1
|
Dutta B, Waghmare A, Das SK, Bhargava Y, Kumar A, Debnath AK, Barick KC, Hassan PA. Fluorescence tunable carbon dots for in vitro nuclear dynamics and gastrointestinal imaging in live zebrafish and their in vivo toxicity evaluation by cardio-craniofacial disfunction assessment. NANOSCALE 2025; 17:4502-4523. [PMID: 39801425 DOI: 10.1039/d4nr04077e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Sub-cellular organelle anomalies are frequently observed in diseases such as cancer. Early and precise diagnosis of these alterations can be crucial for patient outcomes. However, current diagnostic tools using conventional organic dyes or metal quantum dots face limitations, including poor biocompatibility, stringent storage conditions, limited solubility in aqueous media, and slow staining speeds. These challenges underscore the need for safer, more effective diagnostic and therapeutic solutions. In these aspects, we have developed highly photostable, biocompatible, water-dispersible carbon dots (TNCDs) with an average size of 5.5 nm using tartaric acid and ethylenediamine via a hydrothermal route. The synthesized TNCDs have shown bright blue fluorescence under the irradiation of UV-light at an excitation wavelength of 365 nm. They exhibit a quantum yield (QY) of 25.1% with maximum emission at 390 nm. A nice tri-exponential fitting of the decay curve with characteristic lifetimes of 1.52 ns, 3.05 ns and 6.11 ns for TNCDs was obtained. In vitro studies demonstrated that TNCDs have high biocompatibility (20 μg ml-1) with almost 100% cell viability and excellent nucleus targeting and staining capabilities with low background interference (with 10-12 times enhancement in fluorescence intensity). Additionally, if tagged with photosensitizers or radionuclides, TNCDs can serve as therapeutic agents in photodynamic therapy against cancer cells. Importantly, TNCDs exhibited negligible toxicity in developing zebrafish even at high concentrations (up to 400 mg L-1) as investigated by cardio and craniofacial disfunction assessment. Live organism imaging revealed that TNCDs produced aggregation-induced strong and specific green fluorescence in the gut of zebrafish larvae even at low concentrations, indicating their potential for nucleus staining and gut-specific optical imaging (at 50 mg L-1). Thus, our TNCDs represent a robust nanoplatform for cellular and whole-organism fluorescence imaging, offering both diagnostic and therapeutic potential.
Collapse
Affiliation(s)
- Bijaideep Dutta
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai - 400094, India
| | - Ashwini Waghmare
- Molecular Engineering and Imaging Lab, Department of Microbiology, Dr Harisingh Gour University (A Central University), Sagar-470003, M.P., India
| | - Sourav Kumar Das
- Radiation Biology &Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Yogesh Bhargava
- Molecular Engineering and Imaging Lab, Department of Microbiology, Dr Harisingh Gour University (A Central University), Sagar-470003, M.P., India
| | - Amit Kumar
- Radiation Biology &Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - A K Debnath
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India
| | - K C Barick
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai - 400094, India
| | - P A Hassan
- Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085, India.
- Homi Bhabha National Institute, Anushaktinagar, Mumbai - 400094, India
| |
Collapse
|
2
|
Sun J, Li H, Ouyang M, Cheng J, Xu D, Tan X, Lin Q. User-Friendly Multifunctional Red-Emissive Carbon Dots for Rapid Cell Nucleus Staining via Targeting Nuclear Proteins. Anal Chem 2024; 96:8432-8440. [PMID: 38709576 DOI: 10.1021/acs.analchem.3c05922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cytoarchitectural staining is of great importance in disease diagnosis and cell biology research. This study developed user-friendly multifunctional red-emissive carbon dots (R-CDs) for rapid cell nucleus staining via targeting nuclear proteins. R-CDs, simply prepared by electrochemical treatment of 1,2,4-benzenetriamine, exhibit strong emission at 635 nm when excited at 507 nm. The R-CDs can rapidly stain the nucleus of human SH-SY5Y, HepG2, and HUH-7 cells with a high signal-to-noise ratio owing to fluorescence enhancement after entering the nucleus. Compared to conventional cytosolic dyes such as Hoechst and DAPI, R-CDs are cheaper, more highly dispersed in water, and more stable (requiring no stringent storage conditions). The R-CDs show stable optical properties with insignificant photobleaching over 7 days and salt resistance up to 2 M of NaCl. More importantly, R-CDs, possessing a positive charge, allow rapid staining of live cells (3 min) and dead cells (10 s) in saline. According to kinetic variation, R-CDs can distinguish live cells from dead cells. Staining exhibits high efficiency in onion epidermal cells, Aspergillus niger, Caenorhabditis elegans, and human spermatozoa. The mechanism for efficient staining is based on their fast accumulation in the nucleus due to their small size and positive charge and strong interaction with nuclear proteins at amino acid residues of histidine and arginine, resulting in fluorescence enhancement by dozens of times. The developed R-CDs do not bind to DNA and would not cause genetic damage and will find various safe applications in biological and medical fields.
