemistry and Materials Science, Anhui Key Laboratory of Chemo/Biosensing, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-based Materials, Anhui Normal University, Wuhu 241000, People's Republic of China
| |
Collapse
|
39
|
Yang J, Chen W, Chen X, Zhang X, Zhou H, Du H, Wang M, Ma Y, Jin X. Detection of Cu 2+ and S 2- with fluorescent polymer nanoparticles and bioimaging in HeLa cells. Anal Bioanal Chem 2021; 413:3945-3953. [PMID: 33954830 DOI: 10.1007/s00216-021-03345-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/03/2021] [Accepted: 04/13/2021] [Indexed: 11/26/2022]
Abstract
Novel spherical polymer nanoparticles were synthesized by hyperbranched polyethylenimine (hPEI) and 6-hydroxy-2-naphthaldehyde (HNA) via Schiff base reaction (one-pot reaction), which had great advantages in water solubility and green synthesis. Meanwhile, probe PEI-HNA could quickly detect Cu2+ in the range of 0-60 μM in 30 s with the detection limit of 243 nM. The fluorescence of PEI-HNA-Cu2+ could be recovered by the addition of S2- in 50 s with the detection limit of 227 nM. Based on the excellent optical properties, PEI-HNA has been used in the bioimaging of living cells with excellent cell penetrability and low toxicity. More importantly, PEI-HNA has been doped into filter paper, hydrogel, and nanofibrous film to prepare solid-phase sensors, displaying rapid response and excellent sensitivity. Moreover, the low-cost and simple preparation of these sensors offers great potential and possibilities for industrialization, which could help accelerate the development of sensors in environmental and biological fields.
Collapse
Affiliation(s)
- Jin Yang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Weixing Chen
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China.
| | - Xinyu Chen
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Xi Zhang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Hongwei Zhou
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Haotian Du
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Mingcheng Wang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Yiting Ma
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China
| | - Xilang Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
40
|
Ghosh A, Seth SK, Ghosh A, Pattanayak P, Mallick A, Purkayastha P. A New Compound for Sequential Sensing of Picric Acid and Aliphatic Amines: Physicochemical Details and Construction of Molecular Logic Gates. Chem Asian J 2021; 16:1157-1164. [PMID: 33787004 DOI: 10.1002/asia.202100117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/30/2021] [Indexed: 01/09/2023]
Abstract
Picric acid (PA) at low concentration is a serious water pollutant. Alongside, aliphatic amines (AAs) add to the queue to pollute surface water. Plenty of reports are available to sense PA with an ultralow limit of detection (LOD). However, only a handful of works are testified to detect AAs. A new fluorescent donor-acceptor compound has been synthesized with inherent intramolecular charge transfer (ICT) character that enables selective and sensitive colorimetric quantitative detection of PA and AAs with low LODs in non-aqueous as well as aqueous solutions. The synthesized compound is based on a hemicyanine skeleton containing two pyridenylmethylamino groups at the donor and a benzothiazole moiety at the acceptor ends. The detailed mechanisms and reaction dynamics are explained spectroscopically along with computational support. The fluorescence property of the detecting compound changes due to protonation of its pyridinyl centers by PA leading to quenching of fluorescence and subsequently de-protonation by AAs to revive the signal. We have further designed logic circuits from the acquired optical responses by sequential interactions.
Collapse
Affiliation(s)
- Ashutosh Ghosh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| | - Sourav Kanti Seth
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| | - Arnab Ghosh
- Department of Materials Science, Indian Association for the Cultivation of Science, 700032, Jadavpur, Kolkata, India
| | - Pradip Pattanayak
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| | - Arabinda Mallick
- Department of Chemistry, Kazi Nazrul University, Kalla Bypass More, WB 713340, Burdwan, India
| | - Pradipta Purkayastha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, WB 741262, Mohanpur, India
| |
Collapse
|
41
|
Fan Y, Yao J, Huang M, Linghu C, Guo J, Li Y. Non-conjugated polymer dots for fluorometric and colorimetric dual-mode detection of quercetin. Food Chem 2021; 359:129962. [PMID: 33945984 DOI: 10.1016/j.foodchem.2021.129962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/21/2021] [Accepted: 04/25/2021] [Indexed: 01/28/2023]
Abstract
Due to the biochemical and pharmacological activities, the convenient and effective detection of quercetin (Qc) is very important for biochemistry, pharmaceutical chemistry and clinical medicine. A kind of non-conjugated polymer dots (NCPDs) was used as a versatile and sensitive dual-mode optical output for Qc detection, which was synthesized by hyperbranched poly(ethylenimine) (PEI) and l-threonine via environmentallyfriendly way. The dual-mode method proposed in this work had high sensitivity and definiteselectivity for Qc detection. Additionally, it was convenient for the naked eyes to observe the fluorescence brightness and color change.
