1
|
Ripoll M, Cahuzac H, Dovgan I, Ursuegui S, Neuberg P, Erb S, Cianférani S, Kichler A, Remy JS, Wagner A. Supramolecular Bioconjugation Strategy for Antibody-Targeted Delivery of siRNA. Bioconjug Chem 2024. [PMID: 39321037 DOI: 10.1021/acs.bioconjchem.4c00304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
RNA interference is a widely used biological process by which double-stranded RNA induces sequence-specific gene silencing by targeting mRNA for degradation. However, the physicochemical properties of siRNAs make their delivery extremely challenging, thus limiting their bioavailability at the target site. In this context, we developed a versatile and selective siRNA delivery system of a trastuzumab-conjugated nanocarrier. These immunoconjugates consist of the assembly by electrostatic interactions of an oligonucleotide-modified antibody with a cationic micelle for the targeted delivery of siRNA in HER2-overexpressing cancer cells. Results show that, when associated with the corresponding siRNA at the appropriate N/P ratio, our supramolecular assembly was able to efficiently induce luciferase and PLK-1 gene silencing in a cell-selective manner in vitro.
Collapse
Affiliation(s)
- Manon Ripoll
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Héloïse Cahuzac
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Igor Dovgan
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Sylvain Ursuegui
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Patrick Neuberg
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Stephane Erb
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, University of Strasbourg, 25 rue Becquerel, Strasbourg 67087, France
- IPHC, CNRS, UMR7178, University of Strasbourg, Strasbourg 67087, France
| | - Sarah Cianférani
- BioOrganic Mass Spectrometry Laboratory (LSMBO), IPHC, University of Strasbourg, 25 rue Becquerel, Strasbourg 67087, France
- IPHC, CNRS, UMR7178, University of Strasbourg, Strasbourg 67087, France
| | - Antoine Kichler
- Université de Strasbourg, Institut National de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), Biomaterials and Bioengineering, UMR_S 1121 INSERM/EMR 7003 CNRS, Faculté de Pharmacie, Illkirch 67401, France
| | - Jean-Serge Remy
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| |
Collapse
|
2
|
Wang G, Zhang M, Lai W, Gao Y, Liao S, Ning Q, Tang S. Tumor Microenvironment Responsive RNA Drug Delivery Systems: Intelligent Platforms for Sophisticated Release. Mol Pharm 2024; 21:4217-4237. [PMID: 39056442 DOI: 10.1021/acs.molpharmaceut.4c00334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Cancer is a significant health concern, increasingly showing insensitivity to traditional treatments, highlighting the urgent need for safer and more practical treatment options. Ribonucleic acid (RNA) gene therapy drugs have demonstrated promising potential in preclinical and clinical trials for antitumor therapy by regulating tumor-related gene expression. However, RNA's poor membrane permeability and stability restrict its effectiveness in entering and being utilized in cells. An appropriate delivery system is crucial for achieving targeted tumor effects. The tumor microenvironment (TME), characterized by acidity, hypoxia, enzyme overexpression, elevated glutathione (GSH) concentration, and excessive reactive oxygen species (ROS), is essential for tumor survival. Furthermore, these distinctive features can also be harnessed to develop intelligent drug delivery systems. Various nanocarriers that respond to the TME have been designed for RNA drug delivery, showing the advantages of tumor targeting and low toxicity. This Review discusses the abnormal changes of components in TME, therapeutic RNAs' roles, underlying mechanisms, and the latest developments in utilizing vectors that respond to microenvironments for treating tumors. We hope it provides insight into creating and optimizing RNA delivery vectors to improve their effectiveness.
Collapse
Affiliation(s)
- Guihua Wang
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Mengxia Zhang
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- Department of Histology and Embryology, Hunan University of Chinese Medicine, Changsha 410128, China
| | - Weiwei Lai
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Yuan Gao
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Shuxian Liao
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Qian Ning
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Shengsong Tang
- Institute of Pharmacy & Pharmacology, University of South China, Hengyang 421001, China
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Hanson MG, Grimme CJ, Kreofsky NW, Panda S, Reineke TM. Blended Block Polycation Micelles Enhance Antisense Oligonucleotide Delivery. Bioconjug Chem 2023; 34:1418-1428. [PMID: 37437196 DOI: 10.1021/acs.bioconjchem.3c00186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Nucleic acid-based medicines and vaccines are becoming an important part of our therapeutic toolbox. One key genetic medicine is antisense oligonucleotides (ASOs), which are short single-stranded nucleic acids that downregulate protein production by binding to mRNA. However, ASOs cannot enter the cell without a delivery vehicle. Diblock polymers containing cationic and hydrophobic blocks self-assemble into micelles that have shown improved delivery compared to linear nonmicelle variants. Yet synthetic and characterization bottlenecks have hindered rapid screening and optimization. In this study, we aim to develop a method to increase throughput and discovery of new micelle systems by mixing diblock polymers together to rapidly form new micelle formulations. We synthesized diblocks containing an n-butyl acrylate block chain extended with cationic moieties amino ethyl acrylamide (A), dimethyl amino ethyl acrylamide (D), or morpholino ethyl acrylamide (M). These diblocks were then self-assembled into homomicelles (A100, D100, and M100)), mixed micelles comprising 2 homomicelles (MixR%+R'%), and blended diblock micelles comprising 2 diblocks blended into one micelle (BldR%R'%) and tested for ASO delivery. Interestingly, we observed that mixing or blending M with A (BldA50M50 and MixA50+M50) did not improve transfection efficiency compared to A100; however, when M was mixed with D, there was a significant increase in transfection efficacy for the mixed micelle MixD50+M50 compared to D100. We further examined mixed and blended D systems at different ratios. We observed a large increase in transfection and minimal change in toxicity when M was mixed with D at a low percentage of D incorporation in mixed diblock micelles (i.e., BldD20M80) compared to D100 and MixD20+M80. To understand the cellular mechanisms that may result in these differences, we added proton pump inhibitor Bafilomycin-A1 (Baf-A1) to the transfection experiments. Formulations that contain D decreased in performance in the presence of Baf-A1, indicating that micelles with D rely on the proton sponge effect for endosomal escape more than micelles with A. This result supports our conclusion that M is able to modulate transfection of D, but not with A. This research shows that polymer blending in a manner similar to that of lipids can significantly boost transfection efficiency and is a facile way to increase throughput of testing, optimization, and successful formulation identification for polymeric nucleic acid delivery systems.