Collapse
Affiliation(s)
- Jingbo Sun
- National Engineering Laboratory for Rice and Byproducts Further Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hongchen Li
- National Engineering Laboratory for Rice and Byproducts Further Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Min Ouyang
- National Engineering Laboratory for Rice and Byproducts Further Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jing Cheng
- Technology Center of Changsha Customs, Hunan Academy of Inspection and Quarantine, Changsha 410004, China
| | - Dong Xu
- National Engineering Laboratory for Rice and Byproducts Further Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaofeng Tan
- The Key Lab of Cultivation and Protection for Non-Wood Forest Trees of Education Ministry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and Byproducts Further Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
3
|
Lin L, Bao Z, Jiang P, Xu Z, Shi B, Xu G, Wang D, Wei X, Gu B. Superior biocompatible carbon dots for dynamic fluorescence imaging of nucleoli in living cells. Biomater Sci 2023; 11:2935-2949. [PMID: 36912088 DOI: 10.1039/d2bm02139k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The nucleolus is a newly developed and promising target for cancer diagnosis and therapy, and its imaging is extremely significant for fundamental research and clinical applications. The unique feature, i.e., high resolution at the subcellular level, makes the fluorescence imaging method a powerful tool for nucleolus imaging. However, the fluorescence imaging of nucleoli in living cells is restricted by the limited availability of fluorescent agents with specific nucleolus-targeting capability and superior biocompatibility. Here, promising carbon dots (CDs) with intrinsic nucleolus-targeting capability were synthesized, characterized and employed for dynamic fluorescence imaging of nucleoli in living cells. The CDs exhibit a high fluorescence quantum yield of 0.2, excellent specificity and photostability, and superior biocompatibility, which were systematically demonstrated at the gene, cellular and animal levels and confirmed by their biological effects on embryonic development. All these features enabled CDs to light up the nucleoli for a long time with a high signal-to-noise ratio in living cells and monitor the nucleolar dynamics of malignant cells in camptothecin (CPT) based chemotherapy. Their excellent optical and biological features as well as general nucleolus-targeting capability endow CDs with great potential for future translational research.
Collapse
Affiliation(s)
- Liyun Lin
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Zhouzhou Bao
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Pengfei Jiang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| | - Zhourui Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Bo Shi
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518055, China.
| | - Dan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xunbin Wei
- Biomedical Engineering Department and International Cancer Institute, Peking University, Beijing 100081, China.
| | - Bobo Gu
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
4
|
Wang Y, Liu S, Wang H, Zhao Y, Zhang XD. Neuron devices: emerging prospects in neural interfaces and recognition. MICROSYSTEMS & NANOENGINEERING 2022; 8:128. [PMID: 36507057 PMCID: PMC9726942 DOI: 10.1038/s41378-022-00453-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 06/17/2023]
Abstract
Neuron interface devices can be used to explore the relationships between neuron firing and synaptic transmission, as well as to diagnose and treat neurological disorders, such as epilepsy and Alzheimer's disease. It is crucial to exploit neuron devices with high sensitivity, high biocompatibility, multifunctional integration and high-speed data processing. During the past decades, researchers have made significant progress in neural electrodes, artificial sensory neuron devices, and neuromorphic optic neuron devices. The main part of the review is divided into two sections, providing an overview of recently developed neuron interface devices for recording electrophysiological signals, as well as applications in neuromodulation, simulating the human sensory system, and achieving memory and recognition. We mainly discussed the development, characteristics, functional mechanisms, and applications of neuron devices and elucidated several key points for clinical translation. The present review highlights the advances in neuron devices on brain-computer interfaces and neuroscience research.
