1
|
Zhao B, Huang Z, Han M, Predicala B, Wang Q, Liang Y, Li M, Liu X, Qi J, Guo L. Biomimetic Grooved Ribbon Aerogel Inspired by the Structure of Pinus sylvestris var. mongolica Needles for Efficient Air Purification. Polymers (Basel) 2025; 17:1234. [PMID: 40363021 DOI: 10.3390/polym17091234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Air pollutants, such as particulate matter (PM) and ammonia (NH3), generated by intensive animal farming pose considerable threats to human health, animal welfare, and ecological balance. Conventional materials are often ineffective at simultaneously removing multiple pollutants, maintaining a low pressure drop, and ensuring durability in heavily polluted environments. Inspired by the dust-retention properties of Pinus sylvestris var. mongolica (PS) needles, this study developed a biomimetic grooved ribbon fiber using electrospinning technology. These fibers were further assembled into a three-dimensional bioinspired aerogel structure through freeze-forming technology to achieve efficient dust capture. Additionally, the introduction of UiO-66-NH2 nanoparticles significantly enhanced the properties of the aerogels for NH3 adsorption. Among the various prepared aerogels (PG, UPG-5, UPG-10, UPG-15, and UPG-20), UPG-10 demonstrated the best performance, achieving a filtration efficiency of 99.24% with a pressure drop of 95 Pa. Notably, it exhibited a remarkable dust-holding capacity of 147 g/m2, and its NH3 adsorption capacity reached 99.89 cm3/g, surpassing PG aerogel by 31.46 cm3/g. Additionally, UPG-10 exhibited outstanding elasticity, maintaining over 80% of its original shape after 30 compression cycles. This biomimetic aerogel presents a promising solution for air purification, contributing to improved agricultural efficiency and environmental sustainability.
Collapse
Affiliation(s)
- Bo Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education of China, Jilin University, Changchun 130022, China
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
- Jilin Provincial Key Laboratory of Smart Agricultural Equipment and Technology, Changchun 130022, China
| | - Zikun Huang
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Mingze Han
- Key Laboratory of Bionic Engineering, Ministry of Education of China, Jilin University, Changchun 130022, China
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | | | - Qiushi Wang
- Key Laboratory of Bionic Engineering, Ministry of Education of China, Jilin University, Changchun 130022, China
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Yunhong Liang
- Key Laboratory of Bionic Engineering, Ministry of Education of China, Jilin University, Changchun 130022, China
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Mo Li
- Key Laboratory of Bionic Engineering, Ministry of Education of China, Jilin University, Changchun 130022, China
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Xin Liu
- Key Laboratory of Bionic Engineering, Ministry of Education of China, Jilin University, Changchun 130022, China
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Jiangtao Qi
- Key Laboratory of Bionic Engineering, Ministry of Education of China, Jilin University, Changchun 130022, China
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
- Jilin Provincial Key Laboratory of Smart Agricultural Equipment and Technology, Changchun 130022, China
| | - Li Guo
- Key Laboratory of Bionic Engineering, Ministry of Education of China, Jilin University, Changchun 130022, China
- College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
- Jilin Provincial Key Laboratory of Smart Agricultural Equipment and Technology, Changchun 130022, China
| |
Collapse
|
2
|
Han H, Wang H, Wang R, Duan Z, Jiang X, Du J. Construction and Particulate Filtration Performance of Bacterial Cellulose-Derived Aerogels Optimized by Plant Polysaccharides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410639. [PMID: 39924848 DOI: 10.1002/smll.202410639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/31/2024] [Indexed: 02/11/2025]
Abstract
Air pollution has emerged as a global challenge, posing significant threats to public health and human well being. This issue has garnered substantial attention from researchers focused on developing environmentally friendly and sustainable materials. This study synthesizes bacterial cellulose (BC)-derived aerogels based on plant polysaccharides and BC using a directional freeze-drying technique, followed by surface modification with methyltrimethoxysilane (MTMS). The physicochemical characteristics of these BC-derived aerogels are thoroughly investigated to elucidate the interaction mechanisms between plant polysaccharides and bacterial cellulose at the molecular level, and their capabilities for particulate matter filtration are explored. The results demonstrate that incorporating plant polysaccharides and MTMS into BC aerogels results in synergistic mechanical properties characterized by a unique combination of softness and rigidity. Notably, sodium alginate shows the highest affinity for bacterial cellulose and MTMS, leading to optimal reinforcement effects. An oriented honeycomb structure forms internally within the aerogels, potentially reducing pressure drop. Furthermore, these aerogels exhibit a "fiber+pore" multi-filtration mechanism, achieving up to 97% filtration efficiency specifically for PM2.5 particles. These findings suggest bacterial cellulose-derived aerogels could be a sustainable alternative for mitigating air pollution.
Collapse
Affiliation(s)
- Han Han
- State Key Laboratory of Coal Mine Disaster Prevention and Control, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| | - Hetang Wang
- State Key Laboratory of Coal Mine Disaster Prevention and Control, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| | - Rujie Wang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| | - Zhijie Duan
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| | - Xiaodong Jiang
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| | - Jiaqi Du
- State Key Laboratory of Coal Mine Disaster Prevention and Control, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China
| |
Collapse
|
3
|
Li F, An Y, Xue J, Fu H, Wang H, Cao P, Zhang M, Fei P, Liu M, Zhao F. Cellulose Acetate Membranes: Antibacterial Strategy and Application-A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409728. [PMID: 39679825 DOI: 10.1002/smll.202409728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/30/2024] [Indexed: 12/17/2024]
Abstract
Developing antibacterial and biodegradable cellulose acetate (CA) membrane materials is one of the main challenges in multiple application fields. CA membrane materials are widely used in gas purification, water purification, and biomedical fields due to their environmental friendliness, high chemical and mechanical stability, excellent processability, and low cost. However, antibacterial modification of CA membrane materials to enhance their utilization value in the application process has always been the direction of researchers' efforts. This review focuses on the preparation and application of antibacterial CA and its derivatives membranes, especially the types and introduction methods of antibacterial agents. First, a brief introduction of CA-based polymer membranes is presented, followed by an overview of the antibacterial agent types and their introduction methods, and antibacterial mechanisms. After that, various membranes prepared using CA-based polymers as the main matrix or as additives are discussed. Then, specific applications of antibacterial CA-based membrane materials in water purification, gas purification, biomedical, food packaging, and other fields are outlined.
Collapse
Affiliation(s)
- Fu Li
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Yaxin An
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Jinhong Xue
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Hui Fu
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| | - Hongbo Wang
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Puzhi Cao
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Man Zhang
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Pengfei Fei
- College of Textile Engineering, Taiyuan University of Technology, No. 209 University Street, Yuci District, Jinzhong, Shanxi, 030600, P. R. China
| | - Mei Liu
- College of Textiles and Apparel, Quanzhou Normal University, No. 398 Donghai, Quanzhou City, Fujian, 362000, P. R. China
| | - Fulai Zhao
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong, 255000, P. R. China
| |
Collapse
|
4
|
Zhao W, Wang M, Yao Y, Cheng Z, Shen Y, Zhang Y, Tao J, Xiong J, Cao H, Zhang D. Hyperbranched Polymer Induced Antibacterial Tree-Like Nanofibrous Membrane for High Effective Air Filtration. Macromol Rapid Commun 2024; 45:e2300685. [PMID: 38339795 DOI: 10.1002/marc.202300685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/21/2024] [Indexed: 02/12/2024]
Abstract
The air filtration materials with high efficiency, low resistance, and extra antibacterial property are crucial for personal health protection. Herein, a tree-like polyvinylidene fluoride (PVDF) nanofibrous membrane with hierarchical structure (trunk fiber of 447 nm, branched fiber of 24.7 nm) and high filtration capacity is demonstrated. Specifically, 2-hydroxypropyl trimethyl ammonium chloride terminated hyperbranched polymer (HBP-HTC) with near-spherical three-dimensional molecular structure and adjustable terminal positive groups is synthesized as an additive for PVDF electrospinning to enhance the jet splitting and promote the formation of branched ultrafine nanofibers, achieving a coverage rate of branched nanofibers over 90% that is superior than small molecular quaternary ammonium salts. The branched nanofibers network enhances mechanical properties and filtration efficiency (99.995% for 0.26 µm sodium chloride particles) of the PVDF/HBP-HTC membrane, which demonstrates reduced pressure drop (122.4 Pa) and a quality factor up to 0.083 Pa-1 on a 40 µm-thick sample. More importantly, the numerous quaternary ammonium salt groups of HBP-HTC deliver excellent antibacterial properties to the PVDF membranes. Bacterial inhibitive rate of 99.9% against both S. aureus and E. coli is demonstrated in a membrane with 3.0 wt% HBP-HTC. This work provides a new strategy for development of high-efficiency and antibacterial protection products.
Collapse
Affiliation(s)
- Weitao Zhao
- College of Intelligent Textiles and Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Mengxuan Wang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ying Yao
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Zhongqiu Cheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Yaxinru Shen
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Yufan Zhang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Jin Tao
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
- Department of Textile, Garment and Design, Changshu Institute of Technology, Suzhou, 215500, China
| | - Jiaqing Xiong
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 201620, China
| | - Hongmei Cao
- Jiangsu Province Engineering Research Center of Special Functional Textile Materials, Changzhou Vocational Institute of Textile and Garment, Changzhou, 213164, China
| | - Desuo Zhang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| |
Collapse
|
5
|
Bae J, Lee J, Hwang WT, Youn DY, Song H, Ahn J, Nam JS, Jang JS, Kim DW, Jo W, Kim TS, Suk HJ, Bae PK, Kim ID. Advancing Breathability of Respiratory Nanofilter by Optimizing Pore Structure and Alignment in Nanofiber Networks. ACS NANO 2024; 18:1371-1380. [PMID: 38060408 DOI: 10.1021/acsnano.3c06060] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Respiratory masks are the primary and most effective means of protecting individuals from airborne hazards such as droplets and particulate matter during public engagements. However, conventional electrostatically charged melt-blown microfiber masks typically require thick and dense membranes to achieve high filtration efficiency, which in turn cause a significant pressure drop and reduce breathability. In this study, we have developed a multielectrospinning system to address this issue by manipulating the pore structure of nanofiber networks, including the use of uniaxially aligned nanofibers created via an electric-field-guided electrospinning apparatus. In contrast to the common randomly collected microfiber membranes, partially aligned dual-nanofiber membranes, which are fabricated via electrospinning of a random 150 nm nanofiber base layer and a uniaxially aligned 450 nm nanofiber spacer layer on a roll-to-roll collector, offer an efficient way to modulate nanofiber membrane pore structures. Notably, the dual-nanofiber configuration with submicron pore structure exhibits increased fiber density and decreased volume density, resulting in an enhanced filtration efficiency of over 97% and a 50% reduction in pressure drop. This leads to the highest quality factor of 0.0781. Moreover, the submicron pore structure within the nanofiber networks introduces an additional sieving filtration mechanism, ensuring superior filtration efficiency under highly humid conditions and even after washing with a 70% ethanol solution. The nanofiber mask provides a sustainable solution for safeguarding the human respiratory system, as it effectively filters and inactivates human coronaviruses while utilizing 130 times fewer polymeric materials than melt-blown filters. This reusability of our filters and their minimum usage of polymeric materials would significantly reduce plastic waste for a sustainable global society.