Collapse
Affiliation(s)
- Mckenna G Hanson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Nicholas W Kreofsky
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Sidharth Panda
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Lehot V, Neuberg P, Ripoll M, Daubeuf F, Erb S, Dovgan I, Ursuegui S, Cianférani S, Kichler A, Chaubet G, Wagner A. Targeted Anticancer Agent with Original Mode of Action Prepared by Supramolecular Assembly of Antibody Oligonucleotide Conjugates and Cationic Nanoparticles. Pharmaceutics 2023; 15:1643. [PMID: 37376091 DOI: 10.3390/pharmaceutics15061643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Despite their clinical success, Antibody-Drug Conjugates (ADCs) are still limited to the delivery of a handful of cytotoxic small-molecule payloads. Adaptation of this successful format to the delivery of alternative types of cytotoxic payloads is of high interest in the search for novel anticancer treatments. Herein, we considered that the inherent toxicity of cationic nanoparticles (cNP), which limits their use as oligonucleotide delivery systems, could be turned into an opportunity to access a new family of toxic payloads. We complexed anti-HER2 antibody-oligonucleotide conjugates (AOC) with cytotoxic cationic polydiacetylenic micelles to obtain Antibody-Toxic-Nanoparticles Conjugates (ATNPs) and studied their physicochemical properties, as well as their bioactivity in both in vitro and in vivo HER2 models. After optimising their AOC/cNP ratio, the small (73 nm) HER2-targeting ATNPs were found to selectively kill antigen-positive SKBR-2 cells over antigen-negative MDA-MB-231 cells in serum-containing medium. Further in vivo anti-cancer activity was demonstrated in an SKBR-3 tumour xenograft model in BALB/c mice in which stable 60% tumour regression could be observed just after two injections of 45 pmol of ATNP. These results open interesting prospects in the use of such cationic nanoparticles as payloads for ADC-like strategies.
Collapse
Affiliation(s)
- Victor Lehot
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Patrick Neuberg
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Manon Ripoll
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - François Daubeuf
- UAR3286, Plate-Forme de Chimie Biologique Intégrative de Strasbourg, ESBS, CNRS-Strasbourg University, 67400 Illkirch-Graffenstaden, France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Institut du Médicament de Strasbourg, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Igor Dovgan
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Sylvain Ursuegui
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse BioOrganique (LSMBO), Institut du Médicament de Strasbourg, Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| | - Antoine Kichler
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), Institut du Médicament de Strasbourg, University of Strasbourg, 74 Route du Rhin, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
5
|
Hanson MG, Grimme CJ, Santa Chalarca CF, Reineke TM. Cationic Micelles Outperform Linear Polymers for Delivery of Antisense Oligonucleotides in Serum: An Exploration of Polymer Architecture, Cationic Moieties, and Cell Addition Order. Bioconjug Chem 2022; 33:2121-2131. [PMID: 36265078 DOI: 10.1021/acs.bioconjchem.2c00379] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Antisense oligonucleotides (ASOs) are an important emerging therapeutic; however, they struggle to enter cells without a delivery vehicle, such as a cationic polymer. To understand the role of polymer architecture for ASO delivery, five linear polymers and five diblock polymers (capable of self-assembly into micelles) were synthesized with varying cationic groups. After complexation of each polymer/micelle with ASO, it was found that less bulky cationic moieties transfected the ASO more effectively. Interestingly, however the ASO internalization trend was the opposite of the transfection trend for cationic moiety, indicating internalization is not the major factor in determining transfection efficiency for this series. Micelleplexes (micelle-ASO complexes) generally enable higher transfection efficacy as compared to polyplexes (linear polymer-ASO complexes). Additionally, the order of addition of cells and complexes was explored. Linear polyplexes showed better transfection efficiency in adhered cells, whereas micelleplexes delivered the ASO more efficiently when the cells and micelleplexes were added simultaneously. This phenomenon may be due to increased cell-complex interactions as micelleplexes have increased colloidal stability compared to polyplexes. These findings emphasize the importance of polymer composition and architecture in governing the cellular interactions necessary for transfection, thus allowing advancement in the design principles for nonviral nucleic acid delivery formulations.
