1
|
Liu W, Wang Y, Bu L, Chu K, Huang Y, Guo N, Qu L, Sang J, Su X, Zhang X, Li Y. Preparation of Fe-HMOR with a Preferential Iron Location in the 12-MR Channels for Dimethyl Ether Carbonylation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2417. [PMID: 38793483 PMCID: PMC11123140 DOI: 10.3390/ma17102417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
As the Brønsted acid sites in the 8-membered ring (8-MR) of mordenite (MOR) are reported to be the active center for dimethyl ether (DME) carbonylation reaction, it is of great importance to selectively increase the Brønsted acid amount in the 8-MR. Herein, a series of Fe-HMOR was prepared through one-pot hydrothermal synthesis by adding the EDTA-Fe complex into the gel. By combining XRD, FTIR, UV-Vis, Raman and XPS, it was found that the Fe atoms selectively substituted for the Al atoms in the 12-MR channels because of the large size of the EDTA-Fe complex. The NH3-TPD and Py-IR results showed that with the increase in Fe addition from Fe/Si = 0 to 0.02, the Brønsted acid sites derived from Si-OH-Al in the 8-MR first increased and then decreased, with the maximum at Fe/Si = 0.01. The Fe-modified MOR with Fe/Si = 0.01 showed the highest activity in DME carbonylation, which was three times that of HMOR. The TG/DTG results indicated that the carbon deposition and heavy coke formation in the spent Fe-HMOR catalysts were inhibited due to Fe addition. This work provides a practical way to design a catalyst with enhanced catalytic performance.
Collapse
Affiliation(s)
| | - Yaquan Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (W.L.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
Zhou Y, Lv S, Li H, Wu Q, Chen T, Liu S, Li W, Yang W, Chen Z. MIL-47(V)-derived carbon-doped vanadium oxide for selective oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Dalton Trans 2022; 51:18473-18479. [PMID: 36421021 DOI: 10.1039/d2dt03338k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The development and transformation of biomass-derived platform compounds is a sustainable way to deal with the fossil fuel crisis. 5-Hydroxymethylfurfural (HMF) can be reduced or oxidized to produce many high-value compounds; however, it is challenging to effectively produce 2,5-diformylfuran (DFF) due to overoxidation. In this work, a carbon-doped V2O5 (C-V2O5) material was obtained through pyrolysis of MIL-47(V) nanorods, a typical metal-organic framework material. The X-ray diffraction patterns and X-ray photoelectron spectra showed that the graphitized carbon species were incorporated in C-V2O5. High-efficiency HMF oxidation, high specific selectivity for DFF and excellent recycling could be achieved with the C-V2O5 catalyst. Fourier-transform infrared spectroscopy combined with density functional theory (DFT) calculation revealed that graphitized carbon weakens the VO bond and promotes the formation of oxygen vacancies in C-V2O5, thus improving the catalytic activity in the oxidation of furfuryl alcohols. The V4+ induced by oxygen vacancies will be oxidized by O2 to form V5+, so that the cycle can be realized. It exhibits remarkable selectivity in the oxidation of different alcohols produced from biomass based on the relatively constant active sites in C-V2O5.
Collapse
Affiliation(s)
- Yan Zhou
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Shanshan Lv
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Han Li
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Qikang Wu
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Taiyu Chen
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Shaohuan Liu
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Wanying Li
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Wenjuan Yang
- Julong College, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Zheng Chen
- Key Laboratory of Functional, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
3
|
Fang Z, Huang M, Liu B, Chen J, Jiang F, Xu Y, Liu X. Insights into Fe species structure‐performance relationship for direct methane conversion toward oxygenates over Fe‐MOR catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202200218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhihao Fang
- Jiangnan University Department of Chemical Engineering No. 1800 Lihu Avenue 214122 Wuxi CHINA
| | - Mengyuan Huang
- Jiangnan University Department of Chemical Engineering No. 1800 Lihu Avenue 214122 Wuxi CHINA
| | - Bing Liu
- Jiangnan University Department of Chemical Engineering No. 1800 Lihu Avenue 214122 Wuxi CHINA
| | - Jie Chen
- Jiangnan University Department of Chemical Engineering No. 1800 Lihu Avenue 214122 Wuxi CHINA
| | - Feng Jiang
- Jiangnan University Department of Chemical Engineering No. 1800 Lihu Avenue 214122 Wuxi CHINA
| | - Yuebing Xu
- Jiangnan University Department of Chemical Engineering No. 1800 Lihu Avenue 214122 Wuxi CHINA
| | - Xiaohao Liu
- Jiangnan University School of Chemical and Material Engineering No. 1800 Lihu Avenue 214122 Wuxi CHINA
| |
Collapse
|
4
|
Zhang LY, Feng XB, He ZM, Chen F, Su C, Zhao XY, Cao JP, He YR. Enhancing the stability of dimethyl ether carbonylation over Fe-doped MOR zeolites with tunable 8-MR acidity. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Jia C, Wang K, Feng Y, Wang X. Efficient aerobic oxidation of 5‐hydroxymethyl‐2‐furfural into 2, 5‐diformylfuran by Cu
2
V
2
O
7
‐Al
2
O
3
spherical beads. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chuanqi Jia
- Tianjin Key Lab of Membrane Science and Desalination Technology, Chemical Engineering Research Center, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Kang Wang
- Tianjin Key Lab of Membrane Science and Desalination Technology, Chemical Engineering Research Center, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Yi Feng
- Tianjin Key Lab of Membrane Science and Desalination Technology, Chemical Engineering Research Center, School of Chemical Engineering and Technology Tianjin University Tianjin China
| | - Xitao Wang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology Tianjin University Tianjin China
| |
Collapse
|
6
|
Lazzarini A, Colaiezzi R, Gabriele F, Crucianelli M. Support-Activity Relationship in Heterogeneous Catalysis for Biomass Valorization and Fine-Chemicals Production. MATERIALS 2021; 14:ma14226796. [PMID: 34832198 PMCID: PMC8619138 DOI: 10.3390/ma14226796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
Heterogeneous catalysts are progressively expanding their field of application, from high-throughput reactions for traditional industrial chemistry with production volumes reaching millions of tons per year, a sector in which they are key players, to more niche applications for the production of fine chemicals. These novel applications require a progressive utilization reduction of fossil feedstocks, in favor of renewable ones. Biomasses are the most accessible source of organic precursors, having as advantage their low cost and even distribution across the globe. Unfortunately, they are intrinsically inhomogeneous in nature and their efficient exploitation requires novel catalysts. In this process, an accurate design of the active phase performing the reaction is important; nevertheless, we are often neglecting the importance of the support in guaranteeing stable performances and improving catalytic activity. This review has the goal of gathering and highlighting the cases in which the supports (either derived or not from biomass wastes) share the worth of performing the catalysis with the active phase, for those reactions involving the synthesis of fine chemicals starting from biomasses as feedstocks.
