1
|
Zhang M, Fu Z, Chen H, Yu J, Zhang L, Yang C, Zhou Y, Hua Y, Wang X, Ji H. Highly exposed metal atomic active sites in Al 2O 3/CoNC: Modify reaction pathways by coupling oxygen species. J Colloid Interface Sci 2024; 676:859-870. [PMID: 39067221 DOI: 10.1016/j.jcis.2024.07.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
The catalytic oxidation of formaldehyde (HCHO) at ambient temperature is a highly efficient, cost-effective and environmentally friendly approach for formaldehyde removal. Reactive oxygen (O*) and reactive hydroxyl groups (OH*) are the main active species in the catalytic oxidation reaction of HCHO. Therefore, it is crucial to design catalysts that can simultaneously enhance the surface concentrations of O* and OH*, thereby improving their overall catalytic performance. The present study aimed to design an Al2O3/CoNC catalyst featuring layered carbon nitride coupled with metal oxides possessing domain-limited cobalt (Co) metal active sites, to efficiently remove HCHO (≈100 %, 100 ppm, RH=50 %, GSHV=20,000 mL/(g h)) and ensure stability (more than 90 % formaldehyde removal within 450 h) at ambient temperature. The characterization revealed that the interaction between Al2O3-supported metal and CoNC resulted in enhanced confinement of Co, leading to a higher abundance of edge structures exposing more active sites. Additionally, the presence of highly dispersed Co-NX active sites and increased oxygen vacancies effectively facilitated the adsorption and activation processes of HCHO and O2, as well as the adsorption and desorption dynamics of intermediates during the reaction. These factors collectively contributed to an improved catalytic activity. The results of in situ infrared spectroscopy revealed that the catalyst improved the adsorption and activation of O2 and H2O, leading to the rapid generation of substantial amounts of O* and OH*. This synergistic interaction between Al2O3 and CoNC plays a crucial role in the sustained production of O* and OH*, promoting efficient of intermediate decomposition, and ensuring excellent catalytic activity and stability for HCHO.
Collapse
Affiliation(s)
- Manyu Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Zhijian Fu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Hui Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Jia Yu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Liwen Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China
| | | | - Yubo Zhou
- Ningbo Solartron Technology Co., Ltd, Ningbo, China
| | - Yingjie Hua
- School of Chemistry and Chemical Engineering, the Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Haikou, China
| | - Xuyu Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China; Jiangsu Zhongjiang Institute of Materials Technology, Zhenjiang, China; School of Chemistry and Chemical Engineering, the Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, Hainan Normal University, Haikou, China; Ningbo Solartron Technology Co., Ltd, Ningbo, China.
| | - Hongbing Ji
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, China; State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Institute of Green Petroleum Processing and Light Hydrocarbon Conversion, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China; Jiangsu Zhongjiang Institute of Materials Technology, Zhenjiang, China.
| |
Collapse
|
2
|
Yurchenko O, Benkendorf M, Diehle P, Schmitt K, Wöllenstein J. Palladium-Functionalized Nanostructured Nickel-Cobalt Oxide as Alternative Catalyst for Hydrogen Sensing Using Pellistors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1619. [PMID: 39452956 PMCID: PMC11510470 DOI: 10.3390/nano14201619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
To meet today's requirements, new active catalysts with reduced noble metal content are needed for hydrogen sensing. A palladium-functionalized nanostructured Ni0.5Co2.5O4 catalyst with a total Pd content of 4.2 wt% was synthesized by coprecipitation to obtain catalysts with an advantageous sheet-like morphology and surface defects. Due to the synthesis method and the reducible nature of Ni0.5Co2.5O4 enabling strong metal-metal oxide interactions, the palladium was highly distributed over the metal oxide surface, as determined using scanning transmission electron microscopy and energy-dispersive X-ray investigations. The catalyst tested in planar pellistor sensors showed high sensitivity to hydrogen in the concentration range below the lower flammability limit (LFL). At 400 °C and in dry air, a sensor response of 109 mV/10,000 ppm hydrogen (25% of LFL) was achieved. The sensor signal was 4.6-times higher than the signal of pristine Ni0.5Co2.5O4 (24.6 mV/10,000 ppm). Under humid conditions, the sensor responses were reduced by ~10% for Pd-functionalized Ni0.5Co2.5O4 and by ~27% for Ni0.5Co2.5O4. The different cross-sensitivities of both catalysts to water are attributed to different activation mechanisms of hydrogen. The combination of high sensor sensitivity to hydrogen and high signal stability over time, as well as low cross-sensitivity to humidity, make the catalyst promising for further development steps.