Collapse
Affiliation(s)
- Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Shuangjie Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Yue Zhao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072 Tianjin, China
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, 300350 Tianjin, China
| |
Collapse
|
5
|
Esthar S, Dhivya R, Ramesh U, Rajesh J, Webster TJ, Annaraj J, Rajagopal G. Biocompatible, Biodegradable, and Improved Fluorescent Silicon Quantum Dots for Zebrafish Imaging. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
One of the greatest benefits of nanomedicine elucidated to date includes the non-invasive tracking and monitoring of living organisms by the selective uptake of harmless metallic nanoparticles. Several nanoscale probes have been employed for biomolecular imaging. Among them, fluorescent
nanoscale silicon materials have been recently established with a strong and safe potential for bioimaging and biosensing applications due to their bright fluorescence coupled with strong photostability, biocompatibility and negligible toxicity. Herein, we developed high-quality silicon nanomaterials
(4–5 nm; SiNPs) as biological fluorescent probes for bioimaging of living organisms through an easy aquatic synthesis method with a quantum yield of ∼8%. In this regard, we report that the presently synthesized SiNPs-based sensors/probes are attractive materials for solvent-based
fluorescence measurements and are biocompatible, non-toxic, highly photo-stable and pH stable. Most importantly, their fluorescence lifetime is much longer than that of native probes in living cells. Thus, these presently formulated SiNPs are improved fluorescent probes for in vivo
biological imaging in zebra fish embryos as well as numerous other living organisms and, thus, should be further studied.
Collapse
|
6
|
Liu H, Guo J, Aryee AA, Hua L, Sun Y, Li Z, Liu J, Tang W. Lighting up Individual Organelles With Fluorescent Carbon Dots. Front Chem 2021; 9:784851. [PMID: 34900943 PMCID: PMC8660688 DOI: 10.3389/fchem.2021.784851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Cell organelles play crucial roles in the normal functioning of an organism, therefore the disruption of their operation is associated with diseases and in some cases death. Thus, the detection and monitoring of the activities within these organelles are of great importance. Several probes based on graphene oxide, small molecules, and other nanomaterials have been developed for targeting specific organelles. Among these materials, organelle-targeted fluorescent probes based on carbon dots have attracted substantial attention in recent years owing to their superior characteristics, which include facile synthesis, good photostability, low cytotoxicity, and high selectivity. The ability of these probes to target specific organelles enables researchers to obtain valuable information for understanding the processes involved in their functions and/or malfunctions and may also aid in effective targeted drug delivery. This review highlights recently reported organelle-specific fluorescent probes based on carbon dots. The precursors of these carbon dots are also discussed because studies have shown that many of the intrinsic properties of these probes originate from the precursor used. An overview of the functions of the discussed organelles, the types of probes used, and their advantages and limitations are also provided. Organelles such as the mitochondria, nucleus, lysosomes, and endoplasmic reticulum have been the central focus of research to date, whereas the Golgi body, centrosome, vesicles, and others have received comparatively little attention. It is therefore the hope of the authors that further studies will be conducted in an effort to design probes with the ability to localize within these less studied organelles so as to fully elucidate the mechanisms underlying their function.
Collapse
Affiliation(s)
- Haifang Liu
- Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiancheng Guo
- Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Linlin Hua
- Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanqiang Sun
- College of Chemistry of Zhengzhou University, Zhengzhou, China
| | - Zhaohui Li
- College of Chemistry of Zhengzhou University, Zhengzhou, China
| | - Jianbo Liu
- Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenxue Tang
- Precision Medicine Center of the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
7
|
He H, Chen X, Feng Z, Liu L, Wang Q, Bi S. Nanoscopic Imaging of Nucleolar Stress Enabled by Protein-Mimicking Carbon Dots. NANO LETTERS 2021; 21:5689-5696. [PMID: 34181434 DOI: 10.1021/acs.nanolett.1c01420] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The nucleolus is a central hub for coordinating cellular stress responses during cancer development and treatment. Accurate identification of nucleolar stress response is crucially desired for nucleolus-based diagnostics and therapeutics but technically challenging due to the need to address the ultrastructural analysis. Here, we report a protein-like CD with the integration of fluorescent blinking domains and RNA-binding motifs, which offers the ability to perform enhanced super-resolution imaging of the nucleolar ultrastructure. This image allows extraction of multidimensional information from the nucleolus for accurate distinguishment of different cells from the same cell types. Furthermore, we demonstrate for the first time this CD-depicted nucleolar ultrastructure as a sensitive hallmark to identify and discriminate subtle responses to various stressors as well as to afford RNA-related information that has been inaccessible by conventional immunofluorescence methods. This protein-mimicking CD could become a broadly useful probe for nucleolar stress studies in cell diagnostics and therapeutics.
