1
|
Wu K, Chen P, Cui T, Zhang B, Sun CL, Wang J, Shao X, Chen L, Chen Y, Liu Z. Synthesis and Optoelectronic Characterizations of Conjugated Polymers Based on Diketopyrrolopyrrole and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile Via Knoevenagel Condensation. Macromol Rapid Commun 2025; 46:e2401055. [PMID: 39803813 DOI: 10.1002/marc.202401055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/01/2025] [Indexed: 03/21/2025]
Abstract
Conjugated polymers have attracted extensive attention as semiconducting materials in wearable and flexible electronics. In this study, we utilize atom-economical Knoevenagel reaction to construct two conjugated polymers, PTDPP-CNTT and PFDPP-CNTT, based on dialdehyde-thiophene/furan-flanked diketopyrrolopyrrole (DPP) and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile (CNTT). The resulting polymers exhibited suitable highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) energy levels, small bandgaps, and broad UV-vis-NIR absorptions (≈400-1000 nm), endowing them with photothermal and balanced ambipolar semiconducting properties with hole and electron mobilities over 10-3 cm2V-1s-1. Additionally, PTDPP-CNTT-based organic field-effect transistors (OFETs) devices show photo-responsive characteristics at 808 and 980 nm in the hole transport channel with the photo-responsivenesses of 9.0 × 10-3 A/W and 0.4 A/W, respectively, suggesting potential application in organic NIR-phototransistors.
Collapse
Affiliation(s)
- Kunlan Wu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Pinyu Chen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Tianqiang Cui
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Lin Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot, 010021, China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Liangliang Chen
- Key Laboratory of Flexible Optoelectronic Materials and Technology (Jianghan University), Ministry of Education, School of Optoelectronic Materials & Technology, Jianghan University, Wuhan, 430056, China
| | - Yu Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Yan DS, Zhang XW, Wang ZL, Xu CH, Shi YB, Deng YF, Han Y, Geng YH. 3-Methylcyclohexanone Processed n-Channel Organic Thin-Film Transistors Based on A Conjugated Polymer Synthesized by Direct Arylation Polycondensation. CHINESE JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1007/s10118-023-2937-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
3
|
Koo DG, Lee D, Noh J, Lee YH, Jang S, Nam I, Shin TJ, Park J. Impact of Intermolecular Interactions Between a Diketopyrrolopyrrole-Based Conjugated Polymer and Bromobenzaldehyde on Field-Effect Transistors. Macromol Res 2021. [DOI: 10.1007/s13233-021-9009-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
4
|
Rahmanudin A, Marcial‐Hernandez R, Zamhuri A, Walton AS, Tate DJ, Khan RU, Aphichatpanichakul S, Foster AB, Broll S, Turner ML. Organic Semiconductors Processed from Synthesis-to-Device in Water. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002010. [PMID: 33173736 PMCID: PMC7610335 DOI: 10.1002/advs.202002010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Organic semiconductors (OSCs) promise to deliver next-generation electronic and energy devices that are flexible, scalable and printable. Unfortunately, realizing this opportunity is hampered by increasing concerns about the use of volatile organic compounds (VOCs), particularly toxic halogenated solvents that are detrimental to the environment and human health. Here, a cradle-to-grave process is reported to achieve high performance p- and n-type OSC devices based on indacenodithiophene and diketopyrrolopyrrole semiconducting polymers that utilizes aqueous-processes, fewer steps, lower reaction temperatures, a significant reduction in VOCs (>99%) and avoids all halogenated solvents. The process involves an aqueous mini-emulsion polymerization that generates a surfactant-stabilized aqueous dispersion of OSC nanoparticles at sufficient concentration to permit direct aqueous processing into thin films for use in organic field-effect transistors. Promisingly, the performance of these devices is comparable to those prepared using conventional synthesis and processing procedures optimized for large amounts of VOCs and halogenated solvents. Ultimately, the holistic approach reported addresses the environmental issues and enables a viable guideline for the delivery of future OSC devices using only aqueous media for synthesis, purification and thin-film processing.