Collapse
Affiliation(s)
- Olena Yurchenko
- Fraunhofer Institute for Physical Measurement Techniques (IPM), 79110 Freiburg, Germany (K.S.); (J.W.)
| | - Mike Benkendorf
- Fraunhofer Institute for Physical Measurement Techniques (IPM), 79110 Freiburg, Germany (K.S.); (J.W.)
| | - Patrick Diehle
- Fraunhofer Institute for Microstructure of Materials and Systems (IMWS), 06120 Halle, Germany
| | - Katrin Schmitt
- Fraunhofer Institute for Physical Measurement Techniques (IPM), 79110 Freiburg, Germany (K.S.); (J.W.)
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany
| | - Jürgen Wöllenstein
- Fraunhofer Institute for Physical Measurement Techniques (IPM), 79110 Freiburg, Germany (K.S.); (J.W.)
- Department of Microsystems Engineering (IMTEK), University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
3
|
Xie B, Liu Y, Lei Y, Qian H, Li Y, Yan W, Zhou C, Wen HM, Xia S, Mao P, Han M, Hu J. Innovative Thermocatalytic H 2 Sensor with Double-Sided Pd Nanocluster Films on an Ultrathin Mica Substrate. ACS Sens 2024; 9:2529-2539. [PMID: 38723609 DOI: 10.1021/acssensors.4c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Hydrogen (H2) is crucial in the future global energy landscape due to its eco-friendly properties, but its flammability requires precise monitoring. This study introduces an innovative thermocatalytic H2 sensor utilizing ultrathin mica sheets as substrates, coated on both sides with Pd nanocluster (NC) films. The ultrathin mica substrate ensures robustness and flexibility, enabling the sensor to withstand high temperatures and mechanical deformation. Additionally, it simplifies the fabrication process by eliminating the need for complex microelectro-mechanical systems (MEMS) technology. Constructed through cluster beam deposition, the sensor exhibits exceptional characteristics, including a wide concentration range (from 500 ppm to 4%), rapid response and recovery times (3.1 and 2.4 s for 1% H2), good selectivity, high stability, and repeatability. The operating temperature can be as low as 40 °C, achieving remarkably low power consumption. The study explores the impact of double-sided versus single-sided catalytic layers, revealing significantly higher sensitivity and response with the double-sided configuration due to the increased catalytic surface area. Additionally, the research investigates the relationship between the deposition amount of Pd NCs and the sensor's sensitivity, identifying an optimal value that maximizes performance without excessive use of Pd. The sensor's innovative design and excellent performance position it as a promising candidate for meeting the demands of a hydrogen-based energy economy.
Collapse
Affiliation(s)
- Bo Xie
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Yini Liu
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Yingshuang Lei
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Haoyu Qian
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Yingzhu Li
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Wenjing Yan
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Changjiang Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Hui-Min Wen
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Shengjie Xia
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| | - Peng Mao
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Min Han
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Jun Hu
- College of Chemical Engineering, Zhejiang University of Technology, Zhejiang 310014, P. R. China
| |
Collapse
|
4
|
Zhang N, Li X, Guo Y, Guo Y, Dai Q, Wang L, Zhan W. Crystal Engineering of TiO 2 for Enhanced Catalytic Oxidation of 1,2-Dichloroethane on a Pt/TiO 2 Catalyst. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7086-7096. [PMID: 37071842 DOI: 10.1021/acs.est.3c00165] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Crystal engineering of metal oxide supports represents an emerging strategy to improve the catalytic performance of noble metal catalysts in catalytic oxidation of chlorinated volatile organic compounds (CVOCs). Herein, Pt catalysts on a TiO2 support with different crystal phases (rutile, anatase, and mixed phase (P25)) were prepared for catalytic oxidation of 1,2-dichloroethane (DCE). The Pt catalyst on P25-TiO2 (Pt/TiO2-P) showed optimal activity, selectivity, and stability, even under high-space velocity and humidity conditions. Due to the strong interaction between Pt and P25-TiO2 originating from the more lattice defects of TiO2, the Pt/TiO2-P catalyst possessed stable Pt0 and Pt2+ species during DCE oxidation and superior redox property, resulting in high activity and stability. Furthermore, the Pt/TiO2-P catalyst possessed abundant hydroxyl groups, which prompted the removal of chlorine species in the form of HCl and significantly decreased the selectivity of vinyl chloride (VC) as the main byproduct. On the other hand, the Pt/TiO2-P catalyst exhibited a different reaction path, in which the hydroxyl groups on its surface activated DCE to form VC and enolic species, besides the lattice oxygen of TiO2 for the Pt catalysts on rutile and anatase TiO2. This work provides guidance for the rational design of catalysts for CVOCs.