Collapse
Affiliation(s)
- Jaehyeong Bae
- Department of Chemical Engineering, College of Engineering, Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Jiyoung Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Won-Tae Hwang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Doo-Young Youn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyunsub Song
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong-Seok Nam
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ji-Soo Jang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Doo-Won Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Woosung Jo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Taek-Soo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyeon-Jeong Suk
- Department of Industrial Design, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Pan-Kee Bae
- BioNano Health Guard Research Center, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
6
|
Toptaş A, Çalışır MD, Kılıç A. Production of Ultrafine PVDF Nanofiber-/Nanonet-Based Air Filters via the Electroblowing Technique by Employing PEG as a Pore-Forming Agent. ACS OMEGA 2023; 8:38557-38565. [PMID: 37867706 PMCID: PMC10586252 DOI: 10.1021/acsomega.3c05509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Particles with diameters smaller than 2.5 μm (PM2.5) can penetrate the respiratory system and have negative impacts on human health. Filter media with a porous surface and nanofiber/nanonet structure demonstrate superior filtration performance compared to traditional nano- and microfiber-based filters. In this study, nanostructured filters were produced using the electroblowing method from solutions containing different ratios of poly(vinylidene fluoride) (PVDF) and polyethylene glycol (PEG) polymers for the first time. By increasing the water-soluble PEG ratio in PVDF/PEG blend nanofibers and employing a water bath treatment to the produced mat afterward, a more porous fibrous structure was obtained with a lower average fiber diameter. Notably, the removal of PEG from the PVDF/PEG (3-7) sample, which had the highest PEG content, exhibited clustered nanofiber-/nanonet-like structures with average diameters of 170 and 50 nm at the points where the fibers intersect. Although this process resulted in a slight decrease in the filtration efficiency (-1.3%), the significant reduction observed in pressure drop led to a 3.2% increase in the quality factor (QF). Additionally, by exploiting the polarizability of PVDF under an electric field, the filtration efficiency of the nanostructured PVDF filters enhanced with a ratio of 3.6% after corona discharge treatment leading to a 60% improvement in the QF. As a result, the PVDF/PEG (3-7) sample presented an impressive filtration efficiency of 99.57%, a pressure drop (ΔP) of 158 Pa, and a QF of 0.0345 Pa-1.
Collapse
Affiliation(s)
- Ali Toptaş
- TEMAG
Laboratories, Textile Technol. and Design Faculty, Istanbul Technical University, 34437 Istanbul, Turkey
- Safranbolu
Vocational School, Karabuk University, 78600 Karabuk, Turkey
| | - Mehmet Durmuş Çalışır
- TEMAG
Laboratories, Textile Technol. and Design Faculty, Istanbul Technical University, 34437 Istanbul, Turkey
- Faculty
of Engineering and Architecture, Recep Tayyip
Erdogan University, 53100 Rize, Turkey
| | - Ali Kılıç
- TEMAG
Laboratories, Textile Technol. and Design Faculty, Istanbul Technical University, 34437 Istanbul, Turkey
- Areka
Advanced Technologies LLC, 34467 Istanbul, Turkey
| |
Collapse
|
7
|
Zhu G, Li X, Li XP, Wang A, Li T, Zhu X, Tang D, Zhu J, He X, Li H, Li S, Zhang Y, Wang B, Zhang S, Xu H. Nanopatterned Electroactive Polylactic Acid Nanofibrous MOFilters for Efficient PM 0.3 Filtration and Bacterial Inhibition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47145-47157. [PMID: 37783451 DOI: 10.1021/acsami.3c11941] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Biodegradable polylactic acid (PLA) nanofibrous membranes (NFMs) hold great potential to address the increasing airborne particulate matter (PM) and dramatic accumulation of plastic/microplastic pollution. However, the field of PLA NFM-based filters is still in its infancy, frequently dwarfed by the bottlenecks regarding relatively low surface activity, poor electroactivity, and insufficient PM capturing mechanisms. This effort discloses a microwave-assisted approach to minute-level synthesis of dielectric ZIF-8 nanocrystals with high specific surface area (over 1012 m2/g) and ultrasmall size (∼240 nm), which were intimately anchored onto PLA nanofibers (PLA@ZIF-8) by a combined "electrospinning-electrospray" strategy. This endowed the PLA@ZIF-8 NFMs with largely increased electroactivity in terms of elevated dielectric coefficient (an increase of 202%), surface potential (up to 5.8 kV), and triboelectric properties (output voltage of 30.8 V at 10 N, 0.5 Hz). Given the profound control over morphology and electroactivity, the PLA@ZIF-8 NFMs exhibited efficient filtration of PM0.3 (97.1%, 85 L/min) with a decreased air resistance (592.5 Pa), surpassing that of the pure PLA counterpart (88.4%, 650.9 Pa). This was essentially ascribed to realization of multiple filtration mechanisms for PLA@ZIF-8 NFMs, including enhanced physical interception, polar interactions, and electrostatic adsorption, and the unique self-charging function triggered by airflow vibrations. Moreover, perfect antibacterial performance was achieved for PLA@ZIF-8, showing ultrahigh inhibition rates of 99.9 and 100% against E. coli and S. aureus, respectively. The proposed hierarchical structuring strategy, offering the multifunction integration unattainable with conventional methods, may facilitate the development of biodegradable long-term air filters.
Collapse
Affiliation(s)
- Guiying Zhu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinyu Li
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Xiao-Peng Li
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, China
| | - An Wang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Tian Li
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xuanjin Zhu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Daoyuan Tang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Jintuo Zhu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing 100191, China
| | - Shihang Li
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Yong Zhang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Bin Wang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| |
Collapse
|
8
|
Zhang B, Wang W, Cao H, Fu Y, Wang Y, Lai Y, Zhang Y, Cai W. Development of an asymmetric composite PPS-based bag-filter material through membrane laminating and superfine fiber blending: Lab test, field application and development of numerical models. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132078. [PMID: 37473570 DOI: 10.1016/j.jhazmat.2023.132078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Dedusting is crucial for air pollution control, and nonwoven needle felt (NWNF) bag-filters are widely applied for this purpose. Surface treatment of the filter materials can enhance NWNF's performance, but the large discrepancy in pore size between the surface and NWNF layers causes interface effects, impairing reverse cleaning and shortening service life. In this study, a novel PTFE membrane-laminated asymmetrical composite bag-filter was developed, by blending superfine polyphenylene sulfide fiber (PPS) in the original NWNF structure. Image analysis shows a gradual increase in pore size from the surface to the downstream layer. In standard lab-scale tests, the novel M-PPSF-S filter showed moderately higher resistance, significantly longer service life, higher dedusting efficiencies and better cleaning performance, compared to filters without surface laminating and/or superfine fiber blending. Numerical modelling was performed, and the flow fields and pressure distribution in these filter materials were visualized, confirming that M-PPSF-S' unique structure facilitated the alleviation of interface effect and non-steady flow. M-PPSF-S was further scaled up to treat real flue gas from a coal-fired power plant, where constant good performance was observed over 5 months. This study offers a novel and practical way to develop low-cost, high-performance filter materials for high temperature flue gas treatment.
Collapse
Affiliation(s)
- Bing Zhang
- Qingyuan Innovation Laboratory, Quanzhou 362801, China; College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Wei Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Hong Cao
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yangfan Fu
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yuping Wang
- Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Yuekun Lai
- Qingyuan Innovation Laboratory, Quanzhou 362801, China; College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yi Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China.
| | - Weilong Cai
- Qingyuan Innovation Laboratory, Quanzhou 362801, China; College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China.
| |
Collapse
|
9
|
Henych J, Ryšánek P, Št’astný M, Němečková Z, Adamec S, Kormunda M, Kamínková S, Hamalová K, Tolasz J, Janoš P. Electrospun PA6 Nanofibers Bearing the CeO 2 Dephosphorylation Catalyst. ACS OMEGA 2023; 8:26610-26618. [PMID: 37521625 PMCID: PMC10373190 DOI: 10.1021/acsomega.3c03561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023]
Abstract
Two types of CeO2 nanoparticles (CeNPs) prepared by low-temperature (<100 °C) precipitation methods in water were successfully immobilized in a matrix of electrospun PA6 nanofibers. The colloidal solutions of CeNPs in AcOH were directly mixed with the polymer solution before the needle electrospinning process, thereby achieving their good dispersion in the nanofibers. CeNPs embedded in the structure and on the surface of nanofibers exposing their reactive surfaces showed robust dephosphorylation catalytic activity, as demonstrated by monitoring the hydrolytic cleavage of three phosphodiester molecules (p-NP-TMP, p-NPPC, BNPP) in water by the HPLC method. This procedure allowed us to study the kinetics and mechanism of the hydrolytic cleavage and the ability of immobilized CeNPs to cleave different types of P-O bonds. One of the main hydrolysis products, p-nitrophenol, was effectively adsorbed on PA6 nanofibers, which may allow the selective separation of the degradation products after hydrolysis.