Collapse
Affiliation(s)
- Yu Fan
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jie Yao
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Mengke Huang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chenxi Linghu
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinlin Guo
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; College of Pharmacy, Key Laboratory of Standardization of Chinese Medicine, Ministry of Education Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
42
|
Wang Z, Si S, Luo Z, Qin T, Xu Z, Liu B. An AIE-based Fluorescent Probe for Detection of Picric Acid in Water. CHEM LETT 2021. [DOI: 10.1246/cl.200618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhonglin Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Shufan Si
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zijie Luo
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Tianyi Qin
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhongyong Xu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Bin Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
43
|
Chen S, Huang Y, Yang Y, Luo F, Zhao Q, Chen G. Ultrasensitive Fe 3+ ion detection based on pH-insensitive fluorescent graphene nanosensors in strong acid and neutral media. NEW J CHEM 2021. [DOI: 10.1039/d0nj06201d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic illustration of the preparation of FRGO and the detection of Fe3+ ions in strong acid and neutral media.
Collapse
Affiliation(s)
- Songlin Chen
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
| | - Yajing Huang
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
| | - Yang Yang
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
| | - Fanghua Luo
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
| | - Qinghua Zhao
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
- Graphene Powder & Composite Research Center of Fujian Province
| | - Guohua Chen
- College of Materials Science and Engineering
- Huaqiao University
- Xiamen 361021
- P. R. China
- Graphene Powder & Composite Research Center of Fujian Province
| |
Collapse
|
44
|
Sun YX, Chen ZZ, Guo G, Li RY, Zhang T, Dong WK. Two novel tetraphenylethylene-skeleton salamo-type fluorescent probes: specific recognition of cyanide through different response patterns. NEW J CHEM 2021. [DOI: 10.1039/d1nj03608d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The possible sensing mechanism of probes TPES1 and TPES2 towards CN− ions.
Collapse
Affiliation(s)
- Yin-Xia Sun
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Zhuang-Zhuang Chen
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Geng Guo
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Ruo-Yu Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Ting Zhang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China
| |
Collapse
|
45
|
Tang Y, Zhou X, Xu K, Dong X. One-pot synthesis of fluorescent non-conjugated polymer dots for Fe 3+ detection and temperature sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118626. [PMID: 32604052 DOI: 10.1016/j.saa.2020.118626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/04/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
The facile preparation of highly fluorescent polymer dots (PDs) still attracts substantial interest. Here, temperature/Fe3+ dual-responsive PDs are synthesized under mild conditions via the amidation reaction and self-assembly between hyperbranched polyethyleneimine and 5-aminosalicylic acid. The prepared PDs display strong green fluorescence with quantum yield of 15.5% and 53.3% in water and dimethylsulfoxide, respectively. The PDs also possess unique features, including excellent solubility, solvent polarity-dependent emission, remarkable photostability, as well as good salt-tolerance. Interestingly, the fluorescence intensity of PDs exhibits a reversible and sensitive response to temperature within 20-65 °C, which renders the PDs useful as a thermometer probe. Importantly, Fe3+ ion has the specific coordination ability toward the surface groups of PDs, leading to the aggregation and fluorescence quenching of PDs. Thus, the PDs are employed as a fluorescence probe for sensitive detecting Fe3+. The fluorescent intensity linearly decreases with increasing Fe3+ from 2 to 60 μM. Besides, Fe3+ concentration in river water samples is successfully assayed with this developed probe. The non-conjugated PDs with facile preparation, sensitive response to temperature and Fe3+ may hold potential applications in environmental monitoring.