Collapse
Affiliation(s)
- Mckenna G Hanson
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Cristiam F Santa Chalarca
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Ripoll M, Bernard MC, Vaure C, Bazin E, Commandeur S, Perkov V, Lemdani K, Nicolaï MC, Bonifassi P, Kichler A, Frisch B, Haensler J. An imidazole modified lipid confers enhanced mRNA-LNP stability and strong immunization properties in mice and non-human primates. Biomaterials 2022; 286:121570. [PMID: 35576809 PMCID: PMC9078044 DOI: 10.1016/j.biomaterials.2022.121570] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/14/2022]
Abstract
The mRNA vaccine technology has promising applications to fight infectious diseases as demonstrated by the licensing of two mRNA-based vaccines, Comirnaty® (Pfizer/BioNtech) and Spikevax® (Moderna), in the context of the Covid-19 crisis. Safe and effective delivery systems are essential to the performance of these vaccines and lipid nanoparticles (LNPs) able to entrap, protect and deliver the mRNA in vivo are considered by many as the current "best in class". Nevertheless, current mRNA/LNP vaccine technology has still some limitations, one of them being thermostability, as evidenced by the ultracold distribution chain required for the licensed vaccines. We found that the thermostability of mRNA/LNP, could be improved by a novel imidazole modified lipid, DOG-IM4, in combination with standard helper lipids. DOG-IM4 comprises an ionizable head group consisting of imidazole, a dioleoyl lipid tail and a short flexible polyoxyethylene spacer between the head and tail. Here we describe the synthesis of DOG-IM4 and show that DOG-IM4 LNPs confer strong immunization properties to influenza HA mRNA in mice and macaques and a remarkable stability to the encapsulated mRNA when stored liquid in phosphate buffered saline at 4 °C. We speculate the increased stability to result from some specific attributes of the lipid's imidazole head group.
Collapse
Affiliation(s)
- Manon Ripoll
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France; Laboratoire de Conception et Application de Molécules Bioactives, Equipe 3Bio (Biovectorisation, Bioconjugaison, Biomatériaux), UMR 7199 - CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch Cedex, France.
| | | | - Céline Vaure
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Emilie Bazin
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Sylvie Commandeur
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Vladimir Perkov
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Katia Lemdani
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France; Neovacs, 3 impasse Reille, 75014 Paris, France.
| | - Marie-Claire Nicolaï
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Patrick Bonifassi
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| | - Antoine Kichler
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe 3Bio (Biovectorisation, Bioconjugaison, Biomatériaux), UMR 7199 - CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch Cedex, France.
| | - Benoit Frisch
- Laboratoire de Conception et Application de Molécules Bioactives, Equipe 3Bio (Biovectorisation, Bioconjugaison, Biomatériaux), UMR 7199 - CNRS/Université de Strasbourg, Faculté de Pharmacie, 74 route du Rhin, BP 60024, 67401, Illkirch Cedex, France.
| | - Jean Haensler
- Sanofi R&D, Campus Mérieux, 1541 avenue Marcel Mérieux, 69280, Marcy l'Etoile, France.
| |
Collapse
|
7
|
Santa Chalarca CF, Dalal RJ, Chapa A, Hanson MG, Reineke TM. Cation Bulk and p Ka Modulate Diblock Polymer Micelle Binding to pDNA. ACS Macro Lett 2022; 11:588-594. [PMID: 35575319 DOI: 10.1021/acsmacrolett.2c00015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polymer-based gene delivery relies on the binding, protection, and final release of nucleic acid cargo using polycations. Engineering polymeric vectors, by exploring novel topologies and cationic moieties, is a promising avenue to improve their performance, which hinges on the development of simple synthetic methods that allow facile preparation. In this work, we focus on cationic micelles formed from block polymers, which are examined as promising gene compaction agents and carriers. In this study, we report the synthesis and assembly of six amphiphilic poly(n-butyl acrylate)-b-poly(cationic acrylamide) diblock polymers with different types of cationic groups ((dialkyl)amine, morpholine, or imidazole) in their hydrophilic corona. The polycations were obtained through the parallel postpolymerization modification of a poly(n-butyl acrylate)-b-poly(pentafluorophenyl acrylate) reactive scaffold, which granted diblock polymers with equivalent degrees of polymerization and subsequent quantitative functionalization with cations of different pKa. Ultrasound-assisted direct dissolution of the polycations in different aqueous buffers (pH = 1-7) afforded micellar structures with low size dispersities and hydrodynamic radii below 100 nm. The formation and properties of micelle-DNA complexes ("micelleplexes") were explored via DLS, zeta potential, and dye-exclusion assays revealing that binding is influenced by the cation type present in the micelle corona where bulkiness and pKa are the drivers of micelleplex formation. Combining parallel synthesis strategies with simple direct dissolution formulation opens opportunities to optimize and expand the range of micelle delivery vehicles available by facile tuning of the composition of the cationic micelle corona.