Collapse
Affiliation(s)
- Jiří Henych
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 250 68, Czechia
- Faculty
of Environment, Jan Evangelista Purkyně
University in Ústí nad Labem, Pasteurova 3632/15, Ústí nad Labem 400 96, Czechia
| | - Petr Ryšánek
- Faculty
of Science, Jan Evangelista Purkyně
University in Ústí nad Labem, Pasteurova 3632/15, Ústí nad Labem 400 96, Czechia
| | - Martin Št’astný
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 250 68, Czechia
| | - Zuzana Němečková
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 250 68, Czechia
| | - Slavomír Adamec
- Faculty
of Environment, Jan Evangelista Purkyně
University in Ústí nad Labem, Pasteurova 3632/15, Ústí nad Labem 400 96, Czechia
| | - Martin Kormunda
- Faculty
of Science, Jan Evangelista Purkyně
University in Ústí nad Labem, Pasteurova 3632/15, Ústí nad Labem 400 96, Czechia
| | - Simona Kamínková
- Faculty
of Science, Jan Evangelista Purkyně
University in Ústí nad Labem, Pasteurova 3632/15, Ústí nad Labem 400 96, Czechia
| | - Kateřina Hamalová
- Faculty
of Science, Jan Evangelista Purkyně
University in Ústí nad Labem, Pasteurova 3632/15, Ústí nad Labem 400 96, Czechia
| | - Jakub Tolasz
- Institute
of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež 250 68, Czechia
| | - Pavel Janoš
- Faculty
of Environment, Jan Evangelista Purkyně
University in Ústí nad Labem, Pasteurova 3632/15, Ústí nad Labem 400 96, Czechia
| |
Collapse
|
10
|
Tabatabaei N, Faridi-Majidi R, Boroumand S, Norouz F, Rahmani M, Rezaie F, Fayazbakhsh F, Faridi-Majidi R. Nanofibers in Respiratory Masks: An Alternative to Prevent Pathogen Transmission. IEEE Trans Nanobioscience 2023; 22:685-701. [PMID: 35724284 PMCID: PMC10620960 DOI: 10.1109/tnb.2022.3181745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Recent global outbreak of COVID-19 has raised serious awareness about our abilities to protect ourselves from hazardous pathogens and volatile organic compounds. Evidence suggests that personal protection equipment such as respiratory masks can radically decrease rates of transmission and infections due to contagious pathogens. To increase filtration efficiency without compromising breathability, application of nanofibers in production of respiratory masks have been proposed. The emergence of nanofibers in the industry has since introduced a next generation of respiratory masks that promises improved filtration efficiency and breathability via nanometric pores and thin fiber thickness. In addition, the surface of nanofibers can be functionalized and enhanced to capture specific particles. In addition to conventional techniques such as melt-blown, respiratory masks by nanofibers have provided an opportunity to prevent pathogen transmission. As the surge in global demand for respiratory masks increases, herein, we reviewed recent advancement of nanofibers as an alternative technique to be used in respiratory mask production.
Collapse
|
11
|
Ke L, Yang T, Liang C, Guan X, Li T, Jiao Y, Tang D, Huang D, Li S, Zhang S, He X, Xu H. Electroactive, Antibacterial, and Biodegradable Poly(lactic acid) Nanofibrous Air Filters for Healthcare. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37378641 DOI: 10.1021/acsami.3c05834] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Poly(lactic acid) (PLA)-based nanofibrous membranes (NFMs) hold great potential in the field of biodegradable filters for air purification but are largely limited by the relatively low electret properties and high susceptibility to bacteria. Herein, we disclosed a facile approach to the fabrication of electroactive and antibacterial PLA NFMs impregnated with a highly dielectric photocatalyst. In particular, the microwave-assisted doping (MAD) protocol was employed to yield Zn-doped titanium dioxide (Zn-TIO), featuring the well-defined anatase phase, a uniform size of ∼65 nm, and decreased band gap (3.0 eV). The incorporation of Zn-TIO (2, 6, and 10 wt %) into PLA gave rise to a significant refinement of the electrospun nanofibers, decreasing from the highest diameter of 581 nm for pure PLA to the lowest value of 264 nm. More importantly, dramatical improvements in the dielectric constants, surface potential, and electret properties were simultaneously achieved for the composite NFMs, as exemplified by a nearly 94% increase in surface potential for 3-day-aged PLA/Zn-TIO (90/10) compared with that of pure PLA. The well regulation of morphological features and promotion of electroactivity contributed to a distinct increase in the air filtration performance, as demonstrated by 98.7% filtration of PM0.3 with the highest quality factor of 0.032 Pa-1 at the airflow velocity of 32 L/min for PLA/Zn-TIO (94/6), largely surpassing pure PLA (89.4%, 0.011 Pa-1). Benefiting from the effective generation of reactive radicals and gradual release of Zn2+ by Zn-TIO, the electroactive PLA NFMs were ready to profoundly inactivate Escherichia coli and Staphylococcus epidermidis. The exceptional combination of remarkable electret properties and excellent antibacterial performance makes the PLA membrane filters promising for healthcare.
Collapse
Affiliation(s)
- Lv Ke
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Ting Yang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Chenyu Liang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xin Guan
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Tian Li
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yang Jiao
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Daoyuan Tang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Donghui Huang
- Anhui Sentai WPC Group Share Co., Ltd., Guangde 242299, China
| | - Shihang Li
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Shenghui Zhang
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
| | - Xinjian He
- School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| | - Huan Xu
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, China
- Jiangsu Engineering Research Center of Dust Control and Occupational Protection, Xuzhou 221008, China
| |
Collapse
|
12
|
Kang L, Ma C, Wang J, Gao X, An G. PTFE/PVA-PVDF Conjugated Electrospun Nanofiber Membrane with Triboelectric Effect Used in Face Mask. FIBERS AND POLYMERS 2023; 24:1975-1982. [PMCID: PMC10250843 DOI: 10.1007/s12221-023-00206-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 10/24/2023]
Abstract
COVID-19 broke out all over the world, and the medical protective mask is an important epidemic prevention equipment. Traditional medical protective masks use electret polypropylene melt-blown cloth as the core filter material. However, it relies heavily on electrostatic filtration and has high filtration resistance. The one-time electret makes the static charge decay rapidly with the water vapor generated by breathing, which affects the service life of the mask. In this paper, PTFE/PVA fiber and PVDF fiber were fabricated by conjugate electrospinning method, and the PTFE/PVA-PVDF layer blending fluffy fiber membrane was obtained by on-line mixing. Under the action of air slip effect and triboelectric secondary electret, the fiber membrane has higher filtration efficiency, lower filtration resistance and longer service life. The initial filtration efficiency of the fiber membrane is above 95%, the filtration efficiency is near to 100% after 24 times of cyclic filtration, the filtration resistance is about 110 Pa, the air permeability of the fiber membrane is 262.88–370.70 mm/s, and the moisture permeability is as high as 7721–8471 g/ (m2·24 h).
Collapse
Affiliation(s)
- Le Kang
- College of Light Industry and Textile, Inner Mongolia University of Technology, Hohhot, 010080 People’s Republic of China
| | - Caixia Ma
- Technique Center of Hohhot Customs District, Hohhot, 010020 People’s Republic of China
| | - Jing Wang
- Agriculture and Animal Husbandry Technology Extension Center, Inner Mongolia, Hohhot, 010010 People’s Republic of China
| | - Xiaoping Gao
- College of Light Industry and Textile, Inner Mongolia University of Technology, Hohhot, 010080 People’s Republic of China
| | - Guangchao An
- Suzhou Youchangda Nanotechnology Co., Ltd., Suzhou, 215123 People’s Republic of China
| |
Collapse
|
13
|
Hadinejad F, Morad H, Jahanshahi M, Zarrabi A, Pazoki-Toroudi H, Mostafavi E. A Novel Vision of Reinforcing Nanofibrous Masks with Metal Nanoparticles: Antiviral Mechanisms Investigation. ADVANCED FIBER MATERIALS 2023; 5:1-45. [PMID: 37361103 PMCID: PMC10088653 DOI: 10.1007/s42765-023-00275-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/13/2023] [Indexed: 06/28/2023]
Abstract
Prevention of spreading viral respiratory disease, especially in case of a pandemic such as coronavirus disease of 2019 (COVID-19), has been proved impossible without considering obligatory face mask-wearing protocols for both healthy and contaminated populations. The widespread application of face masks for long hours and almost everywhere increases the risks of bacterial growth in the warm and humid environment inside the mask. On the other hand, in the absence of antiviral agents on the surface of the mask, the virus may have a chance to stay alive and be carried to different places or even put the wearers at risk of contamination when touching or disposing the masks. In this article, the antiviral activity and mechanism of action of some of the potent metal and metal oxide nanoparticles in the role of promising virucidal agents have been reviewed, and incorporation of them in an electrospun nanofibrous structure has been considered an applicable method for the fabrication of innovative respiratory protecting materials with upgraded safety levels. Graphical Abstract
Collapse
Affiliation(s)
- Farinaz Hadinejad
- Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noushirvani University of Technology, Babol, 4714873113 Iran
| | - Hamed Morad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Iran University of Medical Sciences, Tehran, 1475886973 Iran
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, 4691710001 Iran
| | - Mohsen Jahanshahi
- Nanotechnology Research Institute, Faculty of Chemical Engineering, Babol Noushirvani University of Technology, Babol, 4714873113 Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, 34396 Turkey
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535 Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, 1449614535 Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305 USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305 USA
| |
Collapse
|
14
|
Jensen MG, O'Shaughnessy PT, Shaffer M, Yu S, Choi YY, Christiansen M, Stanier CO, Hartley M, Huddle J, Johnson J, Bibby K, Myung NV, Cwiertny DM. Simple fabrication of an electrospun polystyrene microfiber filter that meets N95 filtering facepiece respirator filtration and breathability standards. J Appl Polym Sci 2023; 140:e53406. [PMID: 37034442 PMCID: PMC10078598 DOI: 10.1002/app.53406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/29/2022] [Accepted: 11/08/2022] [Indexed: 11/23/2022]
Abstract
During the global spread of COVID-19, high demand and limited availability of melt-blown filtration material led to a manufacturing backlog of N95 Filtering Facepiece Respirators (FFRs). This shortfall prompted the search for alternative filter materials that could be quickly mass produced while meeting N95 FFR filtration and breathability performance standards. Here, an unsupported, nonwoven layer of uncharged polystyrene (PS) microfibers was produced via electrospinning that achieves N95 performance standards based on physical parameters (e.g., filter thickness) alone. PS microfibers 3-6 μm in diameter and deposited in an ~5 mm thick filter layer are favorable for use in FFRs, achieving high filtration efficiencies (≥97.5%) and low pressure drops (≤15 mm H2O). The PS microfiber filter demonstrates durability upon disinfection with hydroxyl radicals (•OH), maintaining high filtration efficiencies and low pressure drops over six rounds of disinfection. Additionally, the PS microfibers exhibit antibacterial activity (1-log removal of E. coli) and can be modified readily through integration of silver nanoparticles (AgNPs) during electrospinning to enhance their activity (≥3-log removal at 25 wt% AgNP integration). Because of their tunable performance, potential reusability with disinfection, and antimicrobial properties, these electrospun PS microfibers may represent a suitable, alternative filter material for use in N95 FFRs.
