1
|
Vibha C, Raj G, Mani S, Lizymol PP. Synthesis and characterization of a new bio-inspired low molecular weight inorganic-organic hybrid resin with tunable properties and multifunctionality for in situ polymerization. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-11. [PMID: 40188385 DOI: 10.1080/09205063.2025.2486861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/24/2025] [Indexed: 04/08/2025]
Abstract
Synthesis and characterization of a new bio-inspired low molecular weight inorganic-organic hybrid polymer with tunable properties and multifunctionality for in situ polymerization and cross linking. The hybrid bioactive polymer was synthesized through modified sol-gel method using 3- trimethoxy silyl propyl methacrylate as the precursor. The new polymer was characterized using Proton Nuclear Magnetic Resonance (1H-NMR), Carbon-13 Nuclear Magnetic Resonance Spectroscopy (13C- NMR), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) for confirming the existence of inorganic as well as organic entities in the material. The volumetric shrinkage and bioactivity of the newly synthesized polymer was analyzed using Micro Computed Tomography (µ-CT) and Scanning Electron Microscopy (SEM). The excellent bioactivity with low polymerization shrinkage compared to the conventional resin used in biomedical applications, makes the new bio-inspired inorganic-organic hybrid bioactive polymer a potential resin matrix for the development of dental composites, bone cements and for coating applications.
Collapse
Affiliation(s)
- C Vibha
- Division of Dental Products, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram, India
| | - Gijo Raj
- Division of Dental Products, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram, India
| | - Susan Mani
- Division of Dental Products, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram, India
| | - P P Lizymol
- Division of Dental Products, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Biomedical Technology Wing, Thiruvananthapuram, India
| |
Collapse
|
2
|
Prasad A, Varshney V, Nepal D, Frank GJ. Bioinspired Design Rules from Highly Mineralized Natural Composites for Two-Dimensional Composite Design. Biomimetics (Basel) 2023; 8:500. [PMID: 37887631 PMCID: PMC10604232 DOI: 10.3390/biomimetics8060500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/12/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Discoveries of two-dimensional (2D) materials, exemplified by the recent entry of MXene, have ushered in a new era of multifunctional materials for applications from electronics to biomedical sensors due to their superior combination of mechanical, chemical, and electrical properties. MXene, for example, can be designed for specialized applications using a plethora of element combinations and surface termination layers, making them attractive for highly optimized multifunctional composites. Although multiple critical engineering applications demand that such composites balance specialized functions with mechanical demands, the current knowledge of the mechanical performance and optimized traits necessary for such composite design is severely limited. In response to this pressing need, this paper critically reviews structure-function connections for highly mineralized 2D natural composites, such as nacre and exoskeletal of windowpane oysters, to extract fundamental bioinspired design principles that provide pathways for multifunctional 2D-based engineered systems. This paper highlights key bioinspired design features, including controlling flake geometry, enhancing interface interlocks, and utilizing polymer interphases, to address the limitations of the current design. Challenges in processing, such as flake size control and incorporating interlocking mechanisms of tablet stitching and nanotube forest, are discussed along with alternative potential solutions, such as roughened interfaces and surface waviness. Finally, this paper discusses future perspectives and opportunities, including bridging the gap between theory and practice with multiscale modeling and machine learning design approaches. Overall, this review underscores the potential of bioinspired design for engineered 2D composites while acknowledging the complexities involved and providing valuable insights for researchers and engineers in this rapidly evolving field.
Collapse
Affiliation(s)
- Anamika Prasad
- Department of Biomedical Engineering, Florida International University, Miami, FL 33174, USA
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| | - Vikas Varshney
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (V.V.); (D.N.); (G.J.F.)
| | - Dhriti Nepal
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (V.V.); (D.N.); (G.J.F.)
| | - Geoffrey J. Frank
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (V.V.); (D.N.); (G.J.F.)
- University of Dayton Research Institute, Dayton, OH 45469, USA
| |
Collapse
|
3
|
Bora P, Bhuyan C, Borah AR, Hazarika S. Carbon nanomaterials for designing next-generation membranes and their emerging applications. Chem Commun (Camb) 2023; 59:11320-11336. [PMID: 37671435 DOI: 10.1039/d3cc03490a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Carbon nanomaterials have enormous applications in various fields, such as adsorption, membrane separation, catalysis, electronics, capacitors, batteries, and medical sciences. Owing to their exceptional properties, such as large specific surface area, carrier mobility, flexibility, electrical conductivity, and optical pellucidity, the family of carbon nanomaterials is considered as one of the most studied group of materials to date. They are abundantly used in membrane science for multiple applications, such as the separation of organics, enantiomeric separation, gas separation, biomolecule separation, heavy metal separation, and wastewater treatment. This study provides an overview of the significant studies on carbon nanomaterial-based membranes and their emerging applications in our membrane research journey. The types of carbon nanomaterials, their utilization in membrane-based separations, and the mechanism involved are summarized in this study. Techniques for the fabrication of different nanocomposite membranes are also highlighted. Lastly, we have provided an overview of the existing issues and future scopes of carbon nanomaterial-based membranes for technological perspectives.