Collapse
Affiliation(s)
| | - Rishad J. Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alejandra Chapa
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Mckenna G. Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M. Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
Das B, Jo S, Zheng J, Chen J, Sugihara K. Recent progress in polydiacetylene mechanochromism. NANOSCALE 2022; 14:1670-1678. [PMID: 35043814 DOI: 10.1039/d1nr07129g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polydiacetylenes (PDAs) are a family of mechanochromic polymers that change color from blue to red and emit fluorescence when exposed to external stimuli, making them extremely popular materials in biosensing. Although several informative reviews on PDA biosensing have been reported in the last few years, their mechanochromism, where external forces induce the color transition, has not been reviewed for a long time. This mini review summarizes recent progress in PDA mechanochromism, with a special focus on the quantitative and nanoscopic data that have emerged in recent years.
Collapse
Affiliation(s)
- Bratati Das
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan.
| | - Seiko Jo
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan.
| | - Jianlu Zheng
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan.
| | - Jiali Chen
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan.
| | - Kaori Sugihara
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-Ku, Tokyo 153-8505, Japan.
| |
Collapse
|
9
|
Kumar R, Santa Chalarca CF, Bockman MR, Bruggen CV, Grimme CJ, Dalal RJ, Hanson MG, Hexum JK, Reineke TM. Polymeric Delivery of Therapeutic Nucleic Acids. Chem Rev 2021; 121:11527-11652. [PMID: 33939409 DOI: 10.1021/acs.chemrev.0c00997] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The advent of genome editing has transformed the therapeutic landscape for several debilitating diseases, and the clinical outlook for gene therapeutics has never been more promising. The therapeutic potential of nucleic acids has been limited by a reliance on engineered viral vectors for delivery. Chemically defined polymers can remediate technological, regulatory, and clinical challenges associated with viral modes of gene delivery. Because of their scalability, versatility, and exquisite tunability, polymers are ideal biomaterial platforms for delivering nucleic acid payloads efficiently while minimizing immune response and cellular toxicity. While polymeric gene delivery has progressed significantly in the past four decades, clinical translation of polymeric vehicles faces several formidable challenges. The aim of our Account is to illustrate diverse concepts in designing polymeric vectors towards meeting therapeutic goals of in vivo and ex vivo gene therapy. Here, we highlight several classes of polymers employed in gene delivery and summarize the recent work on understanding the contributions of chemical and architectural design parameters. We touch upon characterization methods used to visualize and understand events transpiring at the interfaces between polymer, nucleic acids, and the physiological environment. We conclude that interdisciplinary approaches and methodologies motivated by fundamental questions are key to designing high-performing polymeric vehicles for gene therapy.
Collapse
Affiliation(s)
- Ramya Kumar
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | - Matthew R Bockman
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Craig Van Bruggen
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christian J Grimme
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Rishad J Dalal
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mckenna G Hanson
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Joseph K Hexum
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Theresa M Reineke
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
10
|
Pereira-Silva M, Jarak I, Santos AC, Veiga F, Figueiras A. Micelleplex-based nucleic acid therapeutics: From targeted stimuli-responsiveness to nanotoxicity and regulation. Eur J Pharm Sci 2020; 153:105461. [DOI: 10.1016/j.ejps.2020.105461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
|
11
|
He J, Xu S, Mixson AJ. The Multifaceted Histidine-Based Carriers for Nucleic Acid Delivery: Advances and Challenges. Pharmaceutics 2020; 12:E774. [PMID: 32823960 PMCID: PMC7465012 DOI: 10.3390/pharmaceutics12080774] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Histidines incorporated into carriers of nucleic acids may enhance the extracellular stability of the nanoparticle, yet aid in the intracellular disruption of the nanoparticle, enabling the release of the nucleic acid. Moreover, protonation of histidines in the endosomes may result in endosomal swelling with subsequent lysis. These properties of histidine are based on its five-member imidazole ring in which the two nitrogen atoms may form hydrogen bonds or act as a base in acidic environments. A wide variety of carriers have integrated histidines or histidine-rich domains, which include peptides, polyethylenimine, polysaccharides, platform delivery systems, viral phages, mesoporous silica particles, and liposomes. Histidine-rich carriers have played key roles in our understanding of the stability of nanocarriers and the escape of the nucleic acids from endosomes. These carriers show great promise and offer marked potential in delivering plasmids, siRNA, and mRNA to their intracellular targets.
Collapse
Affiliation(s)
| | | | - A. James Mixson
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland, Baltimore, MD 21201, USA; (J.H.); (S.X.)
| |
Collapse
|
12
|
Li T, Huang L, Yang M. Lipid-based Vehicles for siRNA Delivery in Biomedical Field. Curr Pharm Biotechnol 2020; 21:3-22. [PMID: 31549951 DOI: 10.2174/1389201020666190924164152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/04/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Genetic drugs have aroused much attention in the past twenty years. RNA interference (RNAi) offers novel insights into discovering potential gene functions and therapies targeting genetic diseases. Small interference RNA (siRNA), typically 21-23 nucleotides in length, can specifically degrade complementary mRNA. However, targeted delivery and controlled release of siRNA remain a great challenge. METHODS Different types of lipid-based delivery vehicles have been synthesized, such as liposomes, lipidoids, micelles, lipoplexes and lipid nanoparticles. These carriers commonly have a core-shell structure. For active targeting, ligands may be conjugated to the surface of lipid particles. RESULTS Lipid-based drug delivery vehicles can be utilized in anti-viral or anti-tumor therapies. They can also be used to tackle genetic diseases or discover novel druggable genes. CONCLUSION In this review, the structures of lipid-based vehicles and possible surface modifications are described, and applications of delivery vehicles in biomedical field are discussed.