Collapse
Affiliation(s)
- Madeline G. Jensen
- Department of Civil and Environmental EngineeringUniversity of IowaIowa CityIowaUSA
| | | | - Marlee Shaffer
- Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Sooyoun Yu
- Department of Chemical and Biomolecular EngineeringUniversity of Notre DameNotre DameIndianaUSA
| | - Yun Young Choi
- Department of Chemical and Biomolecular EngineeringUniversity of Notre DameNotre DameIndianaUSA
- Department of Chemical and Environmental EngineeringUniversity of California RiversideRiversideCaliforniaUSA
| | - Megan Christiansen
- Department of Chemical and Biochemical EngineeringUniversity of IowaIowa CityIowaUSA
| | - Charles O. Stanier
- Department of Chemical and Biochemical EngineeringUniversity of IowaIowa CityIowaUSA
| | - Michael Hartley
- Department of Hospital AdministrationUniversity of Iowa Hospitals and ClinicsIowa CityIowaUSA
| | | | | | - Kyle Bibby
- Department of Civil and Environmental Engineering and Earth SciencesUniversity of Notre DameNotre DameIndianaUSA
| | - Nosang V. Myung
- Department of Chemical and Biomolecular EngineeringUniversity of Notre DameNotre DameIndianaUSA
| | - David M. Cwiertny
- Department of Civil and Environmental EngineeringUniversity of IowaIowa CityIowaUSA
- Department of Chemical and Biochemical EngineeringUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
15
|
Yan G, Yang Z, Li J, Li H, Wei J, Shi L, Li Z, Chen J, Wang L, Wu Y. Multi-Unit Needleless Electrospinning for One-Step Construction of 3D Waterproof MF-PVA Nanofibrous Membranes as High-Performance Air Filters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206403. [PMID: 36504361 DOI: 10.1002/smll.202206403] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/27/2022] [Indexed: 06/17/2023]
Abstract
The airborne particulate matter (PM) seriously threatens people's health. Personal protective equipment with electrospun nanofibers is an effective method to make people away from air pollutants. Herein, 3D waterproof melamine-formaldehyde polyvinyl alcohol (MF-PVA) nanofibrous membranes are fabricated by a one-step method combining multi-unit needleless electrospinning and a thermal treatment device in a line. 3D nanofibrous structures can be controlled by adjusting the solution concentration of each unit. The PVA nanofibrous membranes become waterproof after cross-linking with MF resin in the following thermal treatment device. The optimized MF-PVA nanofibrous membrane shows excellent air filtration performance (97.3% for PM0.3 , 100% for PM1.0 , and 100% for PM2.5 ) and low air resistance (76 Pa). These 3D waterproof MF-PVA nanofibrous membranes exhibit ultra-stable performance in various practical environments.
Collapse
Affiliation(s)
- Guilong Yan
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
- Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
| | - Zihao Yang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, 610059, China
| | - Jiayi Li
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
- Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
| | - Han Li
- Institute of Frontier Materials, Deakin University, Waurn Ponds, Victoria, 3216, Australia
| | - Jiabing Wei
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
- Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
| | - Letian Shi
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
- Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
| | - Zhenyu Li
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
- Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
| | - Jingyu Chen
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
- Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
| | - Li Wang
- Department of Biomedical Engineering, School of Big Health and Intelligent Engineering, Chengdu Medical College, Chengdu, 610500, China
| | - Yuanpeng Wu
- The Center of Functional Materials for Working Fluids of Oil and Gas Field, School of New Energy and Materials, Southwest Petroleum University, Chengdu, 610500, China
- Sichuan Engineering Technology Research Center of Basalt Fiber Composites Development and Application, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, China
| |
Collapse
|
16
|
Espinoza-Montero PJ, Montero-Jiménez M, Rojas-Quishpe S, Alcívar León CD, Heredia-Moya J, Rosero-Chanalata A, Orbea-Hinojosa C, Piñeiros JL. Nude and Modified Electrospun Nanofibers, Application to Air Purification. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030593. [PMID: 36770554 PMCID: PMC9919942 DOI: 10.3390/nano13030593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 05/17/2023]
Abstract
Air transports several pollutants, including particulate matter (PM), which can produce cardiovascular and respiratory diseases. Thus, it is a challenge to control pollutant emissions before releasing them to the environment. Until now, filtration has been the most efficient processes for removing PM. Therefore, the electrospinning procedure has been applied to obtain membranes with a high filtration efficiency and low pressure drop. This review addressed the synthesis of polymers that are used for fabricating high-performance membranes by electrospinning to remove air pollutants. Then, the most influential parameters to produce electrospun membranes are indicated. The main results show that electrospun membranes are an excellent alternative to having air filters due to the versatility of the process, the capacity for controlling the fiber diameter, porosity, high filtration efficiency and low-pressure drop.
Collapse
Affiliation(s)
- Patricio J. Espinoza-Montero
- Escuela de Ciencia Químicas, Pontificia Universidad Católica del Ecuador, Quito 17012184, Ecuador
- Correspondence: ; Tel.: +593-2299-1700 (ext. 1929)
| | - Marjorie Montero-Jiménez
- Escuela de Ciencia Químicas, Pontificia Universidad Católica del Ecuador, Quito 17012184, Ecuador
| | - Stalin Rojas-Quishpe
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| | | | - Jorge Heredia-Moya
- Centro de Investigación Biomédica (CENBIO), Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170527, Ecuador
| | - Alfredo Rosero-Chanalata
- Escuela de Ciencia Químicas, Pontificia Universidad Católica del Ecuador, Quito 17012184, Ecuador
- Facultad de Ciencias Químicas, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Carlos Orbea-Hinojosa
- Departamento de Ciencias Exactas, Universidad de Las Fuerzas Armadas ESPE, Av. Gral. Rumiñahui S/N, Sangolquí P.O. Box 171-5-231B, Ecuador
| | - José Luis Piñeiros
- Escuela de Ciencia Químicas, Pontificia Universidad Católica del Ecuador, Quito 17012184, Ecuador
| |
Collapse
|
17
|
Sarac Z, Kilic A, Tasdelen‐Yucedag C. Optimization of electro‐blown polysulfone nanofiber mats for air filtration applications. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zuleyha Sarac
- Department of Chemical Engineering Gebze Technical University Kocaeli Turkey
| | - Ali Kilic
- TEMAG Labs Istanbul Technical University Istanbul Turkey
| | | |
Collapse
|
18
|
Zhu J, Zhu R, Hu Y, Wang Z. Low-cost and temperature-resistant mullite fiber sponges with superior thermal insulation and high-temperature PM filtration. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Gungor M, Selcuk S, Toptas A, Kilic A. Aerosol Filtration Performance of Solution Blown PA6 Webs with Bimodal Fiber Distribution. ACS OMEGA 2022; 7:46602-46612. [PMID: 36570188 PMCID: PMC9773963 DOI: 10.1021/acsomega.2c05449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
A bimodal web, where both nanofibers and microfibers are present and distributed randomly across the same web, can deliver high filter efficiency and low pressure drop at the same time since in such a web, filter efficiency is high thanks to small pores created by the presence of nanofibers and the interfiber space created by the presence of microfibers, which is large enough for air to flow through with little resistance. In this work, a bimodal polyamide 6 (PA6) filter web was fabricated via a modified solution blowing (m-SB) technique that produced nanofibers and microfibers simultaneously. Scanning electron microscope (SEM) images of the webs were used to analyze the fiber morphology. Additionally, air permeability, solidity, porosity, filtration performance, and tensile strength of the samples were measured. The bimodal filter web consisted of nanofibers and microfibers with average diameters of 81.5 ± 127 nm and 1.6 ± 0.458 μm, respectively. Its filter efficiency, pressure drop at 95 L min-1, and tensile strength were 98.891%, 168 Pa, and 0.1 MPa, respectively. Its quality factor (QF) and tensile strength were 0.0268 Pa-1 and 0.1 MPa, respectively. When compared with commercially available filters, the bimodal web produced had superior filter performance, constituting a suitable alternative for air filter applications.