Collapse
Affiliation(s)
- Prarthana Bora
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Chinmoy Bhuyan
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Akhil Ranjan Borah
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Swapnali Hazarika
- Chemical Engineering Group and Centre for Petroleum Research CSIR-North East Institute of Science and Technology, Jorhat - 785006, Assam, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
4
|
Meng X, Lv Z, Jiang T, Tan Y, Sun S, Feng J. Preparation and Characterization of a Novel Artemisia Oil Packaging Film and Its Application in Mango Preservation. Foods 2023; 12:2969. [PMID: 37569238 PMCID: PMC10418662 DOI: 10.3390/foods12152969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/13/2023] Open
Abstract
In this work, a new food packaging film was synthesized via blending Artemisia oil (AO) into soybean protein isolate (SPI) and gelatin (Gel) for the postharvest storage of mango. The morphological architecture and mechanical properties of the films were characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), X-ray diffractometer (XRD), and other technologies. The results show that the prepared films had relatively flat surfaces with good mechanical properties. AO enhanced the light-blocking ability of the film, increased the hydrophobicity, and affected the moisture content and water solubility of the film to a certain extent. Furthermore, the antioxidant performance and antifungal (Colletotrichum gloeosporioides) capacity of the films increased with higher AO concentration due to the presence of the active components contained in AO. During mango storage applications, the films showed good freshness retention properties. The above results indicate that SPI-Gel films containing AO have excellent physicochemical and application properties and have great potential in the field of food packaging.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianguo Feng
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Wang J, Wu Y, Wang Y, Shuai Y, Xu Z, Wan Q, Chen Y, Yang M. Graphene Oxide-Coated Patterned Silk Fibroin Films Promote Cell Adhesion and Induce Cardiomyogenic Differentiation of Human Mesenchymal Stem Cells. Biomolecules 2023; 13:990. [PMID: 37371570 DOI: 10.3390/biom13060990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/03/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Cardiac tissue engineering is a promising strategy for the treatment of myocardial damage. Mesenchymal stem cells (MSCs) are extensively used in tissue engineering. However, transformation of MSCs into cardiac myocytes is still a challenge. Furthermore, weak adhesion of MSCs to substrates often results in poor cell viability. Here, we designed a composite matrix based on silk fibroin (SF) and graphene oxide (GO) for improving the cell adhesion and directing the differentiation of MSCs into cardiac myocytes. Specifically, patterned SF films were first produced by soft lithographic. After being treated by air plasma, GO nanosheets could be successfully coated on the patterned SF films to construct the desired matrix (P-GSF). The resultant P-GSF films presented a nano-topographic surface characterized by linear grooves interlaced with GO ridges. The P-GSF films exhibited high protein absorption and suitable mechanical strength. Furthermore, the P-GSF films accelerated the early cell adhesion and directed the growth orientation of MSCs. RT-PCR results and immunofluorescence imaging demonstrated that the P-GSF films significantly improved the cardiomyogenic differentiation of MSCs. This work indicates that patterned SF films coated with GO are promising matrix in the field of myocardial repair tissue engineering.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yi Wu
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yecheng Wang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yajun Shuai
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zongpu Xu
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Quan Wan
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yuyin Chen
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Mingying Yang
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
6
|
Cho H, Lee C, Lee C, Lee S, Kim S. Robust, Ultrathin, and Highly Sensitive Reduced Graphene Oxide/Silk Fibroin Wearable Sensors Responded to Temperature and Humidity for Physiological Detection. Biomacromolecules 2023; 24:2606-2617. [PMID: 37075303 PMCID: PMC10266372 DOI: 10.1021/acs.biomac.3c00106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/06/2023] [Indexed: 04/21/2023]
Abstract
Skin temperature and skin humidity are used for monitoring physiological processes, such as respiration. Despite advances in wearable temperature and humidity sensors, the fabrication of a durable and sensitive sensor for practical uses continues to pose a challenge. Here, we developed a durable, sensitive, and wearable temperature and humidity sensor. A reduced graphene oxide (rGO)/silk fibroin (SF) sensor was fabricated by employing a layer-by-layer technique and thermal reduction treatment. Compared with rGO, the elastic bending modulus of rGO/SF could be increased by up to 232%. Furthermore, an evaluation of the performance of an rGO/SF sensor showed that it had outstanding robustness: it could withstand repeatedly applied temperature and humidity loads and repeated bending. The developed rGO/SF sensor is promising for practical applications in healthcare and biomedical monitoring.
Collapse
Affiliation(s)
- Hyeonho Cho
- School
of Mechanical Engineering, Chung-Ang University, Dongjak-gu, Seoul 06974, Korea
| | - Chanui Lee
- School
of Mechanical Engineering, Chung-Ang University, Dongjak-gu, Seoul 06974, Korea
| | - ChaBum Lee
- J.
Mike Walker ’66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843-3123, United States
| | - Sangmin Lee
- School
of Mechanical Engineering, Chung-Ang University, Dongjak-gu, Seoul 06974, Korea
| | - Sunghan Kim
- School
of Mechanical Engineering, Chung-Ang University, Dongjak-gu, Seoul 06974, Korea
| |
Collapse
|
7
|
Yadav R, Purwar R. Effect of post-treatment methods and nanoparticles on the conformation of silk fibroin and their impact on electrical properties. POLYM-PLAST TECH MAT 2022. [DOI: 10.1080/25740881.2022.2089576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Reetu Yadav
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Roli Purwar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
8
|
Bio-responsive composite liposomes against Campylobacter jejuni in vitro and its application in chicken preservation. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Yi B, Xu Q, Liu W. An overview of substrate stiffness guided cellular response and its applications in tissue regeneration. Bioact Mater 2022; 15:82-102. [PMID: 35386347 PMCID: PMC8940767 DOI: 10.1016/j.bioactmat.2021.12.005] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 02/06/2023] Open
Abstract
Cell-matrix interactions play a critical role in tissue repair and regeneration. With gradual uncovering of substrate mechanical characteristics that can affect cell-matrix interactions, much progress has been made to unravel substrate stiffness-mediated cellular response as well as its underlying mechanisms. Yet, as a part of cell-matrix interaction biology, this field remains in its infancy, and the detailed molecular mechanisms are still elusive regarding scaffold-modulated tissue regeneration. This review provides an overview of recent progress in the area of the substrate stiffness-mediated cellular responses, including 1) the physical determination of substrate stiffness on cell fate and tissue development; 2) the current exploited approaches to manipulate the stiffness of scaffolds; 3) the progress of recent researches to reveal the role of substrate stiffness in cellular responses in some representative tissue-engineered regeneration varying from stiff tissue to soft tissue. This article aims to provide an up-to-date overview of cell mechanobiology research in substrate stiffness mediated cellular response and tissue regeneration with insightful information to facilitate interdisciplinary knowledge transfer and enable the establishment of prognostic markers for the design of suitable biomaterials. Substrate stiffness physically determines cell fate and tissue development. Rational design of scaffolds requires the understanding of cell-matrix interactions. Substrate stiffness depends on scaffold molecular-constituent-structure interaction. Substrate stiffness-mediated cellular responses vary in different tissues.
Collapse
|
10
|
Abstract
Natural biological materials provide a rich source of inspiration for building high-performance materials with extensive applications. By mimicking their chemical compositions and hierarchical architectures, the past decades have witnessed the rapid development of bioinspired materials. As a very promising biosourced raw material, silk is drawing increasing attention due to excellent mechanical properties, favorable versatility, and good biocompatibility. In this review, we provide an overview of the recent progress in silk-based bioinspired structural and functional materials. We first give a brief introduction of silk, covering its sources, features, extraction, and forms. We then summarize the preparation and application of silk-based materials mimicking four typical biological materials including bone, nacre, skin, and polar bear hair. Finally, we discuss the current challenges and future prospects of this field.