Collapse
Affiliation(s)
- Tianzhong Li
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Linfeng Huang
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Mengsu Yang
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.,Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
13
|
Hoang MD, Vandamme M, Kratassiouk G, Pinna G, Gravel E, Doris E. Tuning the cationic interface of simple polydiacetylene micelles to improve siRNA delivery at the cellular level. NANOSCALE ADVANCES 2019; 1:4331-4338. [PMID: 36134419 PMCID: PMC9418740 DOI: 10.1039/c9na00571d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 06/12/2023]
Abstract
Polydiacetylene micelles were assembled from four different cationic amphiphiles and photopolymerized to reinforce their architecture. The produced micelles were systematically investigated, in interaction with siRNAs, for intracellular delivery of the silencing nucleic acids. The performances of the carrier systems were rationalized based on the cell penetrating properties of the micelles and the nature of their cationic complexing group, responsible for efficient siRNA binding and further endosomal escape.
Collapse
Affiliation(s)
- Minh-Duc Hoang
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay 91191 Gif-sur-Yvette France
| | - Marie Vandamme
- Plateforme ARN Interférence, Service de Biologie Intégrative et de Génétique Moléculaire (SBIGeM), I2BC, CEA, CNRS, Université Paris-Saclay 91191 Gif-sur-Yvette France
| | - Gueorgui Kratassiouk
- Plateforme ARN Interférence, Service de Biologie Intégrative et de Génétique Moléculaire (SBIGeM), I2BC, CEA, CNRS, Université Paris-Saclay 91191 Gif-sur-Yvette France
| | - Guillaume Pinna
- Plateforme ARN Interférence, Service de Biologie Intégrative et de Génétique Moléculaire (SBIGeM), I2BC, CEA, CNRS, Université Paris-Saclay 91191 Gif-sur-Yvette France
| | - Edmond Gravel
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay 91191 Gif-sur-Yvette France
| | - Eric Doris
- Service de Chimie Bioorganique et de Marquage (SCBM), CEA, Université Paris-Saclay 91191 Gif-sur-Yvette France
| |
Collapse
|
14
|
Dutta K, Bochicchio D, Ribbe AE, Alfandari D, Mager J, Pavan GM, Thayumanavan S. Symbiotic Self-Assembly Strategy toward Lipid-Encased Cross-Linked Polymer Nanoparticles for Efficient Gene Silencing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24971-24983. [PMID: 31264399 DOI: 10.1021/acsami.9b04731] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A novel "symbiotic self-assembly" strategy that integrates the advantages of biocompatible lipids with a structurally robust polymer to efficiently encapsulate and deliver siRNAs is reported. The assembly process is considered to be symbiotic because none of the assembling components are capable of self-assembly but can form well-defined nanostructures in the presence of others. The conditions of the self-assembly process are simple but have been chosen such that it offers the ability to arrive at a system that is noncationic for mitigating carrier-based cytotoxicity, efficiently encapsulate siRNA to minimize cargo loss, be effectively camouflaged to protect the siRNA from nuclease degradation, and efficiently escape the endosome to cause gene knockdown. The lipid-siRNA-polymer (L-siP) nanoassembly formation and its disassembly in the presence of an intracellular trigger have been extensively characterized experimentally and through computational modeling. The complexes have been evaluated for the delivery of four different siRNA molecules in six different cell lines, where an efficient gene knockdown is demonstrated. The reported generalized strategy has the potential to make an impact on the development of a safe and effective delivery agent for RNAi-mediated gene therapy that holds the promise of targeting several hard-to-cure diseases.
Collapse
Affiliation(s)
| | - Davide Bochicchio
- Department of Innovative Technologies , University of Applied Sciences and Arts of Southern Switzerland , CH-6928 Manno , Switzerland
| | | | | | | | - Giovanni M Pavan
- Department of Innovative Technologies , University of Applied Sciences and Arts of Southern Switzerland , CH-6928 Manno , Switzerland
- Department of Applied Science and Technology , Politecnico di Torino , Corso Duca degli Abruzzi 24 , 10129 Torino , Italy
| | | |
Collapse
|
15
|
Neuberg P, Wagner A, Remy JS, Kichler A. Design and evaluation of ionizable peptide amphiphiles for siRNA delivery. Int J Pharm 2019; 566:141-148. [PMID: 31125716 DOI: 10.1016/j.ijpharm.2019.05.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 01/10/2023]
Abstract
Small interfering RNAs (siRNAs) can down-regulate the expression of a target mRNA molecule in a sequence-specific manner, making them an attractive new class of drugs with broad potential for the treatment of diverse human diseases. Here, we report the synthesis of a series of cationic amphiphiles which were obtained by the coupling of amino acids and dipeptides onto a lipidic double chain. The new amphiphiles presenting a peptidic motif on a short hydrophilic spacer group were evaluated for selective gene silencing through RNA interference. Our results show that tryptophan residues boost siRNA delivery in an unexpected manner. The silencing experiments performed with very low concentrations of siRNA showed that the best formulations could induce significant death of tumor cells after silencing of polo-like kinase 1 which is implicated in cell cycle progression. In addition, these Trp containing peptide amphiphiles were highly efficient siRNA delivery vectors even in presence of competing serum proteins.