Collapse
Affiliation(s)
- Melike Gungor
- TEMAG
Lab., Textile Technol. and Design Faculty, Istanbul Technical University, Istanbul34437, Turkey
- Areka
Advanced Technologies Ltd. Co., Istanbul34467, Turkey
| | - Sule Selcuk
- TEMAG
Lab., Textile Technol. and Design Faculty, Istanbul Technical University, Istanbul34437, Turkey
| | - Ali Toptas
- TEMAG
Lab., Textile Technol. and Design Faculty, Istanbul Technical University, Istanbul34437, Turkey
- Safranbolu
Vocational School, Karabuk University, Karabuk78050, Turkey
| | - Ali Kilic
- TEMAG
Lab., Textile Technol. and Design Faculty, Istanbul Technical University, Istanbul34437, Turkey
- Areka
Advanced Technologies Ltd. Co., Istanbul34467, Turkey
| |
Collapse
|
20
|
Shao Z, Chen H, Wang Q, Kang G, Wang X, Li W, Liu Y, Zheng G. High-performance multifunctional electrospun fibrous air filter for personal protection: A review. Sep Purif Technol 2022; 302:122175. [PMID: 36168392 PMCID: PMC9492398 DOI: 10.1016/j.seppur.2022.122175] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022]
Abstract
With the increasingly serious air pollution and the rampant coronavirus disease 2019 (COVID–19), preparing high–performance air filter to achieve the effective personal protection has become a research hotspot. Electrospun nanofibrous membrane has become the first choice of air filter because of its small diameter, high specific surface area and porosity. However, improving the filtration performance of the filter only cannot meet the personal needs: it should be given more functions based on high filtration performance to maximize the personal benefits, called, multifunctional, which can also be easily realized by electrospinning technology, and has attracted much attention. In this review, the filtration mechanism of high–performance electrospun air filter is innovatively summarized from the perspective of membrane. On this basis, the specific preparation process, advantages and disadvantages are analyzed in detail. Furthermore, other functions required for achieving maximum personal protection benefits are introduced specifically, and the existing high–performance electrospun air filter with multiple functions are summarized. Finally, the challenges, limitations, and development trends of manufacturing high–performance air filter with multiple functions for personal protection are presented.
Collapse
Affiliation(s)
- Zungui Shao
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Huatan Chen
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Qingfeng Wang
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Guoyi Kang
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Xiang Wang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Wenwang Li
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, China
| | - Yifang Liu
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| | - Gaofeng Zheng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, China
| |
Collapse
|
21
|
Wu H, Hu Z, Geng Q, Chen Z, Song Y, Chu J, Ning X, Dong S, Yuan D. Facile preparation of CuMOF-modified multifunctional nanofiber membrane for high-efficient filtration/separation in complex environments. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Cheng P, Espano J, Harkaway A, Naclerio AE, Moehring NK, Braeuninger-Weimer P, Kidambi PR. Nanoporous Atomically Thin Graphene Filters for Nanoscale Aerosols. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41328-41336. [PMID: 36036893 DOI: 10.1021/acsami.2c10827] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Filtering nanoparticulate aerosols from air streams is important for a wide range of personal protection equipment (PPE), including masks used for medical research, healthcare, law enforcement, first responders, and military applications. Conventional PPEs capable of filtering nanoparticles <300 nm are typically bulky and sacrifice breathability to maximize protection from exposure to harmful nanoparticulate aerosols including viruses ∼20-300 nm from air streams. Here, we show that nanopores introduced into centimeter-scale monolayer graphene supported on polycarbonate track-etched supports via a facile oxygen plasma etch can allow for filtration of aerosolized SiO2 nanoparticles of ∼5-20 nm from air steams while maintaining air permeance of ∼2.28-7.1 × 10-5 mol m-2 s-1 Pa-1. Furthermore, a systematic increase in oxygen plasma etch time allows for a tunable size-selective filtration of aerosolized nanoparticles. We demonstrate a new route to realize ultra-compact, lightweight, and conformal form-factor filters capable of blocking sub-20 nm aerosolized nanoparticles with particular relevance for biological/viral threat mitigation.
Collapse
Affiliation(s)
- Peifu Cheng
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Jeremy Espano
- Interdisciplinary Graduate Program for Material Science, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Andrew Harkaway
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Andrew E Naclerio
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| | - Nicole K Moehring
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Interdisciplinary Graduate Program for Material Science, Vanderbilt University, Nashville, Tennessee 37212, United States
| | | | - Piran R Kidambi
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Department of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
- Vanderbilt Institute of Nanoscale Sciences and Engineering, Vanderbilt University, Nashville, Tennessee 37212, United States
| |
Collapse
|
23
|
Zhang X, Liu J, Liu X, Liu C, Chen Q. HEPA filters for airliner cabins: State of the art and future development. INDOOR AIR 2022; 32:e13103. [PMID: 36168223 DOI: 10.1111/ina.13103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/18/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
The airliner cabin environment is very important to the health of passengers and crew members, and the use of high-efficiency particulate air (HEPA) filters for recirculated air in the environmental control systems (ECS) is essential for the removal of airborne particles such as SARS CoV-2 aerosols. A HEPA filter should be high efficiency, low-pressure drop, high dust-holding capacity (DHC), lightweight, and strong for use in aircraft. We conducted an experimental study on 23 HEPA filters with glass fiber media that are used in different commercial airliner models. The tested filters had a median filtration efficiency of >99.97% for particles with a diameter of 0.3-0.5 μm, a pressure drop of 134-412 Pa at rated airflow rate, and a DHC of 32.2-37.0 g/m2 . The use of nanofiber media instead of glass fiber media can reduce the pressure drop by 66.4%-94.3% and significantly increase the quality factor by analysis of literature data. The disadvantages of poor fire resistance and small DHC can be overcome by the use of flame-retardant polymers and fiber structural design. As a new lightweight and environmentally friendly filter material, nanofiber media could be used as air filters in ECS in the future.
Collapse
Affiliation(s)
- Xin Zhang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Junjie Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xuan Liu
- China Railway Design Corporation, Tianjin, China
| | - Chaojun Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Zhejiang Goldensea Environment Technology Co. Ltd., Zhejiang, China
| | - Qingyan Chen
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
24
|
Dong T, Hua Y, Han G, Zhang Y, Chi S, Liu Y, Liu C, Lou CW, Lin JH. Biomimetic Fibrous Leaf-Vein Membrane Enabling Unidirectional Water Penetration and Effective Antibacterial PM Filtration. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37192-37203. [PMID: 35916495 DOI: 10.1021/acsami.2c10254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Air pollution induced by pathogenic particulate matter (PM) has posed a serious threat to public health worldwide. Advanced air filters are thus required, not only exhibiting high PM capture efficiency, low breathing resistance, and high internal moisture transferring performance but also isolating and inactivating external pathogenic aerosols. In this study, we demonstrated a facile approach to construct a biomimetic fibrous leaf-vein membrane with unidirectional water penetration and effective antibacterial PM filtration by one-step electrospinning of poly(vinylidene fluoride) (PVDF)-based multilayer nanofibers. With ultrathin fibers penetrating the skeletal framework of bimodal thick fibers, the membranes showed gradient interconnected porous structures and achieved a highly efficient and stable (in an acid and alkali environment) PM0.3 interception (>99.98%) with low air drag (51-71 Pa). In addition, the gradient narrow pores of the membranes contributed to a gradient higher hydrophilicity. The subsequent unidirectional water motion effectively isolates pathogenic aerosols typically generated by external individuals or ultrafast water penetration from the inverse face. Moreover, the membranes demonstrated an antibacterial efficacy (>99.99%) in a 5 min contact, inactivating the intercepted airborne pathogens efficiently. The test results proved that the proposed membranes were promising advanced air filters for respirator applications.
Collapse
Affiliation(s)
- Ting Dong
- College of Textile and Clothing, Qingdao University, #308, Ningxia Road, Qingdao 266071, P. R. China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao 266071, P. R. China
- Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao 266071, P. R. China
| | - Yue Hua
- College of Textile and Clothing, Qingdao University, #308, Ningxia Road, Qingdao 266071, P. R. China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao 266071, P. R. China
| | - Guangting Han
- Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao 266071, P. R. China
| | - Yuanming Zhang
- Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, #308 Ningxia Road, Qingdao 266071, P. R. China
| | - Shan Chi
- Bestee Material Co., Ltd., Qingdao, Shandong 266001, P. R. China
| | - Yanming Liu
- Sinotech Academy of Textile Co., Ltd., Qingdao, Shandong 266001, P. R. China
| | - Cui Liu
- Qingdao Byherb New Material Co., Ltd., Qingdao, Shandong 266001, P. R. China
| | - Ching-Wen Lou
- College of Textile and Clothing, Qingdao University, #308, Ningxia Road, Qingdao 266071, P. R. China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao 266071, P. R. China
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| | - Jia-Horng Lin
- College of Textile and Clothing, Qingdao University, #308, Ningxia Road, Qingdao 266071, P. R. China
- Advanced Medical Care and Protection Technology Research Center, Qingdao University, #308 Ningxia Road, Qingdao 266071, P. R. China
- Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
- Innovation Platform of Intelligent and Energy-Saving Textiles, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
- College of Material and Chemical Engineering, Minjiang University, Fuzhou 350108, P. R. China
| |
Collapse
|
25
|
Su Q, Wei Z, Zhu C, Wang X, Zeng W, Wang S, Long S, Yang J. Multilevel structured PASS nanofiber filter with outstanding thermal stability and excellent mechanical property for high-efficiency particulate matter removal. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128514. [PMID: 35217345 DOI: 10.1016/j.jhazmat.2022.128514] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 05/25/2023]
Abstract
Particulate matter (PM) pollution from industrialization poses a great threat to people's health. Although fiber-based filters are used effectively to capture PM, the traditional filters with large diameter suffer from low filtration efficiency, high pressure drop and low temperature resistance. In this study, multilayer poly arylene sulfide sulfone (M-PASS) composite filter was designed and fabricated via electrospinning technology. The M-PASS composite filter is sandwich-structure. Due to the unique structure and composition, the M-PASS filter exhibited outstanding removal efficiency of 99.97 ± 0.0050%, extremely low air resistance of 44.3 ± 0.7 Pa, excellent quality factor (QF) of 0.19 ± 0.0019 Pa-1, and desirable mechanical strength of 7.0 ± 0.2 MPa. Furthermore, the as-prepared M-PASS filter can remain outstanding filtration performance at 200.0 ℃ due to the high thermal stability of PASS and the removal efficiency was still above 95.2 ± 0.4% after long-term filtration test. These results demonstrate that the structure of filter is the important one for air filtration and the M-PASS nanofiber filters have great potential in PM removal, especially under high temperature conditions.