Collapse
Affiliation(s)
- Yecang Tang
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China.
| | - Xin Zhou
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Keke Xu
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| | - Xuemei Dong
- College of Chemistry and Materials Science, Anhui Normal University, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Wuhu 241000, China
| |
Collapse
|
46
|
Liu Q, Zhao F, Shi B, Lü C. Mussel-inspired polydopamine-encapsulated carbon dots with dual emission for detection of 4-nitrophenol and Fe 3. LUMINESCENCE 2020; 36:431-442. [PMID: 33043598 DOI: 10.1002/bio.3961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
Carbon dots (CDs) with excellent optical properties are widely used in biomedicine, fluorescence sensing, and light-emitting diodes (LEDs). However, it is still a challenge to prepare CDs that can stably emit red fluorescence in the water environment. In this study, polydopamine-encapsulated luminescent carbon dots (CDs@PDA) with an encapsulating structure were synthesized at room temperature from p-phenylenediamine-derived red-light CDs as the core and using mussel-inspired chemical properties of polydopamine (PDA). In the binary system of water:ethanol = 1: 3 (volume ratio), the as-prepared CDs@PDA had a dual emission of ultraviolet light (330 nm) and red light (640 nm) with the fluorescence quantum yields of 8.0 and 15.5%, respectively, at the same time under 285 nm light excitation. The as-prepared CDs@PDA could be directly used for fluorescence selective sensing of 4-nitrophenol (4-NP) and Fe3+ through simultaneously quenching of ultraviolet and red fluorescence based on the internal filtration effect mechanism with detection limits of 3.44 and 3.75 μM, respectively. This research showed that PDA-coated CDs can significantly improve the photoluminescence stability of CDs with new optical features. This means that the encapsulated structure of mussel chemistry is very helpful for expanding the application range of CDs in the water environment.
Collapse
Affiliation(s)
- Qian Liu
- Institute of Chemistry, Northeast Normal University, Changchun, P. R. China
| | - Feifei Zhao
- Institute of Chemistry, Northeast Normal University, Changchun, P. R. China
| | - Bingfeng Shi
- Institute of Chemistry, Northeast Normal University, Changchun, P. R. China
| | - Changli Lü
- Institute of Chemistry, Northeast Normal University, Changchun, P. R. China
| |
Collapse
|
47
|
Zhu G, Fu W, Han B, Shi J, Tong B, Cai Z, Zhi J, Dong Y. Catalyst-Free Multicomponent Cyclopolymerizations of Diisocyanides, Activated Alkynes, and 1,4-Dibromo-2,3-Butanedione: a Facile Strategy toward Functional Polyiminofurans Containing Bromomethyl Groups. Macromol Rapid Commun 2020; 42:e2000463. [PMID: 32989821 DOI: 10.1002/marc.202000463] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/14/2020] [Indexed: 12/17/2022]
Abstract
Polymers containing iminofuran (PIFs) are rarely reported due to the lack of simple and effective synthesis methods. In this work, a novel multicomponent cyclopolymerization (MCCP) of diisocyanides, activated alkynes, and 1,4-dibromo-2,3-butanedione using catalyst-free one-pot reactions under mild conditions to prepare PIFs containing bromomethyl groups is reported. PIFs with good solubility and thermal stability are obtained with high Mw s (up to 19 600) and good yields (up to 89.5%) under optimized polymerization conditions. The structure of the PIFs is characterized by nuclear magnetic resonance, Fourier transform infrared spectroscopy, and gel permeation chromatography. The photophysical properties indicate that polymers P1a2b3 and P1c2b3 have cluster-triggered emission characteristics. Thin films made from PIFs quickly degrade under UV irradiation. Moreover, the obtained polymers are decorated with bromomethyl and carboxylate groups in the side chain, which can be postfunctionalized to prepare multifunctional materials, such as star branched polymers and biomedical carrier materials. Thus, this work not only enriches the field of polymerization based on isocyanates and activated alkynes but also provides a facile strategy toward functional iminofuran polymers.