Collapse
Affiliation(s)
- Patrick Neuberg
- BioFunctional Chemistry (BFC), CAMB UMR 7199 CNRS-Université de Strasbourg, Illkirch, France; 3Bio, CAMB UMR 7199 CNRS-Université de Strasbourg, Illkirch, France
| | - Alain Wagner
- BioFunctional Chemistry (BFC), CAMB UMR 7199 CNRS-Université de Strasbourg, Illkirch, France
| | - Jean-Serge Remy
- BioFunctional Chemistry (BFC), CAMB UMR 7199 CNRS-Université de Strasbourg, Illkirch, France.
| | - Antoine Kichler
- 3Bio, CAMB UMR 7199 CNRS-Université de Strasbourg, Illkirch, France.
| |
Collapse
|
16
|
Cationic Photopolymerized Polydiacetylenic (PDA) Micelles for siRNA Delivery. Methods Mol Biol 2019. [PMID: 30838612 DOI: 10.1007/978-1-4939-9092-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Polymerized micelles obtained by photopolymerization of diacetylenic surfactants and which are forming polydiacetylenic systems (PDAs) have recently gained interest as stabilized monodisperse systems showing potential for the delivery of hydrophobic drugs as well as of larger biomolecules such as nucleic acids. Introduction of pH-sensitive histidine groups at the surface of the micellar PDA systems allows for efficient delivery of siRNA resulting in specific gene silencing through RNA interference. Here, we describe the detailed experimental procedure for the reproducible preparation of these photopolymerized PDA micelles. We provide physicochemical characterization of these nanomaterials by dynamic light scattering, transmission electron microscopy, and diffusion ordered spectroscopy. Moreover, we describe standardized biological tests to evaluate the silencing efficiency by the use of a cell line constitutively expressing the luciferase reporter gene.
Collapse
|
17
|
Lin Z, Bao M, Yu Z, Xue L, Ju C, Zhang C. The development of tertiary amine cationic lipids for safe and efficient siRNA delivery. Biomater Sci 2019; 7:2777-2792. [DOI: 10.1039/c9bm00494g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tertiary amine-derived cationic lipid serves as the primary lipid of cationic liposomes, which can balance the effectiveness and safety of siRNA vectors.
Collapse
Affiliation(s)
- Ziming Lin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of New Drug Discovery
- China Pharmaceutical University
- Nanjing
- China
| | - Moxyel Bao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of New Drug Discovery
- China Pharmaceutical University
- Nanjing
- China
| | - Zexuan Yu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of New Drug Discovery
- China Pharmaceutical University
- Nanjing
- China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of New Drug Discovery
- China Pharmaceutical University
- Nanjing
- China
| | - Caoyun Ju
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of New Drug Discovery
- China Pharmaceutical University
- Nanjing
- China
| | - Can Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases
- Center of New Drug Discovery
- China Pharmaceutical University
- Nanjing
- China
| |
Collapse
|
18
|
|
19
|
|
20
|
Neuberg P, Hamaidi I, Danilin S, Ripoll M, Lindner V, Nothisen M, Wagner A, Kichler A, Massfelder T, Remy JS. Polydiacetylenic nanofibers as new siRNA vehicles for in vitro and in vivo delivery. NANOSCALE 2018; 10:1587-1590. [PMID: 29322141 DOI: 10.1039/c7nr09202d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polydiacetylenic nanofibers (PDA-Nfs) obtained by photopolymerization of surfactant 1 were optimized for intracellular delivery of small interfering RNAs (siRNAs). PDA-Nfs/siRNA complexes efficiently silenced the oncogene Lim-1 in the renal cancer cells 786-O in vitro. Intraperitoneal injection of PDA-Nfs/siLim1 downregulated Lim-1 in subcutaneous tumor xenografts obtained with 786-O cells in nude mice. Thus, PDA-Nfs represent an innovative system for in vivo delivery of siRNAs.