Collapse
Affiliation(s)
- Qing Su
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China; College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhimei Wei
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering (Sichuan University), Chengdu 610065, China.
| | - Chuanren Zhu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Xiaojun Wang
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Wei Zeng
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shaoyu Wang
- College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Shengru Long
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China
| | - Jie Yang
- Institute of Materials Science and Technology, Analytical & Testing Center, Sichuan University, Chengdu 610065, China; State Key Laboratory of Polymer Materials Engineering (Sichuan University), Chengdu 610065, China
| |
Collapse
|
26
|
Robert B, Nallathambi G. Tailoring mechanically robust nanofibrous membrane for PM 2.5-0.3 filtration and evaluating their behavior using response surface Box–Behnken design. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2075757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Berly Robert
- Department of Textile Technology, Anna University, Chennai, India
| | - Gobi Nallathambi
- Department of Textile Technology, Anna University, Chennai, India
| |
Collapse
|
27
|
Tang N, Chen Y, Li Y, Yu B. 2D Polymer Nanonets: Controllable Constructions and Functional Applications. Macromol Rapid Commun 2022; 43:e2200250. [PMID: 35524950 DOI: 10.1002/marc.202200250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/24/2022] [Indexed: 11/12/2022]
Abstract
Two-dimensional (2D) polymer nanonets have demonstrated great potential in various application fields due to their integrated advantages of ultrafine diameter, small pore size, high porosity, excellent interconnectivity, and large specific surface area. Here, a comprehensive overview of the controlled constructions of the polymer nanonets derived from electrospinning/netting, direct electronetting, self-assembly of cellulose nanofibers, and nonsolvent-induced phase separation is provided. Then, the widely researched multifunctional applications of polymer nanonets in filtration, sensor, tissue engineering, and electricity are also given. Finally, the challenges and possible directions for further developing the polymer nanonets are also intensively highlighted. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ning Tang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yu Chen
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuyao Li
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Bin Yu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
28
|
Suriaman I, Hendrarsakti J, Mardiyati Y, Pasek AD. Synthesis and Characterization of Air Filter Media Made from Cellulosic Ramie Fiber (Boehmeria nivea). CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
29
|
Frank A, Weber M, Hils C, Mansfeld U, Kreger K, Schmalz H, Schmidt HW. Functional Mesostructured Electrospun Polymer Nonwovens with Supramolecular Nanofibers. Macromol Rapid Commun 2022; 43:e2200052. [PMID: 35320608 DOI: 10.1002/marc.202200052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Indexed: 11/09/2022]
Abstract
Functional, hierarchically mesostructured nonwovens are of fundamental importance because complex fiber morphologies increase the active surface area and functionality allowing for the effective immobilization of metal nanoparticles. Such complex functional fiber morphologies clearly widen the property profile and enable the preparation of more efficient and selective filter media. Here, we demonstrate the realization of hierarchically mesostructured nonwovens with barbed wire-like morphology by combining electrospun polystyrene fibers, decorated with patchy worm-like micelles, with solution-processed supramolecular short fibers composed of 1,3,5-benzenetricarboxamides with peripheral N,N-diisopropylaminoethyl substituents. The worm-like micelles with a patchy microphase-separated corona were prepared by crystallization-driven self-assembly of a polyethylene based triblock terpolymer and deposited on top of the polystyrene fibers by coaxial electrospinning. The micelles were designed in a way that their patches promote the directed self-assembly of the 1,3,5-benzenetricarboxamide and the fixation of the supramolecular nanofibers on the supporting polystyrene fibers. Functionality of the mesostructured nonwoven is provided by the peripheral N,N-diisopropylaminoethyl substituents of the 1,3,5-benzenetricarboxamide and proven by the effective immobilization of individual palladium nanoparticles on the supramolecular nanofibers. The preparation of hierarchically mesostructured nonwovens and their shown functionality demonstrate that such systems are attractive candidates to be used for example in filtration, selective separation and heterogenous catalysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andreas Frank
- Macromolecular Chemistry I and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Melina Weber
- Macromolecular Chemistry I and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Christian Hils
- Macromolecular Chemistry II and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Ulrich Mansfeld
- Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Klaus Kreger
- Macromolecular Chemistry I and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Holger Schmalz
- Macromolecular Chemistry II and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| | - Hans-Werner Schmidt
- Macromolecular Chemistry I and Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, Bayreuth, 95447, Germany
| |
Collapse
|
30
|
Abdelhamid AE, Ward AA, Khalil AM. Electrical conductivity and thermal stability of surface-modified multiwalled carbon nanotubes/polysulfone/poly( p-phenylenediamine) composites. JOURNAL OF POLYMER ENGINEERING 2022. [DOI: 10.1515/polyeng-2021-0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Multiwalled carbon nanotubes (MWCNTs) were functionalized with acid then coated with poly(p-phenylenediamine) (PpPD). Various concentrations of modified multiwalled carbon nanotubes (MWCNTs@PpPD) were introduced to a polysulfone (PSU) and poly(p-phenylenediamine) (PpPD) blend providing nanocomposites in form of sheets. Chemical oxidative polymerization was used to polymerize p-phenylenediamine. PpPD is then applied as a compatibilizer in such heterogeneous system to facilitate a successful percolation for MWCNTs in the polymeric matrix as an enhanced conductive filler. The morphological investigations showed homogeneous distribution for MWCNTs in the polymeric matrix. The prepared composites were investigated demonstrating favorable thermal and electrical properties. Thermogravimetric analysis (TGA) emphasized that MWCNTs@PpPD contributed in enhancing the thermal stability of the prepared sheets. The electrical conductivity of PSU/PpPD/MWCNTs@PpPD nanocomposites boosted upon raising the magnitude of loaded MWCNTs. The existence of MWCNTs@PpPD in the polymeric matrix extended the interfacial polarization effects with elevating the conductance. The loaded composite with (7.5 wt%) MWCNTs@PpPD showed the optimum electrical conductivity values. It was then treated with HCl to protonate the amine groups in PpPD showing higher conductivity value than its corresponding untreated one. PpPD and MWCNTs contributed synergistically in modifying the insulation feature of PSU to a favorable electrical conductivity one.
Collapse
Affiliation(s)
- Ahmed E. Abdelhamid
- Polymers and Pigments Department , National Research Centre , Dokki 12622 , Giza , Egypt
| | - Azza A. Ward
- Microwave Physics and Dielectrics Department , National Research Centre , Dokki 12622 , Giza , Egypt
| | - Ahmed M. Khalil
- Photochemistry Department , National Research Centre , Dokki 12622 , Giza , Egypt
| |
Collapse
|
31
|
Superwettable neuron-inspired polyurethane nanofibrous materials with efficient selective separation performance towards various fluids. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Robert B, Nallathambi G. Highly oriented poly (
m‐phenylene
isophthalamide)/polyacrylonitrile based coaxial nanofibers integrated with electrospun
polyacrylonitrile‐silver
nanoparticle: Application in air filtration of particulate and microbial contaminants. J Appl Polym Sci 2022. [DOI: 10.1002/app.52294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Berly Robert
- Department of Textile Technology Anna University Chennai India
| | | |
Collapse
|
33
|
Zhang X, Wang Y, Liu W, Jin X. Needle-punched electret air filters (NEAFs) with high filtration efficiency, low filtration resistance, and superior dust holding capacity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Sharma A, Omidvarborna H, Kumar P. Efficacy of facemasks in mitigating respiratory exposure to submicron aerosols. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126783. [PMID: 34523504 DOI: 10.1016/j.jhazmat.2021.126783] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/08/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
We designed a novel experimental set-up to pseudo-simultaneously measure size-segregated filtration efficiency (ηF), breathing resistance (ηP) and potential usage time (tB) for 11 types of face protective equipment (FPE; four respirators; three medical; and four handmade) in the submicron range. As expected, the highest ηF was exhibited by respirators (97 ± 3%), followed by medical (81 ± 7%) and handmade (47 ± 13%). Similarly, the breathing resistance was highest for respirators, followed by medical and handmade FPE. Combined analysis of efficiency and breathing resistance highlighted trade-offs, i.e. respirators showing the best overall performance across these two indicators, followed by medical and handmade FPE. This hierarchy was also confirmed by quality factor, which is a performance indicator of filters. Detailed assessment of size-segregated aerosols, combined with the scanning electron microscope imaging, revealed material characteristics such as pore density, fiber thickness, filter material and number of layers influence their performance. ηF and ηP showed an inverse exponential decay with time. Using their cross-over point, in combination with acceptable breathability, allowed to estimate tB as 3.2-9.5 h (respirators), 2.6-7.3 h (medical masks) and 4.0-8.8 h (handmade). While relatively longer tB of handmade FPE indicate breathing comfort, they are far less efficient in filtering virus-laden submicron aerosols compared with respirators.
Collapse
Affiliation(s)
- Ashish Sharma
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Hamid Omidvarborna
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom.
| |
Collapse
|
35
|
Xu Y, Zhang X, Teng D, Zhao T, Li Y, Zeng Y. Multi-layered micro/nanofibrous nonwovens for functional face mask filter. NANO RESEARCH 2022; 15:7549-7558. [PMID: 35578617 PMCID: PMC9094123 DOI: 10.1007/s12274-022-4350-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 05/03/2023]
Abstract
UNLABELLED The worldwide COVID-19 pandemic has led to an attention on the usage of personal protective face masks. However, the longevity and safety of the commercial face masks are limited due to the charge dissipation of the electret meltblown nonwovens, which are dominate in the face mask filters. Herein, we design a type of multi-layer structured nonwovens using meltblowing and electrospinning technologies. The complex nonwovens involving meltblown and electrospun fibers are designed to possess multilevel fiber diameters and pore sizes. The micro/nanofibers with porous and wrinkled surface morphologies can well capture particulate matters (PMs), and the multilevel pore sizes contribute to low air resistance under high filtration efficiency. Airflow field simulation was carried out to understand the pressure distribution within the nonwovens in the filtration process. Meanwhile, by adding Ag nanoparticles (AgNPs) as additives, the nonwovens exhibit excellent antibacterial performance. The resultant nonwovens exhibit filtration efficiency of 99.1% for PM0.3 and low pressure drop of 105 Pa under the 10.67 cm/s inlet air velocity, and antibacterial rate of > 99.99% for Escherichia coli. These performances and functions make the designed complex nonwovens a promising filter core for face masks. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material (Fig. S1. The filtration efficiencies of a brand of surgical mask changes with the storage time under the condition of 100% humidity. Fig. S2. The FE-SEM images of the fibers after blocking PMs. Fig. S3. Illustration of 3D structure models of the nonwovens. Fig. S4. Diameter distribution of AgNPs. Table S1. The structure parameters and filtration performances of the PP-M fibers with and without pores and wrinkles. Table S2. Filtration performance of PP-M/PLA-M/PLA-N nonwovens and commercial face masks. Table S3. The structural parameters for the nonwovens. Table S4. The filtration efficiencies and pressure drops of the PP, PE spunbonded nonwovens, and PP-M/PLA-M/PLA-N@AgNPs nonwovens) is available in the online version of this article at 10.1007/s12274-022-4350-2.