Collapse
Affiliation(s)
- Zongpu Xu
- Institute of Applied Bioresources, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Utilization and Innovation of Silkworm and Bee Resources of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Weiwei Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Corresponding author
| | - Hao Bai
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Corresponding author
| |
Collapse
|
11
|
Cho H, Shakil A, Polycarpou AA, Kim S. Enabling Selectively Tunable Mechanical Properties of Graphene Oxide/Silk Fibroin/Cellulose Nanocrystal Bionanofilms. ACS NANO 2021; 15:19546-19558. [PMID: 34807563 DOI: 10.1021/acsnano.1c06573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Enhancing and manipulating the mechanical properties of graphene oxide (GO)-based structures are challenging because the GO assembly is easily delaminated. We develop nacre-like bionanofilms whose in-plane mechanical properties can be manipulated through water vapor annealing without influencing their mechanical properties in the thickness direction. These bionanofilms are prepared from GO, silk fibroin (SF), and cellulose nanocrystals (CNCs) via a spin-assisted layer-by-layer assembly. The postannealing mechanical properties of the films are determined with atomic force microscopy (AFM) bending and nanoindentation, and it is confirmed that the mechanical properties of the bionanofilms are altered only in the in-plane direction. While AFM bending shows Young's moduli of 26.9, 36.3, 24.3, and 41.4 GPa for 15, 15 annealed, 30, and 30 annealed GO/SF/CNC trilayers, nanoindentation shows reduced moduli of 19.5 ± 2.6 and 19.5 ± 2.5 GPa before and after annealing, respectively. The unaltered mechanical properties of the bionanofilms along the thickness direction after annealing can be attributed to the CNC frame in the SF matrix acting as a support against stress in the thickness direction, while annealing reorganizes the bionanofilm structure. The tunability of the bionanofilms' mechanical properties in only one direction through structure manipulation can lead to various applications, such as e-skin, wearable sensors, and human-machine interaction devices.
Collapse
Affiliation(s)
- Hyeonho Cho
- School of Mechanical Engineering, Chung-Ang University, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Ahmad Shakil
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843-3123, United States
| | - Andreas A Polycarpou
- J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843-3123, United States
| | - Sunghan Kim
- School of Mechanical Engineering, Chung-Ang University, Dongjak-gu, Seoul 06974, Republic of Korea
| |
Collapse
|
12
|
Yue C, Ding C, Du X, Wang Y, Su J, Cheng B. Self-assembly of collagen fibrils on graphene oxide and their hybrid nanocomposite films. Int J Biol Macromol 2021; 193:173-182. [PMID: 34687767 DOI: 10.1016/j.ijbiomac.2021.10.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/30/2021] [Accepted: 10/13/2021] [Indexed: 12/25/2022]
Abstract
In order to explore the distribution, conformation and interaction of collagen on GO nanosheet surfaces, the mechanism of self-assembly of collagen was investigated in the presence of GO nanosheets. Atomic force microscopy (AFM) was employed to observe the conformation of self-assembled collagen fibrils on the GO nanosheets surfaces. The collagen concentration and incubation time mainly affect the size of the collagen fibrils while the pH of the dispersion determines the self-assembly sites of collagen fibrils on the GO nanosheets surfaces. This pH-dependent adsorption is attributed to the interfacial interactions between the tunable ionization of the collagen molecules and the amphiphilic GO nanosheets. Vacuum-assisted self-assembly technology confirmed that GO nanosheets can direct the self-assembly of collagen molecules and form nacre-like nanocomposites. The GO/collagen nanocomposite films combine the remarkable properties of GO nanosheets and collagen to form functional nanocomposites with well-ordered hierarchical structures. Further, strong interfacial interactions between GO nanosheets with collagen fibrils result in enhanced mechanical properties and biocompatibility of nanocomposite films, which is conducive to enhance the neuronal differentiation of SH-SY5Y cells. Overall, this work provides fresh insight into the interactions between GO and collagen, which is essential for the design and manufacture of bioinspired nanocomposites with tailored mechanical properties.
Collapse
Affiliation(s)
- Chengfei Yue
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Changkun Ding
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Xuan Du
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yanjie Wang
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jieliang Su
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Bowen Cheng
- School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
13
|
Xu X, Ren Z, Zhang M, Ma L. Enzymatic degradability and release properties of graphene oxide/silk fibroin nanocomposite films. J Appl Polym Sci 2021. [DOI: 10.1002/app.51173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiafan Xu
- School of Chemistry and Chemical Engineering Guangxi University Nanning P. R. China
| | - Zilong Ren
- School of Chemistry and Chemical Engineering Guangxi University Nanning P. R. China
| | - Meiqi Zhang
- School of Chemistry and Chemical Engineering Guangxi University Nanning P. R. China
| | - Lin Ma
- School of Chemistry and Chemical Engineering Guangxi University Nanning P. R. China
| |
Collapse
|
14
|
Chang J, Zhang M, Zhao Q, Qu L, Yuan J. Ultratough and ultrastrong graphene oxide hybrid films via a polycationitrile approach. NANOSCALE HORIZONS 2021; 6:341-347. [PMID: 33660723 DOI: 10.1039/d1nh00073j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Graphene oxide (GO) is a classic two dimensional (2D) building block that can be used to develop high-performance materials for numerous applications, particularly in the energy and environmental fields. Currently, the precise assembly of GO nanosheets into macroscopic nanohybrids of superior strength and toughness is desirable, and faces challenges and trade-offs. Herein, we exploited the freshly established polycationitrile method as a powerful molecular crosslinking strategy to engineer ultratough and ultrastrong GO/polymer hybrid films, in which a covalent triazine-based network was constructed in a mild condition to reinforce the interface between GO nanosheets. The tensile strength and toughness reached 585 ± 25 MPa and 14.93 ± 1.09 MJ m-3, respectively, which, to the best of our knowledge, are the current world records in all GO-based hybrid films. As an added merit of the tailor-made polymer crosslinker, the high mechanical performance can be maintained in large part at an extremely high relative humidity of 98%. This emerging interface-engineering approach paves a new avenue to produce integrated strong-and-tough 2D nanohybrid materials that are useful in aerospace, artificial muscle, energy harvesting, tissue engineering and more.
Collapse
Affiliation(s)
- Jian Chang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm 10691, Sweden.