Collapse
Affiliation(s)
- P Neuberg
- V-SAT Laboratory, Vectors: Synthesis and Therapeutic Applications, Labex Medalis, CAMB UMR7199 CNRS-Université de Strasbourg, Faculty of Pharmacy, Illkirch, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Cho E, Jung S. Biomolecule-Functionalized Smart Polydiacetylene for Biomedical and Environmental Sensing. Molecules 2018; 23:E107. [PMID: 29300355 PMCID: PMC6017116 DOI: 10.3390/molecules23010107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/22/2017] [Accepted: 12/29/2017] [Indexed: 02/02/2023] Open
Abstract
Polydiacetylene (PDA) has attracted interest for use as a sensing platform in biomedical, environmental, and chemical engineering applications owing to its capacity for colorimetric and fluorescent transition in response to external stimuli. Many researchers have attempted to develop a tailor-made PDA sensor via conjugation of chemical or biological substances to PDA. Here, we review smart bio-conjugates of PDA with various biomolecules such as carbohydrates, lipids, nucleic acids, and proteins. In addition, materialization and signal amplification strategies to improve handling and sensitivity are described.
Collapse
Affiliation(s)
- Eunae Cho
- Institute for Ubiquitous Information Technology and Applications (UBITA) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Seunho Jung
- Department of Bioscience and Biotechnology, Microbial Carbohydrate Resource Bank (MBRC) & Center for Biotechnology Research in UBITA (CBRU), Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| |
Collapse
|
22
|
Ripoll M, Pierdant M, Neuberg P, Bagnard D, Wagner A, Kichler A, Remy JS. Co-delivery of anti-PLK-1 siRNA and camptothecin by nanometric polydiacetylenic micelles results in a synergistic cell killing. RSC Adv 2018; 8:20758-20763. [PMID: 35542356 PMCID: PMC9080806 DOI: 10.1039/c8ra03375g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/28/2018] [Indexed: 01/02/2023] Open
Abstract
Recently, it has been shown that the efficiency of antitumoral drugs can be enhanced when combined with therapeutic siRNAs. In the present study, an original platform based on polydiacetylenic micelles containing a cationic head group able to efficiently deliver a small interfering RNA (siRNA) targeting the PLK-1 gene while offering a hydrophobic environment for encapsulation of lipophilic drugs such as camptothecin is developed. We demonstrate that the co-delivery of these two agents with our micellar system results in a synergistic tumor cell killing of cervical and breast cancer cell lines in vitro. The combined drugs are active in a subcutaneous in vivo cancer model. Altogether, the results show that our nanometric micellar delivery system can be used for the development of new drug–siRNA combo-therapies. Recently, it has been shown that the efficiency of antitumoral drugs can be enhanced when combined with therapeutic siRNAs.![]()
Collapse
Affiliation(s)
- Manon Ripoll
- University of Strasbourg
- CNRS
- UMR7199
- Labex Medalis
- icFRC
| | - Marie Pierdant
- MN3T Lab
- Fédération de Médecine Translationnelle
- Labex Medalis
- INSERM U1109
- University of Strasbourg
| | | | - Dominique Bagnard
- MN3T Lab
- Fédération de Médecine Translationnelle
- Labex Medalis
- INSERM U1109
- University of Strasbourg
| | - Alain Wagner
- University of Strasbourg
- CNRS
- UMR7199
- Labex Medalis
- icFRC
| | | | | |
Collapse
|
23
|
Bouillon C, Bessin Y, Poncet F, Gary-Bobo M, Dumy P, Barboiu M, Bettache N, Ulrich S. Biomolecular dynamic covalent polymers for DNA complexation and siRNA delivery. J Mater Chem B 2018; 6:7239-7246. [DOI: 10.1039/c8tb01278d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dynamic covalent polymers made from modified amino acids complex nucleic acids and deliver siRNA in living cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Mihail Barboiu
- IEM
- Adaptive Supramolecular Nanosystems Group
- Université de Montpellier
- CNRS
- ENSCM
| | | | | |
Collapse
|
24
|
Tambe P, Kumar P, Karpe YA, Paknikar KM, Gajbhiye V. Triptorelin Tethered Multifunctional PAMAM-Histidine-PEG Nanoconstructs Enable Specific Targeting and Efficient Gene Silencing in LHRH Overexpressing Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35562-35573. [PMID: 28949503 DOI: 10.1021/acsami.7b11024] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cancer treatment using siRNA based therapies pose various limitations such as off-target effects and degradation due to lack of specific delivery in desired cells. The aim of the present study was to develop multifunctional targeted nanoconstructs, which can efficiently and precisely deliver siRNA and silence the desired gene of interest in various LHRH overexpressing cancer cells. Herein, we report the development of triblock, PAMAM-histidine-PEG dendritic nanoconstructs functionalized with triptorelin (an LHRH analog) for targeted siRNA delivery to LHRH overexpressing breast (MCF-7) and prostate (LNCaP) cancer cells. The nanoconstructs were characterized using 1H NMR and DLS and displayed a very low cationic charge to avoid off-target interactions. The developed nanoconstructs showed negligible cytotoxicity and hemolytic activity with efficient siRNA loading, excellent serum stability, and strongly protected siRNA from degradation. Further, confocal microscopy results confirmed extremely significant (p < 0.001) higher cellular uptake of cy5.5 conjugated targeted nanoparticles (NPs) in both cancer cell lines than nontargeted NPs. Also, targeted NPs specifically delivered cy3-tagged siRNA to MCF-7 cells. Co-localization studies in MCF-7 and LNCaP cells further established that targeted NPs traveled through the endolysosomal pathway and escaped endosomes within 6 h of incubation. Gene silencing studies in luciferase expressing MCF-7 and LNCaP cell lines demonstrated that the targeted NPs exhibited extremely significant (p < 0.001) silencing of luciferase gene. Additionally, receptor blockade studies further confirmed the specificity of targeted NPs and suggested that targeted NPs entered cancer cells via LHRH receptor mediated endocytosis, which was evident through insignificant gene silencing in receptor blocked cells. Thus, the results indicated that PAMAM-histidine-PEG-triptorelin could be a promising approach for siRNA delivery, gene silencing, and tumor therapy in all LHRH overexpressing cancer cells.