Collapse
Affiliation(s)
- Nini Zhang
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiangmei Li
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanglong Guo
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qiguang Dai
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Li Wang
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wangcheng Zhan
- Key Laboratory for Advanced Materials and Research Institute of Industrial Catalysis, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
5
|
Owusu Prempeh C, Hartmann I, Formann S, Eiden M, Neubauer K, Atia H, Wotzka A, Wohlrab S, Nelles M. Comparative Study of Commercial Silica and Sol-Gel-Derived Porous Silica from Cornhusk for Low-Temperature Catalytic Methane Combustion. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091450. [PMID: 37176995 PMCID: PMC10180291 DOI: 10.3390/nano13091450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023]
Abstract
The synthesis and characterization of sol-gel-derived cornhusk support for low-temperature catalytic methane combustion (LTCMC) were investigated in this study. The prepared cornhusk support was impregnated with palladium and cerium oxide (Pd/CeO2) via the classical incipient wetness method. The resulting catalyst was characterized using various techniques, including X-ray diffraction (XRD), N2 physisorption (BET), transmission electron microscopy (TEM), and hydrogen temperature-programmed reduction (H2-TPR). The catalytic performance of the Pd/CeO2/CHSiO2 catalyst was evaluated for methane combustion in the temperature range of 150-600 °C using a temperature-controlled catalytic flow reactor, and its performance was compared with a commercial catalyst. The results showed that the Pd/CeO2 dispersed on SiO2 from the cornhusk ash support (Pd/CeO2/CHSiO2) catalyst exhibited excellent catalytic activity for methane combustion, with a conversion of 50% at 394 °C compared with 593 °C for the commercial silica catalyst (Pd/CeO2/commercial). Moreover, the Pd/CeO2/CHSiO2 catalyst displayed better catalytic stability after 10 h on stream, with a 7% marginal loss in catalytic activity compared with 11% recorded for the Pd/CeO2/commercial catalyst. The N2 physisorption and H2-TPR results indicated that the cornhusk SiO2 support possessed a higher surface area and strong reducibility than the synthesized commercial catalyst, contributing to the enhanced catalytic activity of the Pd/CeO2/SiO2 catalyst. Overall, the SiO2 generated from cornhusk ash exhibited promising potential as a low-cost and environmentally friendly support for LTCMC catalysts.
Collapse
Affiliation(s)
- Clement Owusu Prempeh
- Department of Thermochemical Conversion, DBFZ-Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany
- Department of Agriculture and Environmental Science, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| | - Ingo Hartmann
- Department of Thermochemical Conversion, DBFZ-Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany
| | - Steffi Formann
- Department of Thermochemical Conversion, DBFZ-Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany
| | - Manfred Eiden
- Department of Thermochemical Conversion, DBFZ-Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany
| | - Katja Neubauer
- Leibniz-Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Hanan Atia
- Leibniz-Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Alexander Wotzka
- Leibniz-Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Sebastian Wohlrab
- Leibniz-Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Michael Nelles
- Department of Thermochemical Conversion, DBFZ-Deutsches Biomasseforschungszentrum Gemeinnützige GmbH, Torgauer Straße 116, 04347 Leipzig, Germany
- Department of Agriculture and Environmental Science, University of Rostock, Justus-von-Liebig-Weg 6, 18059 Rostock, Germany
| |
Collapse
|
6
|
Zhao J, Jiang J, Wen S, Zhang J, Zhang C, Sheng N, Liang W, Sun B, Xu W, Yang Z, Pan Y. Research on alkali metal-modified Pd catalyst for oxygen removal from propylene. Front Chem 2022; 10:987556. [PMID: 36186586 PMCID: PMC9524148 DOI: 10.3389/fchem.2022.987556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
A series of alkali metal (Li, Na, and K)-modified Pd catalysts and Pd/Al2O3 were prepared and used to remove oxygen in a propylene flow with hydrogen’s existence. The results showed that the alkali metals could enhance the performance of the Pd catalysts and the effect followed the order of K > Na > Li. X-Ray diffraction (XRD), N2-physisorption, transmission electron microscopy (TEM), hydrogen temperature programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS) were carried out to investigate the alkali metal-modified Pd catalysts and the promotional effect mechanism was explained. The results showed that alkali metal modification increased the electron density of Pd atoms to induce the negatively charged Pd species, which could enhance the adsorption of oxygen while weakening the adsorption of propylene, and then enhance the performance of the modified catalysts for oxygen removal from unsaturated hydrocarbon. The Pd-K/A catalyst performed the best on both oxygen removal and propylene hydrogenation inhibition.