Collapse
|
7
|
Liu D, Chen B, Li J, Lin Z, Li P, Zhen N, Chi Y, Hu C. Imidazole-Functionalized Polyoxometalate Catalysts for the Oxidation of 5-Hydroxymethylfurfural to 2,5-Diformylfuran Using Atmospheric O 2. Inorg Chem 2021; 60:3909-3916. [PMID: 33593056 DOI: 10.1021/acs.inorgchem.0c03698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biomass as a sustainable and abundant carbon source has attracted considerable attention as a potential alternative to petroleum resources. The selective oxidation of 5-hydroxymethylfurfural (HMF), a versatile platform molecule, to value-added 2,5-diformylfuran (DFF) provides an efficient pathway for biomass valorization. Herein, three discrete imidazole-functionalized polyoxometalates (POMs), HPMo8VVI4O40(VVO)2[(VIVO)(IM)4]2·nH2O·(IM)m (IM = 1-methylimidazole, n = 4, m = 8 for 1; IM = 1-ethylimidazole, n = 4, m = 9 for 2; IM = 1-propylimidazole, n = 0, m = 4 for 3), have been successfully synthesized by a facile solvothermal method and thoroughly characterized by routine techniques. Compounds 1-3 contain a bi-capped pseudo-Keggin {HPMo8V4O40(VO)2} and two imidazole-functionalized {(VO)(IM)4} groups, which, to our knowledge, represent the first examples of organic-functionalized Mo-V clusters. Compounds 1-3 as heterogeneous catalysts can effectively promote the transformation of HMF to DFF using atmospheric O2 as oxidant. Under minimally optimized conditions, 95% of HMF was converted by 1 with 95% selectivity for DFF and its catalytic activity was basically maintained after five cycles. Moreover, the important roles of the bi-capped pseudo-Keggin cluster and the functionalized V groups in the selective oxidation of HMF have been explored. According to experimental and spectroscopic results, a three-step oxidation mechanism of HMF to DFF has been proposed.
Collapse
Affiliation(s)
- Dan Liu
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 P.R. China
| | - Baokuan Chen
- School of Petrochemical Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, P.R. China
| | - Jie Li
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 P.R. China
| | - Zhengguo Lin
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 P.R. China
| | - Peihe Li
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 P.R. China
| | - Ni Zhen
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 P.R. China
| | - Yingnan Chi
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 P.R. China
| | - Changwen Hu
- Key Laboratory of Cluster Science, Ministry of Education, Beijing Key Laboratory of Photoelectroic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081 P.R. China
| |
Collapse
|
8
|
Xu C, Paone E, Rodríguez-Padrón D, Luque R, Mauriello F. Recent catalytic routes for the preparation and the upgrading of biomass derived furfural and 5-hydroxymethylfurfural. Chem Soc Rev 2021; 49:4273-4306. [PMID: 32453311 DOI: 10.1039/d0cs00041h] [Citation(s) in RCA: 289] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Furans represent one of the most important classes of intermediates in the conversion of non-edible lignocellulosic biomass into bio-based chemicals and fuels. At present, bio-furan derivatives are generally obtained from cellulose and hemicellulose fractions of biomass via the acid-catalyzed dehydration of their relative C6-C5 sugars and then converted into a wide range of products. Furfural (FUR) and 5-hydroxymethylfurfural (HMF) are surely the most used furan-based feedstocks since their chemical structure allows the preparation of various high-value-added chemicals. Among several well-established catalytic approaches, hydrogenation and oxygenation processes have been efficiently adopted for upgrading furans; however, harsh reaction conditions are generally required. In this review, we aim to discuss the conversion of biomass derived FUR and HMF through unconventional (transfer hydrogenation, photocatalytic and electrocatalytic) catalytic processes promoted by heterogeneous catalytic systems. The reaction conditions adopted, the chemical nature and the physico-chemical properties of the most employed heterogeneous systems in enhancing the catalytic activity and in driving the selectivity to desired products are presented and compared. At the same time, the latest results in the production of FUR and HMF through novel environmental friendly processes starting from lignocellulose as well as from wastes and by-products obtained in the processing of biomass are also overviewed.