Collapse
Affiliation(s)
- Prajakta Tambe
- Nanobioscience, Agharkar Research Institute , Pune 411 004, India
- Savitribai Phule Pune University , Ganeshkhind, Pune 411 007, India
| | - Pramod Kumar
- Nanobioscience, Agharkar Research Institute , Pune 411 004, India
- Savitribai Phule Pune University , Ganeshkhind, Pune 411 007, India
| | - Yogesh A Karpe
- Nanobioscience, Agharkar Research Institute , Pune 411 004, India
- Savitribai Phule Pune University , Ganeshkhind, Pune 411 007, India
| | - Kishore M Paknikar
- Nanobioscience, Agharkar Research Institute , Pune 411 004, India
- Savitribai Phule Pune University , Ganeshkhind, Pune 411 007, India
| | - Virendra Gajbhiye
- Nanobioscience, Agharkar Research Institute , Pune 411 004, India
- Savitribai Phule Pune University , Ganeshkhind, Pune 411 007, India
| |
Collapse
|
25
|
Jiang H, Hu XY, Schlesiger S, Li M, Zellermann E, Knauer SK, Schmuck C. Morphology-Dependent Cell Imaging by Using a Self-Assembled Diacetylene Peptide Amphiphile. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hao Jiang
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| | - Xiao-Yu Hu
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; 210023 Nanjing China
| | - Stefanie Schlesiger
- Institute for Microbiology; University of Duisburg-Essen; 45141 Essen Germany
| | - Mao Li
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| | - Eilo Zellermann
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| | - Shirley K. Knauer
- Institute for Microbiology; University of Duisburg-Essen; 45141 Essen Germany
| | - Carsten Schmuck
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| |
Collapse
|
26
|
Jiang H, Hu XY, Schlesiger S, Li M, Zellermann E, Knauer SK, Schmuck C. Morphology-Dependent Cell Imaging by Using a Self-Assembled Diacetylene Peptide Amphiphile. Angew Chem Int Ed Engl 2017; 56:14526-14530. [DOI: 10.1002/anie.201708168] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/13/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Hao Jiang
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| | - Xiao-Yu Hu
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
- Key Laboratory of Mesoscopic Chemistry of MOE and Collaborative Innovation Center of Chemistry for Life Sciences; School of Chemistry and Chemical Engineering; Nanjing University; 210023 Nanjing China
| | - Stefanie Schlesiger
- Institute for Microbiology; University of Duisburg-Essen; 45141 Essen Germany
| | - Mao Li
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| | - Eilo Zellermann
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| | - Shirley K. Knauer
- Institute for Microbiology; University of Duisburg-Essen; 45141 Essen Germany
| | - Carsten Schmuck
- Institute for Organic Chemistry; University of Duisburg-Essen; 45141 Essen Germany
| |
Collapse
|
27
|
Mathew AP, Cho KH, Uthaman S, Cho CS, Park IK. Stimuli-Regulated Smart Polymeric Systems for Gene Therapy. Polymers (Basel) 2017; 9:E152. [PMID: 30970831 PMCID: PMC6432211 DOI: 10.3390/polym9040152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 01/02/2023] Open
Abstract
The physiological condition of the human body is a composite of different environments, each with its own parameters that may differ under normal, as well as diseased conditions. These environmental conditions include factors, such as pH, temperature and enzymes that are specific to a type of cell, tissue or organ or a pathological state, such as inflammation, cancer or infection. These conditions can act as specific triggers or stimuli for the efficient release of therapeutics at their destination by overcoming many physiological and biological barriers. The efficacy of conventional treatment modalities can be enhanced, side effects decreased and patient compliance improved by using stimuli-responsive material that respond to these triggers at the target site. These stimuli or triggers can be physical, chemical or biological and can be internal or external in nature. Many smart/intelligent stimuli-responsive therapeutic gene carriers have been developed that can respond to either internal stimuli, which may be normally present, overexpressed or present in decreased levels, owing to a disease, or to stimuli that are applied externally, such as magnetic fields. This review focuses on the effects of various internal stimuli, such as temperature, pH, redox potential, enzymes, osmotic activity and other biomolecules that are present in the body, on modulating gene expression by using stimuli-regulated smart polymeric carriers.
Collapse
Affiliation(s)
- Ansuja Pulickal Mathew
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Ki-Hyun Cho
- Department of Plastic Surgery, Institute of Dermatology and Plastic Surgery, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195, USA.
| | - Saji Uthaman
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Chong-Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - In-Kyu Park
- Department of Biomedical Sciences, BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju 61469, Korea.
| |
Collapse
|