Collapse
Affiliation(s)
- Jinchong Zhao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Jie Jiang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
- *Correspondence: Jie Jiang, ; Wei Xu,
| | - Song Wen
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Jing Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Changsheng Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Nan Sheng
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Wei Liang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Bing Sun
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Wei Xu
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
- *Correspondence: Jie Jiang, ; Wei Xu,
| | - Zhe Yang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, China
| | - Yuan Pan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, China
| |
Collapse
|
7
|
Yu Zheng J, Ling Zhou K, Kang Zhao W, Wang Y, He J, Wang X, Wang H, Yan H, Bao Han C. Enhanced the synergistic degradation effect between active hydroxyl and reactive oxygen species for indoor formaldehyde based on platinum atoms modified MnOOH/MnO 2 catalyst. J Colloid Interface Sci 2022; 628:359-370. [PMID: 35998461 DOI: 10.1016/j.jcis.2022.08.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
Maintaining high activity during prolonged catalysis is always the pursuit in catalytic degradation of organic pollutants. For indoor formaldehyde (HCHO) degradation, the accumulation of intermediates is the major factor limiting the conversion of HCHO to final product CO2 (HCHO-to-CO2 conversion) and long-lasting catalysis. Herein, a three-dimensional radialized nanostructure catalyst self-assembled by MnOOH/MnO2 nanosheets anchored with Pt single atoms (PtSA-MnOOH/MnO2 with a trace platinum loading amount of 0.09%) is developed by thermally assisted two-step electrochemical method, which achieves enhanced CO2 production in catalytic HCHO degradation at the room temperature by the collaborative action of active hydroxyl (OH*) and active oxygen species (O2*). By boosting intermediates' decomposing, the catalyst implements real-time HCHO-to-CO2 conversion (∼85.7%) and long-term continuous HCHO removal (∼98%) during 100 h in a 15 ppm HCHO atmosphere at 25 °C under a weight hourly space velocity of 30000 mL/gcat∙h. Density functional theory calculation shows that the formation energy of O2* from O2 over PtSA-MnOOH/MnO2 is nearly half lower than that over Pt-MnO2 catalyst. And decomposing accumulated intermediates gives the credit to OH* species sustainably generated by the combined action of MnOOH and O2*. The synergistic action between PtSA and MnOOH contributes to the continuous production of O2* and OH* for enhancing CO2 production in indoor catalytic formaldehyde degradation.
Collapse
Affiliation(s)
- Jia Yu Zheng
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Kai Ling Zhou
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Wen Kang Zhao
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yueshuai Wang
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Junda He
- Key Laboratory of Beijing on Regional Air Pollution Control, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xinxin Wang
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Hao Wang
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Hui Yan
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Chang Bao Han
- The Key Laboratory of Advanced Functional Materials, Ministry of Education of China, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China.
| |
Collapse
|
8
|
Computational Study of H2 Catalytic Combustion on Pd38 Cluster Model and Pd(111) Slab Model. Symmetry (Basel) 2022. [DOI: 10.3390/sym14081544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hydrogen is one of the exhaust gases produced by nuclear power stations. Due to the potential danger of incomplete combustion and the emission of hydrogen, hydrogen catalytic combustion is introduced to ensure the safety of nuclear power stations. Palladium is a widely used catalyst for hydrogen catalytic combustion. H2 catalytic combustion on a Pd(111) slab model and Pd38 cluster model were simulated using density functional theory (DFT), in order to analyze the H2 oxidation mechanism on the catalyst surface.