Collapse
Affiliation(s)
- Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaoliang Chen
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Zhenzhen Feng
- Technical Center of Qingdao Customs District, Qingdao 266500, China
| | - Lihua Liu
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Qian Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| | - Simin Bi
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
8
|
Zhang L, Wang Z, Wang H, Dong W, Liu Y, Hu Q, Shuang S, Dong C, Gong X. Nitrogen-doped carbon dots for wash-free imaging of nucleolus orientation. Mikrochim Acta 2021; 188:183. [PMID: 33970343 DOI: 10.1007/s00604-021-04837-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/26/2021] [Indexed: 11/26/2022]
Abstract
Carbon dots (CDs) are a rising star in the field of cellular imaging, especially cytoplasmic imaging, attributing to the super-stable optical performance and ultra-low biological toxicity. Nucleolus can accurately reflect the expression state of a cell and is strongly linked to the occurrence and development of many diseases, so exploring bran-new CDs for nucleolus-orientation imaging with no-wash technology has important theoretical value and practical significance. Herein, nitrogen-doped carbon dots (N-CDs) with green fluorescence (the relative fluorescence quantum yield of 24.4%) was fabricated by the hydrothermal treatment of m-phenylenediamine and p-aminobenzoic acid. The N-CDs possess small size, bright green fluorescence, abundant surface functional groups, excellent fluorescence stability and good biocompatibility, facilitating that the N-CDs are an excellent imaging reagent for cellular imaging. N-CDs can particularly bind to RNA in nucleoli to enhance their fluorescence, which ensures that the N-CDs can be used in nucleolus-orientation imaging with high specificity and wash-free technique. This study demonstrates that the N-CDs have a significant feasibility to be used for nucleolus-orientation imaging in biomedical analysis and clinical diagnostic applications.
Collapse
Affiliation(s)
- Li Zhang
- Institute of Environmental Science, and Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Zihan Wang
- Institute of Environmental Science, and Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Huiping Wang
- Institute of Environmental Science, and Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Wenjuan Dong
- Institute of Environmental Science, and Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Yang Liu
- Institute of Environmental Science, and Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Qin Hu
- College of Food Chemistry and Engineering, Yangzhou University, Yangzhou, 225001, People's Republic of China
| | - Shaomin Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, People's Republic of China
| | - Chuan Dong
- Institute of Environmental Science, and Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, People's Republic of China.
| | - Xiaojuan Gong
- Institute of Environmental Science, and Shanxi Laboratory for Yellow River, Shanxi University, Taiyuan, 030006, People's Republic of China.
| |
Collapse
|
9
|
Sajjadi M, Nasrollahzadeh M, Jaleh B, Soufi GJ, Iravani S. Carbon-based nanomaterials for targeted cancer nanotherapy: recent trends and future prospects. J Drug Target 2021; 29:716-741. [PMID: 33566719 DOI: 10.1080/1061186x.2021.1886301] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Carbon-based nanomaterials are becoming attractive materials due to their unique structural dimensions and promising mechanical, electrical, thermal, optical and chemical characteristics. Carbon nanotubes, graphene, graphene oxide, carbon and graphene quantum dots have numerous applications in diverse areas, including biosensing, drug/gene delivery, tissue engineering, imaging, regenerative medicine, diagnosis, and cancer therapy. Cancer remains one of the major health problems all over the world, and several therapeutic approaches are focussed on designing targeted anticancer drug delivery nanosystems by applying benign and less hazardous resources with high biocompatibility, ease of functionalization, remarkable targeted therapy issues, and low adverse effects. This review highlights the recent development on these carbon based-nanomaterials in the field of targeted cancer therapy and discusses their possible and promising diagnostic and therapeutic applications for the treatment of cancers.