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Ma L, Liu Q, Wu R, Meng Z, Patil A, Yu R, Yang Y, Zhu S, Fan X, Hou C, Li Y, Qiu W, Huang L, Wang J, Lin N, Wan Y, Hu J, Liu XY. From Molecular Reconstruction of Mesoscopic Functional Conductive Silk Fibrous Materials to Remote Respiration Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000203. [PMID: 32452630 DOI: 10.1002/smll.202000203] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/05/2020] [Accepted: 04/16/2020] [Indexed: 05/28/2023]
Abstract
Turning insulating silk fibroin materials into conductive ones turns out to be the essential step toward achieving active silk flexible electronics. This work aims to acquire electrically conductive biocompatible fibers of regenerated Bombyx mori silk fibroin (SF) materials based on carbon nanotubes (CNTs) templated nucleation reconstruction of silk fibroin networks. The electronical conductivity of the reconstructed mesoscopic functional fibers can be tuned by the density of the incorporated CNTs. It follows that the hybrid fibers experience an abrupt increase in conductivity when exceeding the percolation threshold of CNTs >35 wt%, which leads to the highest conductivity of 638.9 S m-1 among organic-carbon-based hybrid fibers, and 8 times higher than the best available materials of the similar types. In addition, the silk-CNT mesoscopic hybrid materials achieve some new functionalities, i.e., humidity-responsive conductivity, which is attributed to the coupling of the humidity inducing cyclic contraction of SFs and the conductivity of CNTs. The silk-CNT materials, as a type of biocompatible electronic functional fibrous material for pressure and electric response humidity sensing, are further fabricated into a smart facial mask to implement respiration condition monitoring for remote diagnosis and medication.
Collapse
Affiliation(s)
- Liyun Ma
- Research Institution for Biomimetics and Soft Matter, College of Physical Science and Technology, College of Materials, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, P. R. China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
- College of Textile and Clothing, Xinjiang University, Urumqi, 830000, P. R. China
| | - Qiang Liu
- Research Institution for Biomimetics and Soft Matter, College of Physical Science and Technology, College of Materials, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, P. R. China
- Institute of Advanced Materials, East China JiaoTong University, Nanchang, 330013, P. R. China
| | - Ronghui Wu
- Research Institution for Biomimetics and Soft Matter, College of Physical Science and Technology, College of Materials, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, P. R. China
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
- Department of Physics, Faculty of Science, National University of Singapore, Singapore, 117542, Singapore
| | - Zhaohui Meng
- Research Institution for Biomimetics and Soft Matter, College of Physical Science and Technology, College of Materials, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, P. R. China
| | - Aniruddha Patil
- Research Institution for Biomimetics and Soft Matter, College of Physical Science and Technology, College of Materials, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, P. R. China
| | - Rui Yu
- Research Institution for Biomimetics and Soft Matter, College of Physical Science and Technology, College of Materials, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, P. R. China
| | - Yun Yang
- Research Institution for Biomimetics and Soft Matter, College of Physical Science and Technology, College of Materials, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, P. R. China
| | - Shuihong Zhu
- Research Institution for Biomimetics and Soft Matter, College of Physical Science and Technology, College of Materials, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, P. R. China
| | - Xuwei Fan
- Department of Information and Communication Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chen Hou
- Research Institution for Biomimetics and Soft Matter, College of Physical Science and Technology, College of Materials, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, P. R. China
| | - Yanran Li
- Research Institution for Biomimetics and Soft Matter, College of Physical Science and Technology, College of Materials, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, P. R. China
| | - Wu Qiu
- Research Institution for Biomimetics and Soft Matter, College of Physical Science and Technology, College of Materials, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, P. R. China
| | - Lianfen Huang
- Department of Information and Communication Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jun Wang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, P. R. China
| | - Naibo Lin
- Research Institution for Biomimetics and Soft Matter, College of Physical Science and Technology, College of Materials, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, P. R. China
| | - Yizao Wan
- Institute of Advanced Materials, East China JiaoTong University, Nanchang, 330013, P. R. China
| | - Jian Hu
- Institute of Advanced Materials, East China JiaoTong University, Nanchang, 330013, P. R. China
| | - Xiang Yang Liu
- Research Institution for Biomimetics and Soft Matter, College of Physical Science and Technology, College of Materials, Fujian Provincial Key Laboratory for Soft Functional Materials Research, Jiujiang Research Institute, Xiamen University, Xiamen, 361005, P. R. China
- Institute of Advanced Materials, East China JiaoTong University, Nanchang, 330013, P. R. China
| |
Collapse
|
17
|
Lei X, Ma H, Fang H. Length feature of ssDNA adsorption onto graphene oxide with both large unoxidized and oxidized regions. NANOSCALE 2020; 12:6699-6707. [PMID: 32186546 DOI: 10.1039/c9nr10170e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
DNA/GO functional structures have been widely used in biosensors, biomedicine and materials science. However, most studies about DNA/GO functional structures do not take into account the coexistence of both large unoxidized and oxidized regions on GO sheets. This special local structure provides the boundary region, which is the junction area between unoxidized and oxidized regions, and exhibits a special amphiphilic property of the GO sheets. Here based on molecular dynamics simulations, our results predict that the adsorption efficiency of long strand ssDNA molecules adsorbed on GO is 43%. Further analysis has shown that the ssDNA adsorption behaviors on the GO surface are more likely to start in the boundary region, even for 20 mer ssDNA molecules. Looking into the adsorption dynamic process we can see that the hydrogen bonds between ssDNA and GO are very active and easily broken and formed, especially for the boundary region of the GO surface, resulting in easy capture and adsorption of the ssDNA molecules on this region. The result provides insightful understanding of the adsorption behavior of ssDNA molecules on this amphiphilic GO surface and is helpful in the design of DNA/GO functional structure-based biosensors.
Collapse
Affiliation(s)
- Xiaoling Lei
- Department of Physics, East China University of Science and Technology, Shanghai 200237, China.
| | | | | |
Collapse
|
18
|
Li D, Fan Y, Han G, Guo Z. Superomniphobic Silk Fibroin/Ag Nanowires Membrane for Flexible and Transparent Electronic Sensor. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10039-10049. [PMID: 32017854 DOI: 10.1021/acsami.9b23378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Superwetting surfaces that repel various liquids have been exciting for biomimetic research and have displayed versatile potential applications. Generally, superhydrophobic coatings can allow for droplet rolling off and antifouling, whereas it is a challenge to achieve superomniphobic surfaces with transparency, flexibility, and conductivity. Here, we adopt an effective and simple method to fabricate a superomniphobic, transparent, and flexible smart silk fibroin (SF) membrane by spray-coating long AgNWs dispersed in polydimethylsiloxane (PDMS), followed by treatment with vacuum drying. The resulting SF/AgNWs membranes are super-repellent to different liquids with low surface tension and water, and demonstrate high contact angles (CAs) more than 150° and low rolling-off angles (RAs) even less than 10°. Moreover, the obtained membranes display superior sensitivity under stretching and bending, as well as intact stability of high transparency, which can be considered as promising flexible sensing electronics to detect human motions under wet conditions.