Collapse
|
9
|
Kumar A, Zhao Y, Mohammadi MM, Liu J, Thundat T, Swihart MT. Palladium Nanosheet-Based Dual Gas Sensors for Sensitive Room-Temperature Hydrogen and Carbon Monoxide Detection. ACS Sens 2022; 7:225-234. [PMID: 35025508 DOI: 10.1021/acssensors.1c02015] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Palladium has long been explored for use in gas sensors because of its excellent catalytic properties and its unique property of forming hydrides in the presence of H2. However, pure Pd-based sensors usually suffer from low response and a relatively high limit of detection. Palladium nanosheets (PdNS) are of particular interest for gas sensing applications due to their high surface area and excellent electrical conductivity. Here, we demonstrate the design and fabrication of low-cost PdNS-based dual gas sensors for room-temperature detection of H2 and CO over a wide concentration range. We fabricated sensors using multiwalled carbon nanotube@PdNS (MWCNT@PdNS) composites and compared their performance against pure PdNS devices for hydrogen sensing based on electrical resistive response. Devices using PdNS alone had a response and response time of 0.4% and 50 s, respectively, to 1% H2 in air. MWCNT@PdNS (1:5 mass ratio) showed enhanced performance at a lower hydrogen concentration with a limit of detection (LODH2) of 5 ppm. Nearly an order of magnitude increase in response was observed on increasing the amount of MWCNT to 50 mass % in the nanocomposite, but the response fell off at low H2 concentration. Overall, these PdNS-based sensors were found to show good repeatability, stability, and performance under humid conditions. Their response was selective for H2 versus CH4, CO2, and NH3; the response to CO was comparable in magnitude but opposite in sign to the response to H2. Upon simultaneous exposure to equal concentrations (10 ppm each) of H2 and CO, the response to CO was dominant. The PdNS showed high sensitivity to CO, detecting as little as 1 ppm CO in air at room temperature. The sensitivity to CO could be used either in a stand-alone room-temperature CO detector, where H2 is known not to be present, or in combination with CO and combustible gas detectors to distinguish H2 from other combustible gases.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Yaoli Zhao
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Mohammad Moein Mohammadi
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Jun Liu
- Department of Mechanical and Aerospace Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
- RENEW Institute, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Thomas Thundat
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
- RENEW Institute, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| | - Mark T. Swihart
- Department of Chemical and Biological Engineering, University at Buffalo (SUNY), Buffalo, New York 14260, United States
- RENEW Institute, University at Buffalo (SUNY), Buffalo, New York 14260, United States
| |
Collapse
|
10
|
Tran MH, Phan DP, Nguyen TH, Kim HB, Kim J, Park ED, Lee EY. Catalytic hydrogenolysis of alkali lignin in supercritical ethanol over copper monometallic catalyst supported on a chromium-based metal-organic framework for the efficient production of aromatic monomers. BIORESOURCE TECHNOLOGY 2021; 342:125941. [PMID: 34543818 DOI: 10.1016/j.biortech.2021.125941] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The catalytic hydrogenolysis of lignin has been reported as an effective approach for lignin depolymerization owing to its high efficiency for aromatic monomer production. In this study, a series of copper monometallic catalysts over an MIL-101(Cr) support were synthesized and used for the catalytic hydrogenolysis of alkali lignin using supercritical ethanol. First, the optimal copper catalyst for lignin hydrogenolysis was selected. Subsequently, the reaction conditions for catalytic hydrogenolysis were systematically optimized to maximize the total monomer yield. The optimal conditions were determined to be 6 h of reaction time, 20 min of sonication pretreatment, 50% catalyst loading, and 5% lignin loading. Under these conditions, an aromatic monomer yield of 38.5% was obtained; this depolymerized lignin stream, which is mainly composed of G-type monomers, can serve as a promising aromatic feedstock and carbon source for further microbial upgrading and bioconversion to produce various value-added products.