Collapse
Affiliation(s)
- C Xu
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Dongfeng Road 5, Zhengzhou, P. R. China
| | - E Paone
- Dipartimento DICEAM, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89122 Reggio Calabria, Italy. and Dipartimento di Ingegneria Industriale, Università degli Studi di Firenze, Firenze, Italy
| | - D Rodríguez-Padrón
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014 Córdoba, Spain.
| | - R Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, 14014 Córdoba, Spain. and Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., Moscow, 117198, Russian Federation
| | - F Mauriello
- Dipartimento DICEAM, Università Mediterranea di Reggio Calabria, Loc. Feo di Vito, I-89122 Reggio Calabria, Italy.
| |
Collapse
|
9
|
Liu B, Huang J, Yan J, Luo R. Tailoring the catalytic properties of alkylation using Cu- and Fe-containing mesoporous MEL zeolites. NEW J CHEM 2021. [DOI: 10.1039/d1nj01113h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic performances of alkylation can be maximized by optimizing the redox properties and pore architectures of zeolites.
Collapse
Affiliation(s)
- Baoyu Liu
- School of Chemical Engineering and Light Industry
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry
- Guangdong University of Technology
- Guangzhou
- Guangdong 510006
| | - Jiajin Huang
- School of Chemical Engineering and Light Industry
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry
- Guangdong University of Technology
- Guangzhou
- Guangdong 510006
| | - Jian Yan
- School of Environmental and Chemical Engineering
- Foshan University
- Foshan 528000
- China
| | - Rongchang Luo
- School of Chemical Engineering and Light Industry
- Guangzhou Key Laboratory of Clean Transportation Energy Chemistry
- Guangdong University of Technology
- Guangzhou
- Guangdong 510006
| |
Collapse
|
10
|
Hong M, Wu S, Jena HS, Li J, Ding L, Wang J, Wei L, Ling Z, Li K, Wang S. Bio-based green solvent for metal-free aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfural over nitric acid-modified starch. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
11
|
Si ZB, Xiong JS, Qi T, Yang HM, Min HY, Yang HQ, Hu CW. Theoretical study on molecular mechanism of aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformyfuran catalyzed by VO 2+ with counterpart anion in N, N-dimethylacetamide solution. RSC Adv 2021; 11:39888-39895. [PMID: 35494149 PMCID: PMC9044584 DOI: 10.1039/d1ra07297h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/03/2021] [Indexed: 11/30/2022] Open
Abstract
Vanadium-containing catalysts exhibit good catalytic activity toward the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-diformyfuran (DFF). The aerobic oxidation mechanism of HMF to DFF catalyzed by VO2+ with counterpart anion in N,N-dimethylacetamide (DMA) solution have been theoretically investigated. In DMA solution, the stable VO2+-containing complex is the four-coordinated [V(O)2(DMA)2]+ species. For the gross reaction of 2HMF + O2 → 2DFF + 2H2O, there are three main reaction stages, i.e., the oxidation of the first HMF to DFF with the reduction of [V(O)2(DMA)2]+ to [V(OH)2(DMA)]+, the aerobic oxidation of [V(OH)2(DMA)]+ to the peroxide [V(O)3(DMA)]+, and the oxidation of the second HMF to DFF with the reduction of [V(O)3(DMA)]+ to [V(O)2(DMA)2]+. The rate-determining reaction step is associated with the C–H bond cleavage of –CH2 group of the first HMF molecule. The peroxide [V(O)3(DMA)]+ species exhibits better oxidative activity than the initial [V(O)2(DMA)2]+ species, which originates from its narrower HOMO–LUMO gap. The counteranion Cl− exerts promotive effect on the aerobic oxidation of HMF to DFF catalyzed by [V(O)2(DMA)2]+ species. The rate-determining reaction step is associated with the C–H bond cleavage of –CH2 group of the first HMF molecule oxidized by [V(O)2(DMA)2]+ species, while counteranion Cl− exhibits catalytically promotive effect.![]()
Collapse
Affiliation(s)
- Zhen-Bing Si
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Jin-Shan Xiong
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Ting Qi
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Hong-Mei Yang
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Han-Yun Min
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Hua-Qing Yang
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P.R. China
| | - Chang-Wei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P.R. China
| |
Collapse
|
12
|
High adsorption of Cd (II) by modification of synthetic zeolites Y, A and mordenite with thiourea. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.07.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
O. P F, Kumari P, P A. Effect of copper on textural and acidic properties of hierarchical nanocrystalline ZSM‐5. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Farsana O. P
- Department of Chemistry Pocker Sahib Memorial Orphanage College Tirurangadi Kerala 676306 India
| | - Prajitha Kumari
- Department of Chemistry Pocker Sahib Memorial Orphanage College Tirurangadi Kerala 676306 India
| | - Aneesh P
- Department of Chemistry St. Joseph's College (Autonomous) Devagiri Kozhikode Kerala 673008 India
| |
Collapse
|
14
|
Study and characterization of polyaniline/zeolite-Mor nanocomposite and their role in detection of chemical warfare agent simulant-CEES. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
15
|
Efficacy of Octahedral Molecular Sieves for green and sustainable catalytic reactions. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110966] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
16
|
Tang J, Liu P, Liu X, Chen L, Wen H, Zhou Y, Wang J. In Situ Encapsulation of Pt Nanoparticles within Pure Silica TON Zeolites for Space-Confined Selective Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11522-11532. [PMID: 32075373 DOI: 10.1021/acsami.9b20884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Straightforward encapsulation of Pt clusters (∼2 nm) into the pure silica TON-type zeolite (ZSM-22) was reached in a dry gel conversion route, where the ionic liquid template was removed via the hydrocracking-calcination-reduction approach. The obtained Pt@ZSM-22 series possessed high crystallinity, large surface area, and ultrafine Pt clusters inside the zeolite crystals. They exhibited remarkable activity in the semi-hydrogenation of phenylacetylene into styrene; the lead sample with 0.2 wt % Pt loading afforded a large turnover number up to 117,787. The preferential high affinity of the pure silica ZSM-22-encapsulated Pt clusters toward the substrate phenylacetylene rather than the hydrogenated product was derived from the unique space-confinement effect of zeolite microchannels, which is responsible for such excellent performance.