Collapse
Affiliation(s)
- Guinan Zhu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Weiqiang Fu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Binru Han
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Junge Zhi
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
48
|
Fan YZ, Han L, Yang YZ, Sun Z, Li N, Li BL, Luo HQ, Li NB. Multifunctional Binding Strategy on Nonconjugated Polymer Nanoparticles for Ratiometric Detection and Effective Removal of Mercury Ions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10270-10278. [PMID: 32697576 DOI: 10.1021/acs.est.0c00702] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing a multifunctional platform for the selective detection and effective removal of toxic ions is a major challenge when addressing heavy metal contamination in environmental science. Herein, novel nonconjugated polymer nanoparticles (PNPs) called mercaptosuccinic acid-thiosemicarbazide PNPs (MT-PNPs) with appealing fluorescence and stability are synthesized via facile one-step hydrothermal treatment for attractive sensing and simultaneous removal of mercury(II). Interestingly, aggregation-induced fluorescence switch-off and scattering enhancement are found upon the addition of Hg2+, rendering MT-PNPs as a ratiometric sensor for selective and accurate Hg2+ monitoring. A wide linear range (0.1-1471 μM) and a low detection limit (95 nM) are obtained. This dual-signal opposite responses triggered by Hg2+ originate from the formation of MT-PNP-Hg2+ congeries via the multisite binding between S,N,O-containing groups of MT-PNPs and mercury. Meanwhile, target-induced aggregation renders an effective Hg2+ separation from contaminative aqueous media by MT-PNPs, which exhibits a satisfactory absorption efficiency of 90.42% within 50 min. Upon the simple Na2S treatment, the MT-PNPs can be regenerated and reused. This work thus delivers an applicable method for the ratiometric detection and effective removal of mercury with the novel nonconjugated PNPs, offering potential in tackling the problem of heavy metal ion pollution for environmental monitoring and remediation.
Collapse
Affiliation(s)
- Yu Zhu Fan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Lei Han
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Yu Zhu Yang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Zhe Sun
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Na Li
- School of Pharmaceutical Science, Nanchang University, Nanchang 330006, P. R. China
| | - Bang Lin Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hong Qun Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
49
|
Lai S, Wang K, Liu M, Tong J, Guan X. Unorthodox β-Cyclodextrin-Based AIE-Active Probes for Living Cell Imaging in the Absence of Fluorophore Units and Related Mechanism Exploration. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shoujun Lai
- College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, Gansu 730000, P.R. China
| | - Kailong Wang
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Meina Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Jinhui Tong
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| | - Xiaolin Guan
- Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education, Key Laboratory of Polymer Materials Ministry of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu 730070, P.R. China
| |
Collapse
|
50
|
Zhao F, Zhang T, Yang Y, Lü C. A facile synthesis of multifunctional carbon dots as fluorescence 'turn on' and 'turn off' probes for selective detection of Al 3+ and 2,4,6-trinitrophenol. LUMINESCENCE 2020; 35:1277-1285. [PMID: 32524730 DOI: 10.1002/bio.3889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/16/2020] [Accepted: 05/27/2020] [Indexed: 01/13/2023]
Abstract
Carbon dots (CDs) have drawn increasing interests due to their unique optical properties and promising application in various fields. In this study, citric acid (CA) and 5-chloromethyl-8-hydroxyquinoline (LQ) were used to synthesize nitrogen-doped CDs as novel fluorescent probes using a one-step solvothermal route. The as-prepared CDs had strong blue-white fluorescence emission when excited at 405 nm wavelength with a quantum yield (QY) of 25%, behaving with high ion concentration stability. Water-soluble CDs with a 8-hydroxyquinoline structure on their surface could be used to detect Al3+ using a 'turn on' mechanism and trinitrophenol (TNP) using a 'turn off' mechanism with detection limits of 229 nM and 44.4 nM, respectively. Al3+ enhances the fluorescence of CDs by forming a coordination complex to generate a fluorescence synergistic role and limit CD nonradiative transition. TNP quenched the fluorescence with high selectivity and sensitivity, which was attributed to the inner filter effect and static quenching. These results indicated that these CDs with their unique 'turn on' and 'turn off' nature have potential application in the environmental protection field and in prevention of terrorist threats.
Collapse
Affiliation(s)
- Feifei Zhao
- Institute of Chemistry, Northeast Normal University, Changchun, China
| | - Tianyi Zhang
- Institute of Chemistry, Northeast Normal University, Changchun, China
| | - Yu Yang
- Institute of Chemistry, Northeast Normal University, Changchun, China
| | - Changli Lü
- Institute of Chemistry, Northeast Normal University, Changchun, China
| |
Collapse
|