Collapse
Affiliation(s)
- My Ha Tran
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Dieu-Phuong Phan
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Thuy Ha Nguyen
- Department of Chemical Engineering and Energy Systems Research, Ajou University, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Han Bom Kim
- Department of Chemical Engineering and Energy Systems Research, Ajou University, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Jinsoo Kim
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Eun Duck Park
- Department of Chemical Engineering and Energy Systems Research, Ajou University, Suwon-si, Gyeonggi-do 16499, Republic of Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering (Integrated Engineering), Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea.
| |
Collapse
|
11
|
Lyu Y, Jocz JN, Xu R, Williams OC, Sievers C. Selective Oxidation of Methane to Methanol over Ceria‐Zirconia Supported Mono and Bimetallic Transition Metal Oxide Catalysts. ChemCatChem 2021. [DOI: 10.1002/cctc.202100268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yimeng Lyu
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology 311 Ferst Dr. NW Atlanta GA-30332 USA
| | - Jennifer N. Jocz
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology 311 Ferst Dr. NW Atlanta GA-30332 USA
| | - Rui Xu
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology 311 Ferst Dr. NW Atlanta GA-30332 USA
| | - Olivia C. Williams
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology 311 Ferst Dr. NW Atlanta GA-30332 USA
| | - Carsten Sievers
- School of Chemical & Biomolecular Engineering Georgia Institute of Technology 311 Ferst Dr. NW Atlanta GA-30332 USA
| |
Collapse
|
12
|
Erdős M, Geerdink DF, Martin-Calvo A, Pidko EA, van den Broeke LJP, Calero S, Vlugt TJH, Moultos OA. In Silico Screening of Zeolites for High-Pressure Hydrogen Drying. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8383-8394. [PMID: 33566563 PMCID: PMC7908017 DOI: 10.1021/acsami.0c20892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
According to the ISO 14687-2:2019 standard, the water content of H2 fuel for transportation and stationary applications should not exceed 5 ppm (molar). To achieve this water content, zeolites can be used as a selective adsorbent for water. In this work, a computational screening study is carried out for the first time to identify potential zeolite frameworks for the drying of high-pressure H2 gas using Monte Carlo (MC) simulations. We show that the Si/Al ratio and adsorption selectivity have a negative correlation. 218 zeolites available in the database of the International Zeolite Association are considered in the screening. We computed the adsorption selectivity of each zeolite for water from the high-pressure H2 gas having water content relevant to vehicular applications and near saturation. It is shown that due to the formation of water clusters, the water content in the H2 gas has a significant effect on the selectivity of zeolites with a helium void fraction larger than 0.1. Under each operating condition, five most promising zeolites are identified based on the adsorption selectivity, the pore limiting diameter, and the volume of H2 gas that can be dried by 1 dm3 of zeolite. It is shown that at 12.3 ppm (molar) water content, structures with helium void fractions smaller than 0.07 are preferred. The structures identified for 478 ppm (molar) water content have helium void fractions larger than 0.26. The proposed zeolites can be used to dry 400-8000 times their own volume of H2 gas depending on the operating conditions. Our findings strongly indicate that zeolites are potential candidates for the drying of high-pressure H2 gas.
Collapse
Affiliation(s)
- Máté Erdős
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Daan F. Geerdink
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Ana Martin-Calvo
- Department
of Physical, Chemical, and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km, 1, ES-41013 Seville, Spain
| | - Evgeny A. Pidko
- Inorganic
Systems Engineering, Chemical Engineering Department, Faculty of Applied
Sciences, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Leo J. P. van den Broeke
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Sofia Calero
- Materials
Simulation & Modelling, Department of Applied Physics, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Thijs J. H. Vlugt
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| | - Othonas A. Moultos
- Engineering
Thermodynamics, Process & Energy Department, Faculty of Mechanical,
Maritime and Materials Engineering, Delft
University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands
| |
Collapse
|
13
|
Transition Metal (Ni, Cu and Fe) Substituted Co3O4 – ZrO2 Catalysts for Lean Methane Combustion. Top Catal 2020. [DOI: 10.1007/s11244-020-01382-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Li C, Wang Y, Li C, Xu S, Hou X, Wu P. Simultaneously Broadened Visible Light Absorption and Boosted Intersystem Crossing in Platinum-Doped Graphite Carbon Nitride for Enhanced Photosensitization. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20770-20777. [PMID: 31117432 DOI: 10.1021/acsami.9b02767] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Herein, taking graphite carbon nitride ( g-C3N4) as the example, we demonstrated that the two limiting factors that determine the photosensitization performance, namely, light absorption and intersystem crossing (ISC), could be simultaneously enhanced through Pt2+ doping. Specifically, as a π-conjugated two-dimensional semiconductor, g-C3N4 is capable of absorbing light shorter than 460 nm (2.7 eV). Upon Pt2+ doping that allows metal-to-ligand charge transfer (MLCT) from Pt2+ to the substrate g-C3N4, the light absorption of g-C3N4 was greatly expanded up to 1000 nm. Meanwhile, the large atomic number of Pt2+ ensures promotion of ISC to activate the triplet state of g-C3N4 via heavy atom effect (HAE), which was confirmed via both photosensitization performance and photophysical characterizations. Further, the enhanced light absorption and photosensitization of Pt2+-doped g-C3N4 were harvested for antibiotics removal, a type of environment contaminants that gained global attention because of their worldwide abuse. Compared with its undoped counterpart, Pt2+-doped g-C3N4 featured significantly improved antibiotics removal in the presence of low-power white LED irradiation, which is promising for photosensitized environmental remediation.