Collapse
Affiliation(s)
- Yuanqiang Xu
- College of Textiles, Donghua University, Shanghai, 201620 China
| | - Xiaomin Zhang
- College of Textiles, Donghua University, Shanghai, 201620 China
| | - Defang Teng
- College of Textiles, Donghua University, Shanghai, 201620 China
| | - Tienan Zhao
- College of Textiles, Donghua University, Shanghai, 201620 China
| | - Ying Li
- College of Textiles, Donghua University, Shanghai, 201620 China
| | - Yongchun Zeng
- College of Textiles, Donghua University, Shanghai, 201620 China
| |
Collapse
|
36
|
Lee K, Jung YW, Park H, Kim D, Kim J. Sequential Multiscale Simulation of a Filtering Facepiece for Prediction of Filtration Efficiency and Resistance in Varied Particulate Scenarios. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57908-57920. [PMID: 34802233 DOI: 10.1021/acsami.1c16850] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This study explores a novel approach of multiscale modeling and simulation to characterize the filtration behavior of a facepiece in varied particulate conditions. Sequential multiscale modeling was performed for filter media, filtering facepiece, and testing setup. The developed virtual models were validated for their morphological characteristics and filtration performance by comparing with the data from the physical experiments. Then, a virtual test was conducted in consideration of a time scale, simulating diverse particulate environments with different levels of particle size distribution, particle concentration, and face velocity. An environment with small particles and high mass concentration resulted in a rapid buildup of resistance, reducing the service life. Large particles were accumulated mostly at the entrance of the filter layer, resulting in a lower penetration and slower buildup of resistance. This study is significant in that the adopted virtual approach enables the prediction of filtration behavior and service life, applying diverse environmental conditions without involving the costs of extra setups for the physical experiments. This study demonstrates a novel and economic research method that can be effectively applied to the research and development of filters.
Collapse
Affiliation(s)
- Kyeongeun Lee
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
- Reliability Assessment Center, FITI Testing & Research Institute, Seoul 07791, Korea
| | - Yeon-Woo Jung
- Reliability Assessment Center, FITI Testing & Research Institute, Seoul 07791, Korea
| | - Hanjou Park
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
| | - Dongmi Kim
- Digital Material Laboratory, Trinity Engineering, Seoul 07997, Korea
| | - Jooyoun Kim
- Department of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
37
|
Lin S, Fu X, Luo M, Wang C, Zhong WH. Interface-tailored forces fluffing protein fiber membranes for high-performance filtration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
38
|
Bicomponent PLA Nanofiber Nonwovens as Highly Efficient Filtration Media for Particulate Pollutants and Pathogens. MEMBRANES 2021; 11:membranes11110819. [PMID: 34832049 PMCID: PMC8622781 DOI: 10.3390/membranes11110819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022]
Abstract
Herein, a novel form of bicomponent nanofiber membrane containing stereo-complex polylactic acid (SC-PLA) was successfully produced by the side-by-side electrospinning of Poly (L-lactic acid) (PLLA) and Poly (D-lactic acid) (PDLA). We demonstrate that through these environmentally sustainable materials, highly efficient nanofiber assemblies for filtration can be constructed at very low basis weight. The physical and morphological structure, crystalline structure, hydrophobicity, porous structure, and filtration performance of the fibrous membranes were thoroughly characterized. It was shown that the fabricated polylactic acid (PLA) side-by-side fiber membrane had the advantages of excellent hydrophobicity, small average pore size, high porosity, high filtration efficiency, low pressure drop as well as superior air permeability. At the very low basis weight of 1.1 g/m2, the filtration efficiency and pressure drop of the prepared side-by-side membrane reached 96.2% and 30 Pa, respectively. Overall, this biomass-based, biodegradable filtration material has the potential to replace the fossil fuel-based polypropylene commercial meltblown materials for the design and development in filtration, separation, biomedical, personal protection and other fields.
Collapse
|
39
|
Banerji A, Jin K, Mahanthappa MK, Bates FS, Ellison CJ. Porous Fibers Templated by Melt Blowing Cocontinuous Immiscible Polymer Blends. ACS Macro Lett 2021; 10:1196-1203. [PMID: 35549054 DOI: 10.1021/acsmacrolett.1c00456] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a scalable melt blowing method for producing porous nonwoven fibers from model cocontinuous polystyrene/high-density polyethylene polymer blends. While conventional melt compounding of cocontinuous blends typically produces domain sizes ∼1-10 μm, melt blowing these blends into fibers reduces those dimensions up to 35-fold and generates an interpenetrating domain structure. Inclusion of ≤1 wt % of a block copolymer compatibilizer in these blends crucially enables access to smaller domain sizes in the fibers by minimizing thermodynamically-driven blend coarsening inherent to cocontinuous blends. Selective solvent extraction of the sacrificial polymer phase yielded a network of porous channels within the fibers. Fiber surfaces also exhibited pores that percolate into the fiber interior, signifying the continuous and interconnected nature of the final structure. Pore sizes as small as ∼100 nm were obtained, suggesting potential applications of these porous nonwovens that rely on their high surface areas, including various filtration modules.
Collapse
Affiliation(s)
- Aditya Banerji
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Kailong Jin
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Chemical Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Mahesh K. Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Christopher J. Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
40
|
Multilevel structured TPU/PS/PA-6 composite membrane for high-efficiency airborne particles capture: Preparation, performance evaluation and mechanism insights. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119392] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Effect of Nanoclay Addition on the Morphology, Fiber Size Distribution and Pore Size of Electrospun Polyvinylpyrrolidone (PVP) Composite Fibers for Air Filter Applications. FIBERS 2021. [DOI: 10.3390/fib9080048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fabrication of Polyvinylpyrrolidone (PVP) electrospun layers for air filter applications is the target of this study. Solutions of 10% PVP containing 0, 3, 10 and 25 wt% nanoclay were used to fabricate electrospun fibers. Scanning electron microscopy showed that the fibers’ roughness increased by increasing the nanoclay content, and it was maximum at the nanoclay concentration of 25 wt%. Concurrently, nanoclay decreased the pore size considerably and increased the range of the fibers’ size distribution up to 100%. In addition, as the nanoclay concentration increased, the frequency distribution decreased abruptly for the larger fiber sizes and increased dramatically for the small fiber sizes. This phenomenon was correlated to the effect of nanoclay concentration on the conductivity of the solution. The solution’s conductivity increased from 1.7 ± 0.05 µS/cm for the PVP solution without nanoclay to 62.7 ± 0.19 µS/cm for the solution containing 25 wt% nanoclay and destabilized the electrospun jet, increasing the range of fiber size distribution. Therefore, the PVP solution containing 25 wt% nanoclay has potential characteristics suitable for air-filter applications, owing to its rougher fibers and combination of fine and thicker fibers.
Collapse
|
42
|
Lu T, Cui J, Qu Q, Wang Y, Zhang J, Xiong R, Ma W, Huang C. Multistructured Electrospun Nanofibers for Air Filtration: A Review. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23293-23313. [PMID: 33974391 DOI: 10.1021/acsami.1c06520] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Air filtration materials (AFMs) have gradually become a research hotspot on account of the increasing attention paid to the global air quality problem. However, most AFMs cannot balance the contradiction between high filtration efficiency and low pressure drop. Electrospinning nanofibers have a large surface area to volume ratio, an adjustable porous structure, and a simple preparation process that make them an appropriate candidate for filtration materials. Therefore, electrospun nanofibers have attracted increased attention in air filtration applications. In this paper, first, the preparation methods of high-performance electrospun air filtration membranes (EAFMs) and the typical surface structures and filtration principles of electrospun fibers for air filtration are reviewed. Second, the research progress of EAFMs with multistructures, including nanoprotrusion, wrinkled, porous, branched, hollow, core-shell, ribbon, beaded, nets structure, and the application of these nanofibers in air filtration are summarized. Finally, challenges with the fabrication of EAFMs, limitations of their use, and trends for future developments are presented.
Collapse
Affiliation(s)
- Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) College of Chemical Engineering Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Jiaxin Cui
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) College of Chemical Engineering Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) College of Chemical Engineering Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Yulin Wang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) College of Chemical Engineering Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Jian Zhang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) College of Chemical Engineering Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) College of Chemical Engineering Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) College of Chemical Engineering Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent) College of Chemical Engineering Nanjing Forestry University (NFU), Nanjing 210037, P. R. China
| |
Collapse
|
43
|
Illés B, Gordon P. Filtering efficiency measurement of respirators by laser-based particle counting method. MEASUREMENT : JOURNAL OF THE INTERNATIONAL MEASUREMENT CONFEDERATION 2021; 176:109173. [PMID: 33642662 PMCID: PMC7896493 DOI: 10.1016/j.measurement.2021.109173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 01/13/2021] [Accepted: 02/07/2021] [Indexed: 05/09/2023]
Abstract
Respirators are one of the most useful personal protective equipment which can effectively limit the spreading of coronavirus (COVID-19). There are a worldwide shortage of respirators, melt-blown non-woven fabrics, and respirator testing possibilities. An easy and fast filtering efficiency measurement method was developed for testing the filtering materials of respirators. It works with a laser-based particle counting method, and it can determine two types of filtering efficiencies: Particle Filtering Efficiency (PFE) at given particle sizes and Concentration Filtering Efficiency (CFE) in the case of different aerosols. The measurement method was validated with different aerosol concentrations and with etalon respirators. Considerable advantages of our measurement method are simplicity, availability, and the relatively low price compared to the flame-photometer based methods. The ability of the measurement method was tested on ten different types of Chinese KN95 respirators. The quality of these respirators differs much, only two from ten reached 95% filtering efficiency.