Collapse
Affiliation(s)
- Mohaddeseh Sajjadi
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran
| | | | - Babak Jaleh
- Department of Physics, Bu-Ali Sina University, Hamedan, Iran
| | | | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Yin X, Sun Y, Yang R, Qu L, Li Z. RNA-responsive fluorescent carbon dots for fast and wash-free nucleolus imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 237:118381. [PMID: 32334324 DOI: 10.1016/j.saa.2020.118381] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
RNA as a carrier of genetic information plays a critical role in various physiological processes. RNA-rich nucleolus is usually employed as an important biomarker for many malignant diseases. Herein, RNA-responsive fluorescent carbon dots (CDs) were synthesized by a simple microwave method. Due to the presence of cationic benzothiazolium groups in the CDs, a "turn-on" fluorescence signal was achieved between CDs and RNA. The CDs exhibit excellent RNA selectivity and a good linear relationship with a detection limit of 0.62 μg/mL. The small particle size, polarity sensitivity and RNA response behavior of CDs realized fast and wash-free nucleolus imaging effectively. Overall, these CDs provide a powerful potential tool for monitoring cell nucleus activity and elucidating RNA dynamics.
Collapse
Affiliation(s)
- Xiaohui Yin
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanqiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China.
| | - Ran Yang
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Lingbo Qu
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohui Li
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
11
|
Shi X, Meng H, Sun Y, Qu L, Lin Y, Li Z, Du D. Far-Red to Near-Infrared Carbon Dots: Preparation and Applications in Biotechnology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901507. [PMID: 31168960 DOI: 10.1002/smll.201901507] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/08/2019] [Indexed: 05/02/2023]
Abstract
As novel fluorescent nanomaterials, carbon dots (CDs) exhibit excellent photostability, good biocompatibility, and high quantum yield (QY). Their superior properties make them promising candidates for biomedical assays and therapy. Among them, the red-emission (>600 nm) CDs have attracted increasing attention in the past years due to their little damage to the biological matrix, deep tissue penetration, and minimum autofluorescence background of biosamples. This Review, summarizes the recent progress of far-red to near-infrared (NIR) CDs from the preparation and their biological applications. The challenges in designing far-red and NIR CDs and their further applications in biomedical fields are also discussed.
Collapse
Affiliation(s)
- Xinxin Shi
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Hongmin Meng
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yuanqiang Sun
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Lingbo Qu
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Zhaohui Li
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
12
|
Zuo G, Hu J, Wang Y, Xie A, Dong W. Dramatic red fluorescence enhancement and emission red shift of carbon dots following Zn/ZnO decoration. LUMINESCENCE 2019; 34:759-766. [DOI: 10.1002/bio.3671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/16/2019] [Accepted: 05/31/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Gancheng Zuo
- School of Chemical EngineeringNanjing University of Science & Technology Nanjing China
| | - Jiangsheng Hu
- School of Chemical EngineeringNanjing University of Science & Technology Nanjing China
- Key Laboratory of Graphene Technologies and Applications of Zhejiang ProvinceNingbo Institute of Materials Technology & Engineering (NIMTE), Chinese Academy of Sciences Ningbo China
| | - Yuting Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the EnvironmentNanjing University Nanjing China
| | - Aming Xie
- School of Mechanical EngineeringNanjing University of Science & Technology Nanjing China
| | - Wei Dong
- School of Chemical EngineeringNanjing University of Science & Technology Nanjing China
| |
Collapse
|
13
|
Zhu Z, Li Q, Li P, Xun X, Zheng L, Ning D, Su M. Surface charge controlled nucleoli selective staining with nanoscale carbon dots. PLoS One 2019; 14:e0216230. [PMID: 31150413 PMCID: PMC6544201 DOI: 10.1371/journal.pone.0216230] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/16/2019] [Indexed: 02/06/2023] Open
Abstract
Organelle selective imaging can reveal structural and functional characters of cells undergoing external stimuli, and is considered critical in revealing biological fundamentals, designing targeted delivery system, and screening potential drugs and therapeutics. This paper describes the nucleoli targeting ability of nanoscale carbon dots (including nanodiamond) that are hydrothermally made with controlled surface charges. The surface charges of carbon dots are controlled in the range of -17.9 to -2.84 mV by changing the molar ratio of two precursors, citric acid (CA) and ethylenediamine (EDA). All carbon dots samples show strong fluorescence under wide excitation wavelength, and samples with both negative and positve charges show strong fluorescent contrast from stained nucleoli. The nucleoli selective imaging of live cell has been confirmed with Hoechst staining and nucleoli specific staining (SYTO RNA-select green), and is explained as surface charge heterogeneity on carbon dots. Carbon dots with both negative and positive charges have better ability to penetrate cell and nucleus membranes, and the charge heterogeneity helps carbon dots to bind preferentially to nucleoli, where the electrostatic environment is favored.