Collapse
Affiliation(s)
- Aiman Rahmanudin
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Raymundo Marcial‐Hernandez
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Adibah Zamhuri
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Alex S. Walton
- Photon Science Institute and the Department of ChemistryAlan Turing BuildingUniversity of ManchesterOxford RoadManchesterM13 9PYUK
| | - Daniel J. Tate
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Raja U. Khan
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Suphaluk Aphichatpanichakul
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Andrew B. Foster
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Sebastian Broll
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Michael L. Turner
- Organic Materials Innovation CentreDepartment of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
5
|
Ding Y, Zhao F, Kim S, Wang X, Lu H, Zhang G, Cho K, Qiu L. Azaisoindigo-Based Polymers with a Linear Hybrid Siloxane-Based Side Chain for High-Performance Semiconductors Processable with Nonchlorinated Solvents. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41832-41841. [PMID: 32865385 DOI: 10.1021/acsami.0c11436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing nonchlorinated solvent-processed polymeric semiconductors to avoid environmental concerns and health hazards caused by chlorinated solvents is especially urgent. Here, a molecular design strategy, composed of backbone fluorination and side chain optimization, is used for preparing high-solubility and high-performance azaisoindigo-based polymers. The effects of different backbones and side chains on the solubility, film crystallinity, molecular stacking, and charge transport properties are mainly investigated. A long linear hybrid siloxane-based chain (C6-Si7) is chosen to improve the solubility, while the incorporation of fluorine (F) is used to enhance the film crystallinity and charge mobility. By optimizing the backbone and side chain, both solubility and charge mobility of the azaisoindigo-based polymer are significantly improved. As a result, PAIIDBFT-Si films processed with toluene, tetrahydrofuran, ether, and alkanes, achieved charge mobilities of 4.14, 3.78, 2.14, and 2.34 cm2 V-1 s-1, respectively. The current study provides an effective strategy for the design and synthesis of high-performance polymeric semiconductors processed with nonchlorinated solvents.
Collapse
Affiliation(s)
- Yafei Ding
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Fengsheng Zhao
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Sanghyo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Xiaohong Wang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Hongbo Lu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Guobing Zhang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, and Special Display and Imaging Technology Innovation Center of Anhui Province, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
6
|
Li W, Liu Q, Zhang Y, Li C, He Z, Choy WCH, Low PJ, Sonar P, Kyaw AKK. Biodegradable Materials and Green Processing for Green Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001591. [PMID: 32584502 DOI: 10.1002/adma.202001591] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/30/2020] [Indexed: 06/11/2023]
Abstract
There is little question that the "electronic revolution" of the 20th century has impacted almost every aspect of human life. However, the emergence of solid-state electronics as a ubiquitous feature of an advanced modern society is posing new challenges such as the management of electronic waste (e-waste) that will remain through the 21st century. In addition to developing strategies to manage such e-waste, further challenges can be identified concerning the conservation and recycling of scarce elements, reducing the use of toxic materials and solvents in electronics processing, and lowering energy usage during fabrication methods. In response to these issues, the construction of electronic devices from renewable or biodegradable materials that decompose to harmless by-products is becoming a topic of great interest. Such "green" electronic devices need to be fabricated on industrial scale through low-energy and low-cost methods that involve low/non-toxic functional materials or solvents. This review highlights recent advances in the development of biodegradable materials and processing strategies for electronics with an emphasis on areas where green electronic devices show the greatest promise, including solar cells, organic field-effect transistors, light-emitting diodes, and other electronic devices.
Collapse
Affiliation(s)
- Wenhui Li
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qian Liu
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Yuniu Zhang
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chang'an Li
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhenfei He
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wallace C H Choy
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Paul J Low
- School of Molecular Sciences, The University of Western Australia, Perth, WA, 6009, Australia
| | - Prashant Sonar
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Aung Ko Ko Kyaw
- Guangdong University Key Laboratory for Advanced Quantum Dot Displays, Shenzhen Key Laboratory for Advanced Quantum Dot Displays and Lighting, and Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
7
|
Liu Q, Bottle SE, Sonar P. Developments of Diketopyrrolopyrrole-Dye-Based Organic Semiconductors for a Wide Range of Applications in Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903882. [PMID: 31797456 DOI: 10.1002/adma.201903882] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/07/2019] [Indexed: 06/10/2023]
Abstract
In recent times, fused aromatic diketopyrrolopyrrole (DPP)-based functional semiconductors have attracted considerable attention in the developing field of organic electronics. Over the past few years, DPP-based semiconductors have demonstrated remarkable improvements in the performance of both organic field-effect transistor (OFET) and organic photovoltaic (OPV) devices due to the favorable features of the DPP unit, such as excellent planarity and better electron-withdrawing ability. Driven by this success, DPP-based materials are now being exploited in various other electronic devices including complementary circuits, memory devices, chemical sensors, photodetectors, perovskite solar cells, organic light-emitting diodes, and more. Recent developments in the use of DPP-based materials for a wide range of electronic devices are summarized, focusing on OFET, OPV, and newly developed devices with a discussion of device performance in terms of molecular engineering. Useful guidance for the design of future DPP-based materials and the exploration of more advanced applications is provided.