Collapse
Affiliation(s)
- Chaobi Li
- State Key Laboratory of Hydraulics and Mountain River Engineering , Sichuan University , Chengdu 610065 , China
- College of Environment and Ecology , Chengdu University of Technology , Chengdu 610059 , China
| | - Ying Wang
- Analytical & Testing Center , Sichuan University , Chengdu 610064 , China
| | - Chenghui Li
- Analytical & Testing Center , Sichuan University , Chengdu 610064 , China
| | - Shuxia Xu
- College of Environment and Ecology , Chengdu University of Technology , Chengdu 610059 , China
| | - Xiandeng Hou
- Analytical & Testing Center , Sichuan University , Chengdu 610064 , China
| | - Peng Wu
- State Key Laboratory of Hydraulics and Mountain River Engineering , Sichuan University , Chengdu 610065 , China
- Analytical & Testing Center , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
15
|
Role of CO2 methanation into the kinetics of preferential CO oxidation on Cu/Co3O4. MOLECULAR CATALYSIS 2019. [DOI: 10.1016/j.mcat.2019.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Tang K, Ren Y, Liu W, Wei J, Guo J, Wang S, Yang Y. Insight Investigation of Active Palladium Surface Sites in Palladium-Ceria Catalysts for NO + CO Reaction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13614-13624. [PMID: 29620859 DOI: 10.1021/acsami.8b02557] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The palladium species in ceria-based catalysts have a significant influence on their catalytic performance. In this work, the structure evolution of palladium species induced by various calcination rate was investigated and then these calcined catalysts were applied to NO + CO catalytic reaction. Systematic investigations by various measurements demonstrate that the calcination rate and catalytic process play crucial roles on the formation ways of palladium species and identify the forms of active palladium surface sites for NO + CO reaction. Results indicate that the calcination process resulted in the formation of three types of palladium components: PdO interacted with ceria supports (PdO x/Pd-O-Ce cluster), PdO nanoparticles on the surface, and Pd2+ ions incorporated into the subsurface lattice (Pd-O-Ce solid solution). It is also proven that the state and distribution of palladium components are dependent on the calcination rate: rapid calcination rate is beneficial for the generation of PdO species (PdO x/Pd-O-Ce and PdO), while slow calcination rate makes contribution to the formation of Pd-O-Ce. Furthermore, the subsequent catalytic process could induce the decomposition of PdO x/Pd-O-Ce and formation of more fractions of active Pd species in PdO oxide phase. On the basis of the catalytic performances, we found the superior catalytic properties are detected for catalysts containing 0.5% Pd (0.5% is corresponding to the palladium content in molar ratio) with fast calcination rate. This is due to the synergistic effect of active Pd in PdO decomposed form PdO x/Pd-O-Ce in the catalytic process and the palladium ions in Pd-O-Ce solid solution.
Collapse
Affiliation(s)
- Ke Tang
- Key Laboratory for Special Fuctional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Yuqing Ren
- Key Laboratory for Special Fuctional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Wei Liu
- Key Laboratory for Special Fuctional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
- School of Resources and Environment , University of Jinan , Jinan 250022 , P. R. China
| | - Jingjing Wei
- Key Laboratory for Special Fuctional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Jinxin Guo
- Key Laboratory for Special Fuctional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Shuping Wang
- Key Laboratory for Special Fuctional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| | - Yanzhao Yang
- Key Laboratory for Special Fuctional Aggregate Materials of Education Ministry, School of Chemistry and Chemical Engineering , Shandong University , Jinan 250100 , P. R. China
| |
Collapse
|