Collapse
Affiliation(s)
- Zhijun Zhu
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Qingxuan Li
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
| | - Ping Li
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- School of Chemistry and Materials, Ningde Normal University, Ningde, Fujian, P. R. China
| | - Xiaojie Xun
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, and Chinese Academy of Science, Zhejiang, P. R. China
| | - Liyuan Zheng
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, and Chinese Academy of Science, Zhejiang, P. R. China
| | - Dandan Ning
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, and Chinese Academy of Science, Zhejiang, P. R. China
| | - Ming Su
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, United States of America
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, and Chinese Academy of Science, Zhejiang, P. R. China
| |
Collapse
|
14
|
Haider T, Tiwari R, Vyas SP, Soni V. Molecular determinants as therapeutic targets in cancer chemotherapy: An update. Pharmacol Ther 2019; 200:85-109. [PMID: 31047907 DOI: 10.1016/j.pharmthera.2019.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023]
Abstract
It is well known that cancer cells are heterogeneous in nature and very distinct from their normal counterparts. Commonly these cancer cells possess different and complementary metabolic profile, microenvironment and adopting behaviors to generate more ATPs to fulfill the requirement of high energy that is further utilized in the production of proteins and other essentials required for cell survival, growth, and proliferation. These differences create many challenges in cancer treatments. On the contrary, such situations of metabolic differences between cancer and normal cells may be expected a promising strategy for treatment purpose. In this article, we focus on the molecular determinants of oncogene-specific sub-organelles such as potential metabolites of mitochondria (reactive oxygen species, apoptotic proteins, cytochrome c, caspase 9, caspase 3, etc.), endoplasmic reticulum (unfolded protein response, PKR-like ER kinase, C/EBP homologous protein, etc.), nucleus (nucleolar phosphoprotein, nuclear pore complex, nuclear localization signal), lysosome (microenvironment, etc.) and plasma membrane phospholipids, etc. that might be exploited for the targeted delivery of anti-cancer drugs for therapeutic benefits. This review will help to understand the various targets of subcellular organelles at molecular levels. In the future, this molecular level understanding may be combined with the genomic profile of cancer for the development of the molecularly guided or personalized therapeutics for complete eradication of cancer.
Collapse
Affiliation(s)
- Tanweer Haider
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Rahul Tiwari
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Suresh Prasad Vyas
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, Madhya Pradesh 470003, India.
| |
Collapse
|
15
|
Abstract
Carbon nanodots (CNDs) is the newest member of carbon-based nanomaterials and one of the most promising for the development of new, advanced applications. Owing to their unique and unparalleled physicochemical and photoluminescent properties, they are considered to be a rising star among nanomaterials. During the last decade, many applications have been developed based on CNDs. Among others, they have been used as bioimaging agents to label cells and tissues. In this review, we will discuss the advancements in the applications of CNDs in in the field of imaging, in all types of organisms (i.e., prokaryotes, eukaryotes, and animals). Selective imaging of one type of cells over another, imaging of (bio)molecules inside cells and tumor-targeting imaging are some of the studies that will be discussed hereafter. We hope that this review will assist researchers with obtaining a holistic view of the developed applications and hit on new ideas so that more advanced applications can be developed in the near future.
Collapse
|
16
|
A novel lipid droplets-targeting ratiometric fluorescence probe for hypochlorous acid in living cells. Talanta 2019; 194:308-313. [DOI: 10.1016/j.talanta.2018.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/29/2018] [Accepted: 10/07/2018] [Indexed: 01/15/2023]
|
17
|
Li H, Zhang M, Song Y, Wang H, Liu C, Fu Y, Huang H, Liu Y, Kang Z. Multifunctional carbon dot for lifetime thermal sensing, nucleolus imaging and antialgal activity. J Mater Chem B 2018; 6:5708-5717. [PMID: 32254977 DOI: 10.1039/c8tb01751d] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional carbon dots (CDs) with lifetime thermal sensing, nucleolus imaging, and antialgal activity properties were synthesized directly from ascorbic acid aqueous solution by a one-step electrochemical method at room temperature. The as-prepared CDs are responsive to temperature and exhibit an accurate linear response of fluorescence intensity vs. temperature (20-100 °C). These CDs can enter a cell and nucleolus, adsorb on the nucleic acids (DNA and RNA) and the fluorescence intensity of CDs is increased by the adsorption of nucleic acids. In addition, the CDs can inhibit the activity of RuBisCO in Anabaena sp., leading to reducing the growth of Anabaena sp. All these properties make the CDs serve as effective fluorescence-based nanothermometers, nucleolus probes, and antialgal agents.