Collapse
Affiliation(s)
- Qian Liu
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Steven E Bottle
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Prashant Sonar
- School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
8
|
Zhang Y, Tang L, Sun H, Ling S, Yang K, Uddin MA, Guo H, Tang Y, Wang Y, Feng K, Shi Y, Liu J, Zhang S, Woo HY, Guo X. Fused Bithiophene Imide Oligomer and Diketopyrrolopyrrole Copolymers for n-Type Thin-Film Transistors. Macromol Rapid Commun 2019; 40:e1900394. [PMID: 31702099 DOI: 10.1002/marc.201900394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/26/2019] [Indexed: 11/10/2022]
Abstract
Diketopyrrolopyrrole (DPP)-based copolymers have received considerable attention as promising semiconducting materials for high-performance organic thin-film transistors (OTFTs). However, these polymers typically exhibit p-type or ambipolar charge-transporting characteristics in OTFTs due to their high-lying highest occupied molecular orbital (HOMO) energy levels. In this work, a new series of DPP-based n-type polymers have been developed by incorporating fused bithiophene imide oligomers (BTIn) into DPP polymers. The resulting copolymers BTIn-DPP show narrow band gaps as low as 1.27 eV and gradually down-shifted frontier molecular orbital energy levels upon the increment of imide group number. Benefiting from the coplanar backbone conformation, well-delocalized π-system, and favorable polymer chain packing, the optimal polymer in the series shows promising n-type charge transport with an electron mobility up to 0.48 cm2 V-1 s-1 in OTFTs, which is among the highest values for the DPP-based n-type polymers reported to date. The results demonstrate that incorporating fused bithiophene imide oligomers into polymers can serve as a promising strategy for constructing high-performance n-type polymeric semiconductors.
Collapse
Affiliation(s)
- Yujie Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China.,Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Linjing Tang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Huiliang Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Shaohua Ling
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Kun Yang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Mohammad Afsar Uddin
- College of Chemistry and Environment Engineering, Jiujiang University, Jiujiang, 332005, China
| | - Han Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Yumin Tang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Yang Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Yongqiang Shi
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| | - Juqing Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Shiming Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
9
|
Raychev D, Seifert G, Sommer JU, Guskova O. A comparative analysis of symmetric diketopyrrolopyrrole-cored small conjugated molecules with aromatic flanks: From geometry to charge transport. J Comput Chem 2018; 39:2526-2538. [PMID: 30306613 DOI: 10.1002/jcc.25609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 11/08/2022]
Abstract
Diketopyrrolopyrrole (DPP) derivatives are promising compounds for application in organic electronics. Here, we investigate several symmetrical N-unsubstituted and N-methyl substituted DPPs which differ in the heteroatom in the aromatic flanks. The conformational, electronic, and optical properties are characterized for single molecules in vacuum or a solvent. The intermolecular interactions are evaluated for interacting dimers. Here, a number of stacking geometries is tested, and dimers with mutual orientation of the molecules corresponding to the minimal binding energies are determined. The predicted charge carrier mobilities for stacks having minimal binding energies corroborate experimentally measured values. We conclude that DFT prediction of such stacks is a promising and computationally inexpensive approach to a rough estimation of transport properties. Additionally, the super-cell of the experimentally resolved crystal structure is used to study the dynamics and to compute the charge transport along the hopping pathways. We discuss obtained high mobilities and relate them to the symmetry of DPP core. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Deyan Raychev
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden, 01062, Germany.,Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, Dresden, 01069, Germany
| | - Gotthard Seifert
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden, 01062, Germany.,Theoretical Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Jens-Uwe Sommer
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden, 01062, Germany.,Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, Dresden, 01069, Germany.,Institute of Theoretical Physics, Technische Universität Dresden, Zellescher Weg 17, Dresden 01069, Germany
| | - Olga Guskova
- Dresden Center for Computational Materials Science (DCMS), Technische Universität Dresden, Dresden, 01062, Germany.,Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, Hohe Str. 6, Dresden, 01069, Germany
| |
Collapse
|
10
|
Yu J, Ornelas JL, Tang Y, Uddin MA, Guo H, Yu S, Wang Y, Woo HY, Zhang S, Xing G, Guo X, Huang W. 2,1,3-Benzothiadiazole-5,6-dicarboxylicimide-Based Polymer Semiconductors for Organic Thin-Film Transistors and Polymer Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:42167-42178. [PMID: 29130310 DOI: 10.1021/acsami.7b11863] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A series of polymer semiconductors incorporating 2,1,3-benzothiadiazole-5,6-dicarboxylicimide (BTZI) as strong electron-withdrawing unit and an alkoxy-functionalized head-to-head linkage containing bithiophene or bithiazole as highly electron-rich co-unit are designed and synthesized. Because of the strong intramolecular charge transfer characteristics, all three polymers BTZI-TRTOR (P1), BTZI-BTOR (P2), and BTZI-BTzOR (P3) exhibit narrow bandgaps of 1.13, 1.05, and 0.92 eV, respectively, resulting in a very broad absorption ranging from 350 to 1400 nm. The highly electron-deficient 2,1,3-benzothiadiazole-5,6-dicarboxylicimide and alkoxy-functionalized bithiophene (or thiazole) lead to polymers with low-lying lowest unoccupied molecular orbitals (-3.96 to -4.28 eV) and high-lying highest occupied molecular orbitals (-5.01 to -5.20 eV). Hence, P1 and P3 show substantial and balanced ambipolar transport with electron mobilities/hole mobilities of up to 0.86/0.51 and 0.95/0.50 cm2 V-1 s-1, respectively, and polymer P2 containing the strongest donor unit exhibited unipolar p-type performance with an average hole mobility of 0.40 cm2 V-1 s-1 in top-gate/bottom-contact thin-film transistors with gold as the source and drain electrodes. When incorporated into bulk heterojunction polymer solar cells, the narrow bandgap (1.13 eV) polymer P1 shows an encouraging power conversion efficiency of 4.15% with a relatively large open-circuit voltage of 0.69 V, which corresponds to a remarkably small energy loss of 0.44 eV. The power conversion efficiency of P1 is among the highest reported to date with such a small energy loss in polymer:fullerene solar cells.