Collapse
Affiliation(s)
- Deke Li
- School of Materials Engineering , Lanzhou Institute of Technology , Lanzhou 730050 , People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , People's Republic of China
| | - Yufeng Fan
- School of Materials Engineering , Lanzhou Institute of Technology , Lanzhou 730050 , People's Republic of China
| | - Guocai Han
- School of Materials Engineering , Lanzhou Institute of Technology , Lanzhou 730050 , People's Republic of China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials , Hubei University , Wuhan 430062 , People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics , Chinese Academy of Sciences , Lanzhou 730000 , People's Republic of China
| |
Collapse
|
19
|
Ren J, Wang Y, Yao Y, Wang Y, Fei X, Qi P, Lin S, Kaplan DL, Buehler MJ, Ling S. Biological Material Interfaces as Inspiration for Mechanical and Optical Material Designs. Chem Rev 2019; 119:12279-12336. [DOI: 10.1021/acs.chemrev.9b00416] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jing Ren
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yu Wang
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Yuan Yao
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yang Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Xiang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-Dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ping Qi
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Shihui Lin
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
20
|
Investigation on the Preparation and Properties of CMC/magadiite Nacre-Like Nanocomposite Films. Polymers (Basel) 2019; 11:polym11091378. [PMID: 31443463 PMCID: PMC6780612 DOI: 10.3390/polym11091378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 11/17/2022] Open
Abstract
The layered hydrated sodium salt-magadiite (MAG), which has special interpenetrating petals structure, was used as a functional filler to slowly self-assemble with sodium carboxy-methylcellulose (CMC), in order to prepare nacre-like nanocomposite film by solvent evaporation method. The structure of prepared nacre-like nanocomposite film was characterized by Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis; whereas, it was indicated that CMC macromolecules were inserted between the layers of MAG to increase the layer spacing of MAG by forming an interpenetrating petals structure; in the meantime, the addition of MAG improved the thermal stability of CMC. The tensile strength of CMC/MAG was significantly improved compared with pure CMC. The tensile strength of CMC/MAG reached the maximum value at 1.71 MPa when the MAG content was 20%, to maintaining high transparency. Due to the high content of inorganic filler, the flame retarding performance and the thermal stability were also brilliant; hence, the great biocompatibility and excellent mechanical properties of the bionic nanocomposite films with the unique interpenetrating petals structure provided a great probability for these original composites to be widely applied in material research, such as tissue engineering in biomedical research.
Collapse
|
21
|
Zhang X, Nguyen H, Daly M, Nguyen ST, Espinosa HD. Nanoscale toughening of ultrathin graphene oxide-polymer composites: mechanochemical insights into hydrogen-bonding/van der Waals interactions, polymer chain alignment, and steric parameters. NANOSCALE 2019; 11:12305-12316. [PMID: 31214681 DOI: 10.1039/c9nr01453e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This paper describes a systematic study on the nanoscale toughening of monolayer graphene oxide (GO) by an ultra-thin polymer adlayer, which impedes the propagation of cracks during intraplanar fracture. Using molecular dynamics simulations, the crack-bridging capabilities of a library of five hydrogen-bonding-capable polymers are explored against an epoxide-rich GO substrate. The best crack-bridging effect is found in polymers with functional groups that can both donate/accept hydrogen atoms and have better capability to form cooperative hydrogen bonds. Aligning the chains of poly(acrylic acid) orthogonally to the crack propagation direction significantly enhances the fracture toughness of monolayer GO (by 310%) in comparison to that for an adlayer with randomly arranged chains (180% enhancement). Notably, van der Waals interactions, which are seldom highlighted in the fabrication of strong GO-polymer interfaces, are found to also provide significant crack-bridging capabilities when the polymers possess large side groups. These results pave the way for a set of design criteria that can help in remediating the intrinsically brittle mechanical behavior of two-dimensional materials, a barrier that currently restricts their potential applications.
Collapse
Affiliation(s)
- Xu Zhang
- Theoretical and Applied Mechanics Program, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Hoang Nguyen
- Theoretical and Applied Mechanics Program, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Matthew Daly
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| | - SonBinh T Nguyen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA.
| | - Horacio D Espinosa
- Theoretical and Applied Mechanics Program, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA. and Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA
| |
Collapse
|
22
|
Sun J, Shakya S, Gong M, Liu G, Wu S, Xiang Z. Combined Application of Graphene‐Family Materials and Silk Fibroin in Biomedicine. ChemistrySelect 2019. [DOI: 10.1002/slct.201804034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiachen Sun
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Sujan Shakya
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Min Gong
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Guoming Liu
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Shuang Wu
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
| | - Zhou Xiang
- Department of OrthopedicsWest China HospitalSichuan University Chengdu 610041 P. R. China
- Division of Stem Cell and Tissue EngineeringState Key Laboratory of BiotherapyWest China HospitalSichuan University Chengdu 610041 P. R. China
| |
Collapse
|
23
|
Saveleva MS, Eftekhari K, Abalymov A, Douglas TEL, Volodkin D, Parakhonskiy BV, Skirtach AG. Hierarchy of Hybrid Materials-The Place of Inorganics- in-Organics in it, Their Composition and Applications. Front Chem 2019; 7:179. [PMID: 31019908 PMCID: PMC6459030 DOI: 10.3389/fchem.2019.00179] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
Hybrid materials, or hybrids incorporating both organic and inorganic constituents, are emerging as a very potent and promising class of materials due to the diverse, but complementary nature of the properties inherent of these different classes of materials. The complementarity leads to a perfect synergy of properties of desired material and eventually an end-product. The diversity of resultant properties and materials used in the construction of hybrids, leads to a very broad range of application areas generated by engaging very different research communities. We provide here a general classification of hybrid materials, wherein organics-in-inorganics (inorganic materials modified by organic moieties) are distinguished from inorganics-in-organics (organic materials or matrices modified by inorganic constituents). In the former area, the surface functionalization of colloids is distinguished as a stand-alone sub-area. The latter area-functionalization of organic materials by inorganic additives-is the focus of the current review. Inorganic constituents, often in the form of small particles or structures, are made of minerals, clays, semiconductors, metals, carbons, and ceramics. They are shown to be incorporated into organic matrices, which can be distinguished as two classes: chemical and biological. Chemical organic matrices include coatings, vehicles and capsules assembled into: hydrogels, layer-by-layer assembly, polymer brushes, block co-polymers and other assemblies. Biological organic matrices encompass bio-molecules (lipids, polysaccharides, proteins and enzymes, and nucleic acids) as well as higher level organisms: cells, bacteria, and microorganisms. In addition to providing details of the above classification and analysis of the composition of hybrids, we also highlight some antagonistic yin-&-yang properties of organic and inorganic materials, review applications and provide an outlook to emerging trends.