Collapse
Affiliation(s)
- Hao Li
- Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bian P, Zhang J, Wang J, Yang J, Wang J, Liu H, Sun Y, Li M, Zhang XD. Enhanced catalysis of ultrasmall Au-MoS 2 clusters against reactive oxygen species for radiation protection. Sci Bull (Beijing) 2018; 63:925-934. [PMID: 36658974 DOI: 10.1016/j.scib.2018.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/07/2018] [Accepted: 04/24/2018] [Indexed: 01/21/2023]
Abstract
Ionizing radiation produces excessive reactive oxygen species (ROS) which impose detrimental effects on biological systems. Thus, it is important to explore clinically safe and efficacious radioprotection agents to scavenge ROS and reduce the risks of radiotherapy. Recently, emerging catalytic nanomaterials such as sulfide nanomaterials have shown capability of clearing ROS in vivo by unique electron transfers between atoms, but their catalytic activities are yet suboptimal. As such, there is an unmet need to improve catalytic properties for stronger antioxidant activities and radiation protection. Herein, we prepared ultrasmall Au-MoS2 clusters (∼2.5 nm) and they showed enhanced catalytic properties via gold intercalation facilitating increased active sites and synergistic effects. Electrocatalysis results revealed that the catalytic activity of Au-MoS2 towards H2O2 was superior to ultrasmall MoS2 without Au. As a result, we found that improving the electrocatalytic property of Au-MoS2 can effectively enhance corresponding antioxidant activities and radioprotection effects in vivo. In addition, Au-MoS2 also showed significant radioprotection in vitro and dramatically reduced the excess of radiation-induced adverse ROS. It also rescued radiation-induced DNA damages and protected the bone marrow hematopoietic system from ionizing radiation.
Collapse
Affiliation(s)
- Peixian Bian
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Jinxuan Zhang
- Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junying Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Jingya Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Yuanming Sun
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Meixian Li
- Institute of Analytical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Xiao-Dong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
19
|
Chao XJ, Wang KN, Sun LL, Cao Q, Ke ZF, Cao DX, Mao ZW. Cationic Organochalcogen with Monomer/Excimer Emissions for Dual-Color Live Cell Imaging and Cell Damage Diagnosis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13264-13273. [PMID: 29616788 DOI: 10.1021/acsami.7b12521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Studies on the development of fluorescent organic molecules with different emission colors for imaging of organelles and their biomedical application are gaining lots of focus recently. Here, we report two cationic organochalcogens 1 and 2, both of which exhibit very weak green emission (Φ1 = 0.12%; Φ2 = 0.09%) in dilute solution as monomers, but remarkably enhanced green emission upon interaction with nucleic acids and large red-shifted emission in aggregate state by the formation of excimers at high concentration. More interestingly, the monomer emission and excimer-like emission can be used for dual color imaging of different organelles. Upon passively diffusing into cells, both probes selectively stain nucleoli with strong green emission upon 488 nm excitation, whereas upon 405 nm excitation, a completely different stain pattern by staining lysosomes (for 1) or mitochondria (for 2) with distinct red emission is observed because of the highly concentrated accumulation in these organelles. Studies on the mechanism of the accumulation in lysosomes (for 1) or mitochondria (for 2) found that the accumulations of the probes are dependent on the membrane permeabilization, which make the probes have great potential in diagnosing cell damage by sensing lysosomal or mitochondrial membrane permeabilization. The study is demonstrative, for the first time, of two cationic molecules for dual-color imaging nucleoli and lysosomes (1)/mitochondria (2) simultaneously in live cell based on monomer and excimer-like emission, respectively, and more importantly, for diagnosing cell damage.