Collapse
Affiliation(s)
- Junjie Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Peiwen Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiaoling Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Lei Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Haimeng Wen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
17
|
Hong M, Wu S, Li J, Wang J, Wei L, Li K. Aerobic oxidation of 5-(hydroxymethyl)furfural into 2,5-diformylfuran catalyzed by starch supported aluminum nitrate. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2019.105909] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
18
|
Liu LJ, Wang ZM, Lyu YJ, Zhang JF, Huang Z, Qi T, Si ZB, Yang HQ, Hu CW. Catalytic mechanisms of oxygen-containing groups over vanadium active sites in an Al-MCM-41 framework for production of 2,5-diformylfuran from 5-hydroxymethylfurfural. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02130b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the V-doped Al-MCM-41 framework, the [V-1] active site with a hydroxyl group displays better catalytic activity than the [V-0] active site without a hydroxyl group toward the oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran.
Collapse
Affiliation(s)
- Li-Juan Liu
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Zhao-Meng Wang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Ya-Jing Lyu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- P.R. China
| | - Jin-Feng Zhang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Zhou Huang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Ting Qi
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Zhen-Bing Si
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Hua-Qing Yang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Chang-Wei Hu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
- P.R. China
| |
Collapse
|
19
|
Huang J, Liu B, Liao Z, Chen H, Yan K. Fabrication of Cu-Encapsulated Hierarchical MEL Zeolites for Alkylation of Mesitylene with Benzyl Alcohol. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jiajin Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Baoyu Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Zhantu Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Huiyong Chen
- School of Chemical Engineering, Northwest University, Xi’an, Shaanxi, 710069, P. R. China
| | - Kai Yan
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
20
|
Tian R, Li Y, Bai J. Hierarchical assembled nanomaterial paper based analytical devices for simultaneously electrochemical detection of microRNAs. Anal Chim Acta 2019; 1058:89-96. [DOI: 10.1016/j.aca.2019.01.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/28/2018] [Accepted: 01/24/2019] [Indexed: 12/17/2022]
|
21
|
Wang W, Bai C, Zhang L. CuO/graphene oxide composite as a highly active catalyst for one-step amination of benzene to aniline. CATAL COMMUN 2019. [DOI: 10.1016/j.catcom.2019.03.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
22
|
Pal P, Saravanamurugan S. Recent Advances in the Development of 5-Hydroxymethylfurfural Oxidation with Base (Nonprecious)-Metal-Containing Catalysts. CHEMSUSCHEM 2019; 12:145-163. [PMID: 30362263 DOI: 10.1002/cssc.201801744] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 10/24/2018] [Indexed: 06/08/2023]
Abstract
5-Hydroxymethylfurfural (HMF) is one of the versatile platform molecules that can be derived from biomass, and a promising starting substrate for producing 2,5-diformylfuran (DFF) and 2,5-furandicarboxylic acid (FDCA). DFF is a platform chemical with applications in pharmaceuticals, macrocyclic ligands, and functional polymeric materials. Importantly, FDCA is being considered as a potential alternative to replace terephthalic acid for producing the bioplastic polyethylene furanoate, instead of polyethylene terephthalate, by blending with ethylene glycol. A significant number of studies have focused on the oxidation of HMF to FDCA with metal-containing heterogeneous catalysts in both aqueous and organic media in the presence of peroxides/air/molecular oxygen as the oxidant. In this regard, articles have recently been published related to HMF oxidation with base (nonprecious)-metal-containing catalysts that exhibit appealing activity towards DFF or FDCA in terms of yield. Thus, this Minireview focuses on recent developments in efficient transformations of HMF to DFF and FDCA with base-metal-containing heterogeneous catalysts in aqueous and organic media. This review further focuses on the direct transformation of glucose/fructose to DFF and/or FDCA with nonprecious-metal-containing catalysts in various solvents. Photocatalytic approaches for HMF oxidation with nonprecious metal- containing catalysts are also briefly discussed.