Collapse
Affiliation(s)
- Balázs Illés
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Műegyetem rkp. 3-9, H-1111, Budapest, Hungary
| | - Péter Gordon
- Department of Electronics Technology, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Műegyetem rkp. 3-9, H-1111, Budapest, Hungary
| |
Collapse
|
44
|
Jiang J, Shao Z, Wang X, Zhu P, Deng S, Li W, Zheng G. Three-dimensional composite electrospun nanofibrous membrane by multi-jet electrospinning with sheath gas for high-efficiency antibiosis air filtration. NANOTECHNOLOGY 2021; 32:245707. [PMID: 33657545 DOI: 10.1088/1361-6528/abeb9a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D) composite polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN) electrospun nanofibrous membranes combining both thick and thin nanofibers have been fabricated by the method of multi-jet electrospinning with sheath gas to realize high-efficiency air filtration under a low pressure drop. The thin PAN nanofibers form a dense membrane, with a strong capturing ability on the ultra-fine particles, while the thick PVDF nanofibers play a 3D supporting effect on the thin PAN nanofibers. In this case, the combination results in a fluffy membrane with higher porosity, which could achieve the airflow passing through the membrane without the air pressure drop. The effects of the composite manner of thick nanofibers and thin nanofibers are investigated, in order to optimize the air filtration performance of the 3D composite nanofibrous membrane. As a result, the maximum quality factor for air filtration could reach up to 0.398 Pa-1. The particle-fiber interaction model was used to simulate the air filtration process as well, and the simulation results were fairly consistent with the experimental results, providing a guidance method for the optimization of composite nanofibrous membrane for high-efficiency air filtration. More interestingly, a cationic poly[2-(N,N-dimethyl amino) ethyl methacrylate] (PDMAEMA) was added in the PVDF solution to obtain a composite air filtration membrane with excellent antibiosis performance, which achieved the highest inhibition rate of approximately 90%. In short, this work provides an effective way to promote antibiosis air filtration performance by using an electrospun nanofibrous membrane, and might also effectively accelerate the biological protection application of current air filtration membranes.
Collapse
Affiliation(s)
- Jiaxin Jiang
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| | - Zungui Shao
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| | - Xiang Wang
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, People's Republic of China
| | - Ping Zhu
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| | - Shiqing Deng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| | - Wenwang Li
- School of Mechanical and Automotive Engineering, Xiamen University of Technology, Xiamen 361024, People's Republic of China
| | - Gaofeng Zheng
- Department of Instrumental and Electrical Engineering, Xiamen University, Xiamen 361102, People's Republic of China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
45
|
Choi S, Jeon H, Jang M, Kim H, Shin G, Koo JM, Lee M, Sung HK, Eom Y, Yang H, Jegal J, Park J, Oh DX, Hwang SY. Biodegradable, Efficient, and Breathable Multi-Use Face Mask Filter. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003155. [PMID: 33747729 PMCID: PMC7967051 DOI: 10.1002/advs.202003155] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/19/2020] [Indexed: 05/19/2023]
Abstract
The demand for face masks is increasing exponentially due to the coronavirus pandemic and issues associated with airborne particulate matter (PM). However, both conventional electrostatic- and nanosieve-based mask filters are single-use and are not degradable or recyclable, which creates serious waste problems. In addition, the former loses function under humid conditions, while the latter operates with a significant air-pressure drop and suffers from relatively fast pore blockage. Herein, a biodegradable, moisture-resistant, highly breathable, and high-performance fibrous mask filter is developed. Briefly, two biodegradable microfiber and nanofiber mats are integrated into a Janus membrane filter and then coated by cationically charged chitosan nanowhiskers. This filter is as efficient as the commercial N95 filter and removes 98.3% of 2.5 µm PM. The nanofiber physically sieves fine PM and the microfiber provides a low pressure differential of 59 Pa, which is comfortable for human breathing. In contrast to the dramatic performance decline of the commercial N95 filter when exposed to moisture, this filter exhibits negligible performance loss and is therefore multi-usable because the permanent dipoles of the chitosan adsorb ultrafine PM (e.g., nitrogen and sulfur oxides). Importantly, this filter completely decomposes within 4 weeks in composting soil.
Collapse
Affiliation(s)
- Sejin Choi
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Min Jang
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Hyeri Kim
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Giyoung Shin
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Jun Mo Koo
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Minkyung Lee
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Hye Kyeong Sung
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Youngho Eom
- Department of Polymer EngineeringPukyong National UniversityBusan48513Republic of Korea
| | - Ho‐Sung Yang
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Jonggeon Jegal
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
| | - Jeyoung Park
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
- Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Dongyeop X. Oh
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
- Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
| | - Sung Yeon Hwang
- Research Center for Bio‐Based ChemistryKorea Research Institute of Chemical Technology (KRICT)Ulsan44429Republic of Korea
- Advanced Materials and Chemical EngineeringUniversity of Science and Technology (UST)Daejeon34113Republic of Korea
| |
Collapse
|
46
|
High fidelity simulation of ultrafine PM filtration by multiscale fibrous media characterized by a combination of X-ray CT and FIB-SEM. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
47
|
Xie Y, Guo F, Mao J, Huang J, Chen Z, Jiang Y, Lai Y. Freestanding MoS2@carbonized cellulose aerogel derived from waste cotton for sustainable and highly efficient particulate matter capturing. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117571] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
48
|
Bai H, Qian X, Fan J, Shi Y, Duo Y, Guo C, Wang X. Theoretical Model of Single Fiber Efficiency and the Effect of Microstructure on Fibrous Filtration Performance: A Review. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c04400] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- He Bai
- College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387, China
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaoming Qian
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jintu Fan
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
- Institute of Textiles and Clothing, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, China
| | - Yunlong Shi
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Yongchao Duo
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Changsheng Guo
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xiaobo Wang
- School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
49
|
Formation and Photoluminescence Properties of ZnO Nanoparticles on Electrospun Nanofibers Produced by Atomic Layer Deposition. COATINGS 2020. [DOI: 10.3390/coatings10121199] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The unique combination of optical, chemical, and structural properties of one-dimensional zinc oxide (1D ZnO) makes it one of the most attractive materials in a wide range of research and applications. In the present study, 1D ZnO nanomaterials were fabricated using a combination of two independent methods: electrospinning and atomic layer deposition (ALD). The electrospinning technique was used to produce 1D electrospun fibers consisting of four types of polymers: polylactic acid (PLLA), polyvinylidene fluoride (PVDF), polyvinyl alcohol (PVA), and polyamide 6 (PA6). The ALD technology, in turn, was selected as an excellent candidate for the synthesis of a ZnO thin layer over polymer fibers for the production of 1D ZnO/polymer nanofiber composites (PLLA/ZnO, PVDF/ZnO, PVA/ZnO, PA6/ZnO). Structural and optical properties of the produced nanofibers were studied by means of scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), diffuse reflectance, and photoluminescence (PL) spectroscopy. It was found that only PVDF/ZnO nanofibers exhibit stable room temperature PL that may be the result of a higher ZnO content in the sample. In addition, PL measurements were conducted as a function of excitation power and temperature in order to establish the main PL mechanisms and parameters for the PVDF/ZnO sample, as a most promising candidate for the biophotonic application.
Collapse
|
50
|
Karim N, Afroj S, Lloyd K, Oaten LC, Andreeva DV, Carr C, Farmery AD, Kim ID, Novoselov KS. Sustainable Personal Protective Clothing for Healthcare Applications: A Review. ACS NANO 2020; 14:12313-12340. [PMID: 32866368 PMCID: PMC7518242 DOI: 10.1021/acsnano.0c05537] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/31/2020] [Indexed: 05/19/2023]
Abstract
Personal protective equipment (PPE) is critical to protect healthcare workers (HCWs) from highly infectious diseases such as COVID-19. However, hospitals have been at risk of running out of the safe and effective PPE including personal protective clothing needed to treat patients with COVID-19, due to unprecedented global demand. In addition, there are only limited manufacturing facilities of such clothing available worldwide, due to a lack of available knowledge about relevant technologies, ineffective supply chains, and stringent regulatory requirements. Therefore, there remains a clear unmet need for coordinating the actions and efforts from scientists, engineers, manufacturers, suppliers, and regulatory bodies to develop and produce safe and effective protective clothing using the technologies that are locally available around the world. In this review, we discuss currently used PPE, their quality, and the associated regulatory standards. We survey the current state-of-the-art antimicrobial functional finishes on fabrics to protect the wearer against viruses and bacteria and provide an overview of protective medical fabric manufacturing techniques, their supply chains, and the environmental impacts of current single-use synthetic fiber-based protective clothing. Finally, we discuss future research directions, which include increasing efficiency, safety, and availability of personal protective clothing worldwide without conferring environmental problems.
Collapse
Affiliation(s)
- Nazmul Karim
- Centre
for Fine Print Research, The University
of West of England, Bower Ashton, Bristol BS3 2JT, United
Kingdom
| | - Shaila Afroj
- Centre
for Fine Print Research, The University
of West of England, Bower Ashton, Bristol BS3 2JT, United
Kingdom
| | - Kate Lloyd
- Textiles
Intelligence, Village Way, Wilmslow, Cheshire SK9 2GH, United
Kingdom
| | - Laura Clarke Oaten
- Centre
for Fine Print Research, The University
of West of England, Bower Ashton, Bristol BS3 2JT, United
Kingdom
| | - Daria V. Andreeva
- Department
of Materials Science and Engineering, National
University of Singapore, 9 Engineering Drive 1, Singapore 117575
| | - Chris Carr
- Clothworkers’
Centre for Textile Materials Innovation for Healthcare, School of
Design, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Andrew D. Farmery
- Nuffield
Department of Clinical Neurosciences, The
University of Oxford, Oxford OX1 3PN, United Kingdom
| | - Il-Doo Kim
- Department
of Materials Science and Engineering, Korea
Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro,
Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kostya S. Novoselov
- Department
of Materials Science and Engineering, National
University of Singapore, 9 Engineering Drive 1, Singapore 117575
- Chongqing
2D Materials Institute, Liangjiang New
Area, Chongqing, 400714, China
| |
Collapse
|