Collapse
Affiliation(s)
- Mariia S. Saveleva
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Remote Controlled Theranostic Systems Lab, Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Karaneh Eftekhari
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Anatolii Abalymov
- Remote Controlled Theranostic Systems Lab, Educational Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov, Russia
| | - Timothy E. L. Douglas
- Engineering Department and Materials Science Institute (MSI), Lancaster University, Lancaster, United Kingdom
| | - Dmitry Volodkin
- School of Science & Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Bogdan V. Parakhonskiy
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Andre G. Skirtach
- Nano-BioTechnology Group, Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
24
|
Li K, Li P, Fan Y. The assembly of silk fibroin and graphene-based nanomaterials with enhanced mechanical/conductive properties and their biomedical applications. J Mater Chem B 2019; 7:6890-6913. [DOI: 10.1039/c9tb01733j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The assembly of silk fibroin and graphene-based nanomaterials would present fantastic properties and functions via optimizing the interaction between each other, and can be processed into various formats to tailor specific biomedical applications.
Collapse
Affiliation(s)
- Kun Li
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| | - Ping Li
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| | - Yubo Fan
- School of Biological Science and Medical Engineering
- Beihang University
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- Beijing 100083
- China
| |
Collapse
|
25
|
Wang Y, Guo J, Zhou L, Ye C, Omenetto FG, Kaplan DL, Ling S. Design, Fabrication, and Function of Silk-Based Nanomaterials. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1805305. [PMID: 32440262 PMCID: PMC7241600 DOI: 10.1002/adfm.201805305] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Indexed: 05/03/2023]
Abstract
Animal silks are built from pure protein components and their mechanical performance, such as strength and toughness, often exceed most engineered materials. The secret to this success is their unique nanoarchitectures that are formed through the hierarchical self-assembly of silk proteins. This natural material fabrication process in sharp contrast to the production of artificial silk materials, which usually are directly constructed as bulk structures from silk fibroin (SF) molecular. In recent years, with the aim of understanding and building better silk materials, a variety of fabrication strategies have been designed to control nanostructures of silks or to create functional materials from silk nanoscale building blocks. These emerging fabrication strategies offer an opportunity to tailor the structure of SF at the nanoscale and provide a promising route to produce structurally and functionally optimized silk nanomaterials. Here, we review the critical roles of silk nanoarchitectures on property and function of natural silk fibers, outline the strategies of utilization of these silk nanobuilding blocks, and we provide a critical summary of state of the art in the field to create silk nanoarchitectures and to generate silk-based nanocomponents. Further, such insights suggest templates to consider for other materials systems.
Collapse
Affiliation(s)
- Yu Wang
- Department of Biomedical Engineering, Tufts University, MA 02155, USA
| | - Jin Guo
- Department of Biomedical Engineering, Tufts University, MA 02155, USA; Department of Chemical and Biological Engineering, Tufts University, MA 02155, USA
| | - Liang Zhou
- Department of Material Science and Engineering, AnHui Agricultural University, Hefei 230036, China
| | - Chao Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, MA 02155, USA
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
26
|
Sun Q, Qian B, Uto K, Chen J, Liu X, Minari T. Functional biomaterials towards flexible electronics and sensors. Biosens Bioelectron 2018; 119:237-251. [DOI: 10.1016/j.bios.2018.08.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/08/2018] [Accepted: 08/09/2018] [Indexed: 12/15/2022]
|
27
|
López Barreiro D, Yeo J, Tarakanova A, Martin-Martinez FJ, Buehler MJ. Multiscale Modeling of Silk and Silk-Based Biomaterials-A Review. Macromol Biosci 2018; 19:e1800253. [PMID: 30375164 DOI: 10.1002/mabi.201800253] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/20/2018] [Indexed: 12/25/2022]
Abstract
Silk embodies outstanding material properties and biologically relevant functions achieved through a delicate hierarchical structure. It can be used to create high-performance, multifunctional, and biocompatible materials through mild processes and careful rational material designs. To achieve this goal, computational modeling has proven to be a powerful platform to unravel the causes of the excellent mechanical properties of silk, to predict the properties of the biomaterials derived thereof, and to assist in devising new manufacturing strategies. Fine-scale modeling has been done mainly through all-atom and coarse-grained molecular dynamics simulations, which offer a bottom-up description of silk. In this work, a selection of relevant contributions of computational modeling is reviewed to understand the properties of natural silk, and to the design of silk-based materials, especially combined with experimental methods. Future research directions are also pointed out, including approaches such as 3D printing and machine learning, that may enable a high throughput design and manufacturing of silk-based biomaterials.
Collapse
Affiliation(s)
- Diego López Barreiro
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA
| | - Jingjie Yeo
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA.,Institute of High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore, 138632, Singapore.,Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA, 02155, USA
| | - Anna Tarakanova
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA
| | - Francisco J Martin-Martinez
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA
| | - Markus J Buehler
- Laboratory for Atomistic and Molecular Mechanics (LAMM), Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 1-290, Cambridge, MA, 02139, USA
| |
Collapse
|
28
|
Ling S, Chen W, Fan Y, Zheng K, Jin K, Yu H, Buehler MJ, Kaplan DL. Biopolymer nanofibrils: structure, modeling, preparation, and applications. Prog Polym Sci 2018; 85:1-56. [PMID: 31915410 PMCID: PMC6948189 DOI: 10.1016/j.progpolymsci.2018.06.004] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biopolymer nanofibrils exhibit exceptional mechanical properties with a unique combination of strength and toughness, while also presenting biological functions that interact with the surrounding environment. These features of biopolymer nanofibrils profit from their hierarchical structures that spun angstrom to hundreds of nanometer scales. To maintain these unique structural features and to directly utilize these natural supramolecular assemblies, a variety of new methods have been developed to produce biopolymer nanofibrils. In particular, cellulose nanofibrils (CNFs), chitin nanofibrils (ChNFs), silk nanofibrils (SNFs) and collagen nanofibrils (CoNFs), as the four most abundant biopolymer nanofibrils on earth, have been the focus of research in recent years due to their renewable features, wide availability, low-cost, biocompatibility, and biodegradability. A series of top-down and bottom-up strategies have been accessed to exfoliate and regenerate these nanofibrils for versatile advanced applications. In this review, we first summarize the structures of biopolymer nanofibrils in nature and outline their related computational models with the aim of disclosing fundamental structure-property relationships in biological materials. Then, we discuss the underlying methods used for the preparation of CNFs, ChNFs, SNF and CoNFs, and discuss emerging applications for these biopolymer nanofibrils.