Collapse
Affiliation(s)
- Priyanka Pal
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali-, 140 306, Punjab, India
| | - Shunmugavel Saravanamurugan
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector-81 (Knowledge City), Mohali-, 140 306, Punjab, India
| |
Collapse
|
23
|
Sudarsanam P, Peeters E, Makshina EV, Parvulescu VI, Sels BF. Advances in porous and nanoscale catalysts for viable biomass conversion. Chem Soc Rev 2019; 48:2366-2421. [DOI: 10.1039/c8cs00452h] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Solid catalysts with unique porosity and nanoscale properties play a promising role for efficient valorization of biomass into sustainable advanced fuels and chemicals.
Collapse
Affiliation(s)
- Putla Sudarsanam
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| | - Elise Peeters
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| | - Ekaterina V. Makshina
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| | - Vasile I. Parvulescu
- University of Bucharest
- Department of Organic Chemistry
- Biochemistry and Catalysis
- Bucharest 030016
- Romania
| | - Bert F. Sels
- Centre for Surface Chemistry and Catalysis
- Faculty of Bioscience Engineering
- Heverlee
- Belgium
| |
Collapse
|
24
|
Wang Q, Hou W, Meng T, Hou Q, Zhou Y, Wang J. Direct synthesis of 2,5-diformylfuran from carbohydrates via carbonizing polyoxometalate based mesoporous poly(ionic liquid). Catal Today 2019. [DOI: 10.1016/j.cattod.2018.07.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Wen H, Xie J, Zhou Y, Zhou Y, Wang J. Straightforward synthesis of MTW-type magnesium silicalite for CO2 fixation with epoxides under mild conditions. Catal Sci Technol 2019. [DOI: 10.1039/c9cy01329f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mg-Si-ZSM-12 was hydrothermally synthesized and effective for CO2 fixation under mild conditions.
Collapse
Affiliation(s)
- Haimeng Wen
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Jingyan Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Yang Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- P. R. China
| |
Collapse
|
26
|
Wang ZM, Liu LJ, Xiang B, Wang Y, Lyu YJ, Qi T, Si ZB, Yang HQ, Hu CW. The design and catalytic performance of molybdenum active sites on an MCM-41 framework for the aerobic oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02291g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The catalytic activity decreases as –(SiO)3Mo(OH)(O) > –(SiO)2Mo(O)2 > –(O)4–MoO.
Collapse
Affiliation(s)
- Zhao-Meng Wang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Li-Juan Liu
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Bo Xiang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Yue Wang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Ya-Jing Lyu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Ting Qi
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Zhen-Bing Si
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Hua-Qing Yang
- College of Chemical Engineering
- Sichuan University
- Chengdu
- P.R. China
| | - Chang-Wei Hu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| |
Collapse
|
27
|
Sarmah B, Satpati B, Srivastava R. Selective Oxidation of Biomass-Derived Alcohols and Aromatic and Aliphatic Alcohols to Aldehydes with O 2/Air Using a RuO 2-Supported Mn 3O 4 Catalyst. ACS OMEGA 2018; 3:7944-7954. [PMID: 31458934 PMCID: PMC6644874 DOI: 10.1021/acsomega.8b01009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/03/2018] [Indexed: 06/10/2023]
Abstract
Selective catalytic oxidation of carbohydrate-derived 5-hydroxymethylfurfural, furfuryl alcohol, and various aromatic and aliphatic compounds to the corresponding aldehyde is a challenging task. The development of a sustainable heterogeneous catalyst is crucial in achieving high selectivity for the desired aldehyde, especially using O2 or air. In this study, a RuO2-supported Mn3O4 catalyst is reported for the selective oxidation reaction. Treatment of MnO2 molecular sieves with RuCl3 in aqueous formaldehyde solution gives a new type of RuO2-supported Mn3O4 catalyst. Detailed catalyst characterization using powder X-ray diffraction, N2 adsorption, scanning and transmission electron microscopes, diffuse reflectance UV-visible spectrometer, and X-ray photoelectron spectroscopy proves that the RuO2 species are dispersed on the highly crystalline Mn3O4 surface. This catalytic conversion process involves molecular oxygen or air (flow, 10 mL/min) as an oxidant. No external oxidizing reagent, additive, or cocatalyst is required to carry out this transformation. This oxidation protocol affords 2,5-diformylfuran, 2-formylfuran, and other aromatic and aliphatic aldehydes in good to excellent yield (70-99%). Moreover, the catalyst is easily recycled and reused without any loss in the catalytic activity.