Collapse
Affiliation(s)
- Jianwei Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, South University of Science and Technology of China , No. 1088, Xueyuan Road, Shenzhen 518055, Guangdong, China
| | - Joshua Loroña Ornelas
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, South University of Science and Technology of China , No. 1088, Xueyuan Road, Shenzhen 518055, Guangdong, China
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) , Egerlandstr. 3, Erlangen 91058, Germany
| | - Yumin Tang
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, South University of Science and Technology of China , No. 1088, Xueyuan Road, Shenzhen 518055, Guangdong, China
| | - Mohammad Afsar Uddin
- Department of Chemistry, Research Institute for Natural Sciences, Korea University , Seoul 136-713, South Korea
| | - Han Guo
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, South University of Science and Technology of China , No. 1088, Xueyuan Road, Shenzhen 518055, Guangdong, China
| | - Simiao Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Yulun Wang
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, South University of Science and Technology of China , No. 1088, Xueyuan Road, Shenzhen 518055, Guangdong, China
| | - Han Young Woo
- Department of Chemistry, Research Institute for Natural Sciences, Korea University , Seoul 136-713, South Korea
| | - Shiming Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau , Macao 999078, China
| | - Xugang Guo
- Department of Materials Science and Engineering and The Shenzhen Key Laboratory for Printed Organic Electronics, South University of Science and Technology of China , No. 1088, Xueyuan Road, Shenzhen 518055, Guangdong, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) , 30 South Puzhu Road, Nanjing 211816, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU) , 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
11
|
Lee SM, Lee HR, Han AR, Lee J, Oh JH, Yang C. High-Performance Furan-Containing Conjugated Polymer for Environmentally Benign Solution Processing. ACS APPLIED MATERIALS & INTERFACES 2017; 9:15652-15661. [PMID: 28429591 DOI: 10.1021/acsami.7b04014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Developing semiconducting polymers that exhibit both strong charge transport capability via highly ordered structures and good processability in environmentally benign solvents remains a challenge. Given that furan-based materials have better solubility in various solvents than analogous thiophene-based materials, we have synthesized and characterized furanyl-diketopyrrolopyrrole polymer (PFDPPTT-Si) together with its thienyl-diketopyrrolopyrrole-based analogue (PTDPPTT-Si) to understand subtle changes induced by the use of furan instead of thiophene units. PTDPPTT-Si films processed in common chlorinated solvent exhibit a higher hole mobility (3.57 cm2 V-1 s-1) than PFDPPTT-Si films (2.40 cm2 V-1 s-1) under the same conditions; this greater hole mobility is a result of tightly aggregated π-stacking structures in PTDPPTT-Si. By contrast, because of its enhanced solubility, PFDPPTT-Si using chlorine-free solution processing results in a device with higher mobility (as high as 1.87 cm2 V-1 s-1) compared to that of the corresponding device fabricated using PTDPPTT-Si. This mobility of 1.87 cm2 V-1 s-1 represents the highest performances among furan-containing polymers reported to the best of our knowledge for nonchlorinated solvents. Our study demonstrates an important step toward environmentally compatible electronics, and we expect the results of our study to reinvigorate the furan-containing semiconductors field.
Collapse
Affiliation(s)
- Sang Myeon Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Hae Rang Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Pohang, Gyeongbuk 37673, South Korea
| | - A-Reum Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Pohang, Gyeongbuk 37673, South Korea
| | - Junghoon Lee
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Joon Hak Oh
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Pohang, Gyeongbuk 37673, South Korea
| | - Changduk Yang
- Department of Energy Engineering, School of Energy and Chemical Engineering, Perovtronics Research Center, Low Dimensional Carbon Materials Center, Ulsan National Institute of Science and Technology (UNIST) , 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| |
Collapse
|