Collapse
Affiliation(s)
- Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Yimin Fan
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Kai Jin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science & Technology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
29
|
Balu R, Reeder S, Knott R, Mata J, de Campo L, Dutta NK, Choudhury NR. Tough Photocrosslinked Silk Fibroin/Graphene Oxide Nanocomposite Hydrogels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9238-9251. [PMID: 29989819 DOI: 10.1021/acs.langmuir.8b01141] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of protein-based hydrogels for tissue engineering applications is often limited by their mechanical properties. Herein, we present the facile fabrication of tough regenerated silk fibroin (RSF)/graphene oxide (GO) nanocomposite hydrogels by a photochemical cross-linking method. The RSF/GO composite hydrogels demonstrated soft and adhesive properties during initial stages of photocrosslinking (<2 min), which is not observed for the pristine RSF hydrogel, and rendered a tough and nonadhesive hydrogel upon complete cross-linking (10 min). The composite hydrogels exhibited superior tensile mechanical properties, increased β-sheet content, and decreased chain mobility compared to that of the pristine RSF hydrogels. The composite hydrogels demonstrated Young's modulus as high as ∼8 MPa, which is significantly higher than native cartilage (∼1.5 MPa), and tensile toughness as high as ∼2.4 MJ/m3, which is greater than that of electroactive polymer muscles and at par with RSF/GO composite membranes fabricated by layer-by-layer assembly. Small-angle scattering study reveals the hierarchical structure of photocrosslinked RSF hydrogels to comprise randomly distributed water-poor (hydrophobic) and water-rich (hydrophilic) regions at the nanoscale, whereas water pores and channels exhibiting fractal-like characteristics at the microscale. The size of hydrophobic domain (containing β-sheets) was observed to increase slightly with GO incorporation and/or alcohol post-treatment, whereas the size of the hydrophilic domain (intersheet distance containing random coils) was observed to increase significantly, which influences/affects water uptake capacity, cross-link density, and mechanical properties of hydrogels. The presented results have implications for both fundamental understanding of the structure-property relationship of RSF-based hydrogels and their technological applications.
Collapse
Affiliation(s)
- Rajkamal Balu
- School of Engineering , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Shaina Reeder
- School of Chemical Engineering , University of Adelaide , Adelaide , South Australia 5005 , Australia
| | - Robert Knott
- Australian Centre for Neutron Scattering , Australian Nuclear Science and Technology Organisation , Sydney , New South Wales 2232 , Australia
| | - Jitendra Mata
- Australian Centre for Neutron Scattering , Australian Nuclear Science and Technology Organisation , Sydney , New South Wales 2232 , Australia
| | - Liliana de Campo
- Australian Centre for Neutron Scattering , Australian Nuclear Science and Technology Organisation , Sydney , New South Wales 2232 , Australia
| | - Naba Kumar Dutta
- School of Engineering , RMIT University , Melbourne , Victoria 3001 , Australia
| | | |
Collapse
|
30
|
Yao Y, Ping J. Recent advances in graphene-based freestanding paper-like materials for sensing applications. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.04.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Zhang W, Ye C, Zheng K, Zhong J, Tang Y, Fan Y, Buehler MJ, Ling S, Kaplan DL. Tensan Silk-Inspired Hierarchical Fibers for Smart Textile Applications. ACS NANO 2018; 12:6968-6977. [PMID: 29932636 PMCID: PMC6501189 DOI: 10.1021/acsnano.8b02430] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tensan silk, a natural fiber produced by the Japanese oak silk moth ( Antherea yamamai, abbreviated to A. yamamai), features superior characteristics, such as compressive elasticity and chemical resistance, when compared to the more common silk produced from the domesticated silkworm, Bombyx mori ( B. mori). In this study, the "structure-property" relationships within A. yamamai silk are disclosed from the different structural hierarchies, confirming the outstanding toughness as dominated by the distinct mesoscale fibrillar architectures. Inspired by this hierarchical construction, we fabricated A. yamamai silk-like regenerated B. mori silk fibers (RBSFs) with mechanical properties (extensibility and modulus) comparable to natural A. yamamai silk. These RBSFs were further functionalized to form conductive RBSFs that were sensitive to force and temperature stimuli for applications in smart textiles. This study provides a blueprint in exploiting rational designs from A. yamanmai, which is rare and expensive in comparison to the common and cost-effective B. mori silk to empower enhanced material properties.
Collapse
Affiliation(s)
- Wenwen Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuel & Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Chao Ye
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Ke Zheng
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Jiajia Zhong
- Shanghai Advanced Research Institute (Zhangjiang Lab), Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yuzhao Tang
- Shanghai Advanced Research Institute (Zhangjiang Lab), Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuel & Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Markus J. Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| |
Collapse
|
32
|
Ling S, Wang Q, Zhang D, Zhang Y, Mu X, Kaplan DL, Buehler MJ. Integration of stiff graphene and tough silk for the design and fabrication of versatile electronic materials. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1705291. [PMID: 30505261 PMCID: PMC6261468 DOI: 10.1002/adfm.201705291] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The production of structural and functional materials with enhanced mechanical properties through the integration of soft and hard components is a common approach to Nature's materials design. However, directly mimicking these optimized design routes in the lab for practical applications remains challenging. For example, graphene and silk are two materials with complementary mechanical properties that feature ultrahigh stiffness and toughness, respectively. Yet no simple and controllable approach has been developed to homogeneously integrate these two components into functional composites, mainly due to the hydrophobicity and chemical inertness of the graphene. In this study, well-dispersed and highly stable graphene/silk fibroin (SF) suspension systems were developed, which are suitable for processing to fabricate polymorphic materials, such as films, fibers, and coatings. The obtained graphene/SF nanocomposites maintain the electronic advantages of graphene, and they also allow tailorable mechanical performance to form including ultrahigh stretchable (with a strain to failure to 611±85%), or high strength (339 MPa) and high stiffness (7.4 GPa) material systems. More remarkably, the electrical resistances of these graphene/SF materials are sensitive to material deformation, body movement, as well as humidity and chemical environmental changes. These unique features promise their utility as wearable sensors, smart textiles, intelligent skins, and human-machine interfaces.