Collapse
Affiliation(s)
- Bhaskar Sarmah
- Department
of Chemistry, Indian Institute of Technology
Ropar, Rupnagar 140001, India
| | - Biswarup Satpati
- Surface
Physics and Material Science Division, Saha
Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| | - Rajendra Srivastava
- Department
of Chemistry, Indian Institute of Technology
Ropar, Rupnagar 140001, India
| |
Collapse
|
28
|
Zhou Y, Ma Z, Tang J, Yan N, Du Y, Xi S, Wang K, Zhang W, Wen H, Wang J. Immediate hydroxylation of arenes to phenols via V-containing all-silica ZSM-22 zeolite triggered non-radical mechanism. Nat Commun 2018; 9:2931. [PMID: 30050071 PMCID: PMC6062531 DOI: 10.1038/s41467-018-05351-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 06/20/2018] [Indexed: 11/13/2022] Open
Abstract
Hydroxylation of arenes via activation of aromatic Csp2–H bond has attracted great attention for decades but remains a huge challenge. Herein, we achieve the ring hydroxylation of various arenes with stoichiometric hydrogen peroxide (H2O2) into the corresponding phenols on a robust heterogeneous catalyst series of V–Si–ZSM-22 (TON type vanadium silicalite zeolites) that is straightforward synthesized from an unusual ionic liquid involved dry-gel-conversion route. For benzene hydroxylation, the phenol yield is 30.8% (selectivity >99%). Ring hydroxylation of mono-/di-alkylbenzenes and halogenated aromatic hydrocarbons cause the yields up to 26.2% and selectivities above 90%. The reaction is completed within 30 s, the fastest occasion so far, resulting in ultra-high turnover frequencies (TOFs). Systematic characterization including 51V NMR and X-ray absorption fine structure (XAFS) analyses suggest that such high activity associates with the unique non-radical hydroxylation mechanism arising from the in situ created diperoxo V(IV) state. Hydroxylation of arenes via activation of aromatic Csp2–H bond remains a challenge. Here, the authors have managed to get various arenes hydroxylated to corresponding phenols using stoichiometric hydrogen peroxide and a series of robust V–Si–ZSM-22 catalysts synthesized via an ionic liquid involved dry-gel-conversion route.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China
| | - Zhipan Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China
| | - Junjie Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
| | - Yonghua Du
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Kai Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China
| | - Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China
| | - Haimeng Wen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University (former Nanjing University of Technology), Nanjing, 210009, P.R. China.
| |
Collapse
|
29
|
Gupta K, Rai RK, Singh SK. Metal Catalysts for the Efficient Transformation of Biomass-derived HMF and Furfural to Value Added Chemicals. ChemCatChem 2018. [DOI: 10.1002/cctc.201701754] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Kavita Gupta
- Discipline of Chemistry; Indian Institute of Technology Indore; Indore 453552 Madhya Pradesh India
| | - Rohit K. Rai
- Discipline of Chemistry; Indian Institute of Technology Indore; Indore 453552 Madhya Pradesh India
| | - Sanjay K. Singh
- Discipline of Chemistry; Indian Institute of Technology Indore; Indore 453552 Madhya Pradesh India
- Discipline of Metallurgy Engineering and Materials Science; Indian Institute of Technology Indore; Indore 453552 Madhya Pradesh India
| |
Collapse
|
30
|
Yu K, Liu Y, Lei D, Jiang Y, Wang Y, Feng Y, Lou LL, Liu S, Zhou W. M3+O(–Mn4+)2 clusters in doped MnOx catalysts as promoted active sites for the aerobic oxidation of 5-hydroxymethylfurfural. Catal Sci Technol 2018. [DOI: 10.1039/c7cy02455j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
M3+O(–Mn4+)2 clusters in doped MnOx catalysts are principal active sites that make oxygen ‘easy come, easy go’.
Collapse
Affiliation(s)
- Kai Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300350
- China
| | - Yaqi Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300350
- China
| | - Da Lei
- MOE Key Laboratory of Pollution Processes and Environmental Criteria
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300350
- China
| | - Yuanzhi Jiang
- Institute of New Catalytic Materials Science and MOE Key Laboratory of Advanced Energy Materials Chemistry
- School of Materials Science and Engineering
- National Institute of Advanced Materials
- Nankai University
- Tianjin 300350
| | - Yanbing Wang
- Institute of New Catalytic Materials Science and MOE Key Laboratory of Advanced Energy Materials Chemistry
- School of Materials Science and Engineering
- National Institute of Advanced Materials
- Nankai University
- Tianjin 300350
| | - Yajun Feng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria
- College of Environmental Science and Engineering
- Nankai University
- Tianjin 300350
- China
| | - Lan-Lan Lou
- School of Chemistry
- University of St Andrews
- St Andrews
- UK
- Institute of New Catalytic Materials Science and MOE Key Laboratory of Advanced Energy Materials Chemistry
| | - Shuangxi Liu
- Institute of New Catalytic Materials Science and MOE Key Laboratory of Advanced Energy Materials Chemistry
- School of Materials Science and Engineering
- National Institute of Advanced Materials
- Nankai University
- Tianjin 300350
| | - Wuzong Zhou
- School of Chemistry
- University of St Andrews
- St Andrews
- UK
| |
Collapse
|
31
|
Zhang Z, Huber GW. Catalytic oxidation of carbohydrates into organic acids and furan chemicals. Chem Soc Rev 2018; 47:1351-1390. [DOI: 10.1039/c7cs00213k] [Citation(s) in RCA: 324] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A review on the development of new routes for the production of organic acids and furan compoundsviacatalytic oxidation reactions.
Collapse
Affiliation(s)
- Zehui Zhang
- Key Laboratory of Catalysis and Material Sciences of the State Ethnic Affairs Commission & Ministry of Education
- College of Chemistry and Material Sciences
- South-Central University for Nationalities
- Wuhan
- China
| | - George W. Huber
- Department of Chemical and Biological Engineering
- University of Wisconsin-Madison
- Madison
- USA
| |
Collapse
|
32
|
Wang B, Wang D, Guan Y, Xu H, Zhang L, Wu P. Nickel/USY Catalyst Derived from a Layered Double Hydroxide/Zeolite Hybrid Structure with a High Hydrogenation Efficiency. ChemCatChem 2017. [DOI: 10.1002/cctc.201701054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bo Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; North Zhongshan R. 3663 Shanghai 200062 P.R. China
| | - Darui Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; North Zhongshan R. 3663 Shanghai 200062 P.R. China
| | - Yejun Guan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; North Zhongshan R. 3663 Shanghai 200062 P.R. China
| | - Hao Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; North Zhongshan R. 3663 Shanghai 200062 P.R. China
| | - Lin Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; North Zhongshan R. 3663 Shanghai 200062 P.R. China
| | - Peng Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering; East China Normal University; North Zhongshan R. 3663 Shanghai 200062 P.R. China
| |
Collapse
|
33
|
Siankevich S, Mozzettini S, Bobbink F, Ding S, Fei Z, Yan N, Dyson PJ. Influence of the Anion on the Oxidation of 5-Hydroxymethylfurfural by Using Ionic-Polymer-Supported Platinum Nanoparticle Catalysts. Chempluschem 2017; 83:19-23. [DOI: 10.1002/cplu.201700344] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/19/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Sviatlana Siankevich
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Simone Mozzettini
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Felix Bobbink
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Shipeng Ding
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 117576 Singapore Singapore
| | - Zhaofu Fei
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 117576 Singapore Singapore
| | - Paul J. Dyson
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); 1015 Lausanne Switzerland
| |
Collapse
|
34
|
Yang F, Ding Y, Tang J, Zhou S, Wang B, Kong Y. Oriented surface decoration of (Co-Mn) bimetal oxides on nanospherical porous silica and synergetic effect in biomass-derived 5-hydroxymethylfurfural oxidation. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.03.034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Zhou X, Guo S, Gao J, Zhao J, Xue S, Xu W. Glucose oxidase-initiated cascade catalysis for sensitive impedimetric aptasensor based on metal-organic frameworks functionalized with Pt nanoparticles and hemin/G-quadruplex as mimicking peroxidases. Biosens Bioelectron 2017; 98:83-90. [PMID: 28654887 DOI: 10.1016/j.bios.2017.06.039] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 12/21/2022]
Abstract
Based on cascade catalysis amplification driven by glucose oxidase (GOx), a sensitive electrochemical impedimetric aptasensor for protein (carcinoembryonic antigen, CEA as tested model) was proposed by using Cu-based metal-organic frameworks functionalized with Pt nanoparticles, aptamer, hemin and GOx (Pt@CuMOFs-hGq-GOx). CEA aptamer loaded onto Pt@CuMOFs was bound with hemin to form hemin@G-quadruplex (hGq) with mimicking peroxidase activity. Through sandwich-type reaction of target CEA and CEA aptamers (Apt1 and Apt2), the obtained Pt@CuMOFs-hGq-GOx as signal transduction probes (STPs) was captured to the modified electrode interface. When 3,3-diaminobenzidine (DAB) and glucose were introduced, the cascade reaction was initiated by GOx to catalyze the oxidation of glucose, in situ generating H2O2. Simultaneously, the decomposition of the generated H2O2 was greatly promoted by Pt@CuMOFs and hGq as synergistic peroxide catalysts, accompanying with the significant oxidation process of DAB and the formation of nonconductive insoluble precipitates (IPs). As a result, the electron transfer in the resultant sensing interface was effectively hindered and the electrochemical impedimetric signal (EIS) was efficiently amplified. Thus, the high sensitivity of the proposed CEA aptasensor was successfully improved with 0.023pgmL-1, which may be promising and potential in assaying certain clinical disease related to CEA.
Collapse
Affiliation(s)
- Xingxing Zhou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shijing Guo
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jiaxi Gao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jianmin Zhao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shuyan Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wenju Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
36
|
Vicente AI, Coelho JAS, Simeonov SP, Lazarova HI, Popova MD, Afonso CAM. Oxidation of 5-Chloromethylfurfural (CMF) to 2,5-Diformylfuran (DFF). Molecules 2017; 22:E329. [PMID: 28230746 PMCID: PMC6155580 DOI: 10.3390/molecules22020329] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 11/16/2022] Open
Abstract
2,5-Diformylfuran (DFF) is an important biorenewable building block, namely for the manufacture of new polymers that may replace existing materials derived from limited fossil fuel resources. The current reported methods for the preparation of DFF are mainly derived from the oxidation of 5-hydroxymethylfurfural (HMF) and, to a lesser extent, directly from fructose. 5-Chloromethylfurfural (CMF) has been considered an alternative to HMF as an intermediate building block due to its advantages regarding stability, polarity, and availability from glucose and cellulose. The only reported method for the transformation of CMF to DFF is restricted to the use of DMSO as the solvent and oxidant. We envisioned that the transformation could be performed using more attractive conditions. To that end, we explored the oxidation of CMF to DFF by screening several oxidants such as H₂O₂, oxone, and pyridine N-oxide (PNO); different heating methods, namely thermal and microwave irradiation (MWI); and also flow conditions. The combination of PNO (4 equiv.) and Cu(OTf)₂ (0.5 equiv.) in acetonitrile was identified as the best system, which lead to the formation of DFF in 54% yield under MWI for 5 min at 160 °C. Consequently, a range of different heterogeneous copper catalysts were tested, which allowed for catalyst reuse. Similar results were also observed under flow conditions using copper immobilized on silica under thermal heating at 160 °C for a residence time of 2.7 min. Finally, HMF and 5,5'-oxybis(5-methylene-2-furaldehyde) (OBMF) were the only byproducts identified under the reaction conditions studied.