Collapse
Affiliation(s)
- Shengjie Ling
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Qi Wang
- Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, PR China
| | - Dong Zhang
- Department of Communication and Electronic Information, Shanghai Vocational College of Science & Technology, Shanghai 201800, China
| | - Yingying Zhang
- Department of Chemistry and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, PR China
| | - Xuan Mu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
33
|
Xie W, Tadepalli S, Park SH, Kazemi-Moridani A, Jiang Q, Singamaneni S, Lee JH. Extreme Mechanical Behavior of Nacre-Mimetic Graphene-Oxide and Silk Nanocomposites. NANO LETTERS 2018; 18:987-993. [PMID: 29314859 DOI: 10.1021/acs.nanolett.7b04421] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Biological materials have the ability to withstand extreme mechanical forces due to their unique multilevel hierarchical structure. Here, we fabricated a nacre-mimetic nanocomposite comprised of silk fibroin and graphene oxide that exhibits hybridized dynamic responses arising from alternating high-contrast mechanical properties of the components at the nanoscale. Dynamic mechanical behavior of these nanocomposites is assessed through a microscale ballistic characterization using a 7.6 μm diameter silica sphere moving at a speed of approximately 400 m/s. The volume fraction of graphene oxide in these composites is systematically varied from 0 to 32 vol % to quantify the dynamic effects correlating with the structural morphologies of the graphene oxide flakes. Specific penetration energy of the films rapidly increases as the distribution of graphene oxide flakes evolves from noninteracting, isolated sheets to a partially overlapping continuous sheet. The specific penetration energy of the nanocomposite at the highest graphene oxide content tested here is found to be significantly higher than that of Kevlar fabrics and close to that of pure multilayer graphene. This study evidently demonstrates that the morphologies of nanoscale constituents and their interactions are critical to realize scalable high-performance nanocomposites using typical nanomaterial constituents having finite dimensions.
Collapse
Affiliation(s)
- Wanting Xie
- Department of Physics, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Sirimuvva Tadepalli
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Sang Hyun Park
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Amir Kazemi-Moridani
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Qisheng Jiang
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Srikanth Singamaneni
- Department of Mechanical Engineering and Materials Science and Institute of Materials Science and Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | - Jae-Hwang Lee
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
34
|
Humenik M, Lang G, Scheibel T. Silk nanofibril self-assembly versus electrospinning. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1509. [PMID: 29393590 DOI: 10.1002/wnan.1509] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/18/2017] [Accepted: 12/19/2017] [Indexed: 01/16/2023]
Abstract
Natural silk fibers represent one of the most advanced blueprints for (bio)polymer scientists, displaying highly optimized mechanical properties due to their hierarchical structures. Biotechnological production of silk proteins and implementation of advanced processing methods enabled harnessing the potential of these biopolymer not just based on the mechanical properties. In addition to fibers, diverse morphologies can be produced, such as nonwoven meshes, films, hydrogels, foams, capsules and particles. Among them, nanoscale fibrils and fibers are particularly interesting concerning medical and technical applications due to their biocompatibility, environmental and mechanical robustness as well as high surface-to-volume ratio. Therefore, we introduce here self-assembly of silk proteins into hierarchically organized structures such as supramolecular nanofibrils and fabricated materials based thereon. As an alternative to self-assembly, we also present electrospinning a technique to produce nanofibers and nanofibrous mats. Accordingly, we introduce a broad range of silk-based dopes, used in self-assembly and electrospinning: natural silk proteins originating from natural spinning glands, natural silk protein solutions reconstituted from fibers, engineered recombinant silk proteins designed from natural blueprints, genetic fusions of recombinant silk proteins with other structural or functional peptides and moieties, as well as hybrids of recombinant silk proteins chemically conjugated with nonproteinaceous biotic or abiotic molecules. We highlight the advantages but also point out drawbacks of each particular production route. The scope includes studies of the natural self-assembly mechanism during natural silk spinning, production of silk fibrils as new nanostructured non-native scaffolds allowing dynamic morphological switches, as well as studying potential applications. This article is categorized under: Biology-Inspired Nanomaterials > Peptide-Based Structures Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Protein and Virus-Based Structures.
Collapse
Affiliation(s)
- Martin Humenik
- Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany
| | - Gregor Lang
- Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany
| | - Thomas Scheibel
- Biomaterials, Faculty of Engineering Science, University of Bayreuth, Bayreuth, Germany.,Bayreuth Center for Colloids and Interfaces (BZKG), Research Center Bio-Macromolecules (BIOmac), Bayreuth Center for Molecular Biosciences (BZMB), Bayreuth Center for Material Science (BayMAT), Bavarian Polymer Institute (BPI), Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
35
|
Zhang C, Shao H, Luo J, Hu X, Zhang Y. Structure and interaction of silk fibroin and graphene oxide in concentrated solution under shear. Int J Biol Macromol 2018; 107:2590-2597. [DOI: 10.1016/j.ijbiomac.2017.10.142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/05/2017] [Accepted: 10/23/2017] [Indexed: 02/06/2023]
|
36
|
Izyan Syazana Mohd Yusoff N, Uzir Wahit M, Jaafar J, Wong TW. Characterization of Graphene-Silk Fibroin Composites Film. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.matpr.2018.07.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
37
|
Wen Y, Wu M, Zhang M, Li C, Shi G. Topological Design of Ultrastrong and Highly Conductive Graphene Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702831. [PMID: 28892207 DOI: 10.1002/adma.201702831] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 07/27/2017] [Indexed: 06/07/2023]
Abstract
Nacre-like graphene films are prepared by evaporation-induced assembly of graphene oxide dispersions containing small amounts of cellulose nanocrystal (CNC), followed by chemical reduction with hydroiodic acid. CNC induces the formation of wrinkles on graphene sheets, greatly enhancing the mechanical properties of the resultant graphene films. The graphene films deliver an ultrahigh tensile strength of 765 ± 43 MPa (up to 800 MPa in some cases), a large failure strain of 6.22 ± 0.19%, and a superior toughness of 15.64 ± 2.20 MJ m-3 , as well as a high electrical conductivity of 1105 ± 17 S cm-1 . They have a great potential for applications in flexible electronics because of their combined excellent mechanical and electrical properties.
Collapse
Affiliation(s)
- Yeye Wen
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Mingmao Wu
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Miao Zhang
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Chun Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| | - Gaoquan Shi
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing, 100084, China
| |
Collapse
|