Collapse
Affiliation(s)
- Ana I Vicente
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Jaime A S Coelho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Svilen P Simeonov
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, 1113, Sofia, Bulgaria.
| | - Hristina I Lazarova
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, 1113, Sofia, Bulgaria.
| | - Margarita D Popova
- Institute of Organic Chemistry with Centre of Phytochemistry Bulgarian Academy of Sciences, Acad. G. Bonchev str., bl. 9, 1113, Sofia, Bulgaria.
| | - Carlos A M Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| |
Collapse
|
37
|
Xin H, Zhang T, Li W, Su M, Li S, Shao Q, Ma L. Dehydration of glucose to 5-hydroxymethylfurfural and 5-ethoxymethylfurfural by combining Lewis and Brønsted acid. RSC Adv 2017. [DOI: 10.1039/c7ra07684c] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this work, glucose was transformed into 5-hydroxymethylfurfural (HMF) and 5-ethoxymethylfurfural (EMF) in the presence of AlCl3·6H2O and a Brønsted solid acid catalyst (PTSA–POM).
Collapse
Affiliation(s)
- Haosheng Xin
- Institute of Materials and Chemical Engineering
- Anhui Jianzhu University
- Hefei 230022
- China
- Laboratory of Basic Research in Biomass Conversion and Utilization
| | - Tingwei Zhang
- Laboratory of Basic Research in Biomass Conversion and Utilization
- Department of Thermal Science and Energy Engineering
- University of Science and Technology of China
- Hefei 230026
- China
| | - Wenzhi Li
- Laboratory of Basic Research in Biomass Conversion and Utilization
- Department of Thermal Science and Energy Engineering
- University of Science and Technology of China
- Hefei 230026
- China
| | - Mingxue Su
- Laboratory of Basic Research in Biomass Conversion and Utilization
- Department of Thermal Science and Energy Engineering
- University of Science and Technology of China
- Hefei 230026
- China
| | - Song Li
- CAS Key Laboratory of Renewable Energy
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| | - Qun Shao
- Institute of Materials and Chemical Engineering
- Anhui Jianzhu University
- Hefei 230022
- China
| | - Longlong Ma
- CAS Key Laboratory of Renewable Energy
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- Guangzhou 510640
- China
| |
Collapse
|
38
|
Zhang W, Hou W, Meng T, Zhuang W, Xie J, Zhou Y, Wang J. Direct synthesis of V-containing all-silica beta-zeolite for efficient one-pot, one-step conversion of carbohydrates into 2,5-diformylfuran. Catal Sci Technol 2017. [DOI: 10.1039/c7cy01834g] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
V-containing all silica beta-zeolite exhibited high atom-efficiency in the direct synthesis of 2,5-diformylfuran from carbohydrates.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| | - Wei Hou
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| | - Tongsuo Meng
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| | - Wenxia Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| | - Jingyan Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| |
Collapse
|
39
|
Hou W, Wang Q, Guo Z, Li J, Zhou Y, Wang J. Nanobelt α-CuV2O6 with hydrophilic mesoporous poly(ionic liquid): a binary catalyst for synthesis of 2,5-diformylfuran from fructose. Catal Sci Technol 2017. [DOI: 10.1039/c6cy02561g] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The task-specific binary catalyst composed of nanobelt α-CuV2O6 and hydrophilic mesoporous poly(ionic liquid) exhibited high efficiency and stable activity in the direct synthesis of 2,5-diformylfuran (DFF) from fructose.
Collapse
Affiliation(s)
- Wei Hou
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| | - Qian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| | - Zengjing Guo
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| | - Jing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University (former Nanjing University of Technology)
- Nanjing
- PR China
| |
Collapse
|
40
|
Emdadi L, Tran DT, Zhang J, Wu W, Song H, Gan Q, Liu D. Synthesis of titanosilicate pillared MFI zeolite as an efficient photocatalyst. RSC Adv 2017. [DOI: 10.1039/c6ra23959e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Adsorption assisted photocatalysis over pillared lamellar zeolite.
Collapse
Affiliation(s)
- Laleh Emdadi
- Department of Chemical and Biomolecular Engineering
- University of Maryland
- College Park
- College Park
- USA
| | - Dat T. Tran
- RDRL-SEC-C
- US Army Research Laboratory
- Adelphi
- USA
| | - Junyan Zhang
- Department of Chemical and Biomolecular Engineering
- University of Maryland
- College Park
- College Park
- USA
| | - Wei Wu
- Department of Chemical and Biomolecular Engineering
- University of Maryland
- College Park
- College Park
- USA
| | - Haomin Song
- Department of Electrical Engineering
- University at Buffalo
- Buffalo
- USA
| | - Qiaoqiang Gan
- Department of Electrical Engineering
- University at Buffalo
- Buffalo
- USA
| | - Dongxia Liu
- Department of Chemical and Biomolecular Engineering
- University of Maryland
- College Park
- College Park
- USA
| |
Collapse
|
41
|
Nan M, Luo Y, Li G, Hu C. Improvement of the selectivity to aniline in benzene amination over Cu/TS-1 by potassium. RSC Adv 2017. [DOI: 10.1039/c7ra02074k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two different methods of introducing potassium into Cu/TS-1 were conducted and the catalysts obtained showed a rather different catalytic activity in the ammoxidation of benzene to aniline.
Collapse
Affiliation(s)
- Mi Nan
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Yuecheng Luo
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Guiying Li
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| | - Changwei Hu
- Key Laboratory of Green Chemistry and Technology
- Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu
| |
Collapse
|