Collapse
Affiliation(s)
- Xi-Juan Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Li-Li Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Zhuo-Feng Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Du-Xia Cao
- School of Materials Science and Engineering , University of Jinan , Jinan 250022 Shandong , China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
- College of Materials and Energy , South China Agricultural University , Guangzhou 510642 , China
| |
Collapse
|
20
|
Hua XW, Bao YW, Wu FG. Fluorescent Carbon Quantum Dots with Intrinsic Nucleolus-Targeting Capability for Nucleolus Imaging and Enhanced Cytosolic and Nuclear Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10664-10677. [PMID: 29508612 DOI: 10.1021/acsami.7b19549] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nucleolus tracking and nucleus-targeted photodynamic therapy are attracting increasing attention due to the importance of nucleolus and the sensitivity of nucleus to various therapeutic stimuli. Herein, a new class of multifunctional fluorescent carbon quantum dots (or carbon dots, CDs) synthesized via the one-pot hydrothermal reaction of m-phenylenediamine and l-cysteine was reported to effectively target nucleolus. The as-prepared CDs possess superior properties, such as low-cost and facile synthesis, good water dispersibility, various surface groups for further modifications, prominent photostability, excellent compatibility, and rapid/convenient/wash-free staining procedures. Besides, as compared with SYTO RNASelect (a commonly used commercial dye for nucleolus imaging) that can only image nucleolus in fixed cells, the CDs can realize high-quality nucleolus imaging in not only fixed cells but also living cells, allowing the real-time tracking of nucleolus-related biological behaviors. Furthermore, after conjugating with protoporphyrin IX (PpIX), a commonly used photosensitizer, the resultant CD-PpIX nanomissiles showed remarkably increased cellular uptake and nucleus-targeting properties and achieved greatly enhanced phototherapeutic efficiency because the nuclei show poor tolerance to reactive oxygen species produced during the photodynamic therapy. The in vivo experiments revealed that the negatively charged CD-PpIX nanomissiles could rapidly and specifically target a tumor site after intravenous injection and cause efficient tumor ablation with no toxic side effects after laser irradiation. It is believed that the present CD-based nanosystem will hold great potential in nucleolus imaging and nucleus-targeted drug delivery and cancer therapy.
Collapse
|
21
|
Qiao Y, Liu Y, Liu H, Li Y, Long W, Wang J, Mu X, Chen J, Liu H, Bai X, Liu L, Sun YM, Liu Q, Guo M, Zhang XD. Fluorescence enhancement of gold nanoclustersviaZn doping for biomedical applications. RSC Adv 2018; 8:7396-7402. [PMID: 35539114 PMCID: PMC9078413 DOI: 10.1039/c7ra13072d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/25/2018] [Indexed: 11/21/2022] Open
Abstract
Gold nanoclusters (NCs) have been widely used in bioimaging and cancer therapy due to their unique electronic structures and tunable luminescence. However, their weak fluorescence prevents potential biomedical application, and thus it is necessary to develop an effective route to enhance the fluorescence of gold NCs. In this work, we report the fluorescence enhancement of ultrasmall GSH-protected Au NCs by Zn atom doping. The fluorescence signal of Zn-doped Au NCs shows approximately 5-fold enhancement compared to pure Au NCs. Density functional theory (DFT) calculation shows that Zn doping can enhance the electronic states of the highest occupied molecular orbital (HOMO), leading to enhancement of visible optical transitions. In vitro experiments show that AuZn alloy NCs can enhance the cancer radiotherapy via producing reactive oxygen species (ROS) and don't cause significant cytotoxicity. In vivo imaging indicates AuZn alloy NCs have significant passive targeting capability with high tumor uptake. Moreover, nearly 80% of GSH-protected AuZn alloy NCs can be rapidly eliminated via urine excretion. Fluorescence enhancement of gold nanoclusters via Zn doping.![]()
Collapse
|
22
|
Du W, Wang H, Zhu Y, Tian X, Zhang M, Zhang Q, De Souza SC, Wang A, Zhou H, Zhang Z, Wu J, Tian Y. Highly Hydrophilic, Two-photon Fluorescent Terpyridine Derivatives Containing Quaternary Ammonium for Specific Recognizing Ribosome RNA in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:31424-31432. [PMID: 28762271 DOI: 10.1021/acsami.7b08068] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A two-photon fluorescent probe (J1) that selectively stains intracellular nucleolar RNA was screened from three water-soluble terpyridine derivatives (J1-J3) with quaternary ammonium groups. The photophysical properties of J1-J3 were systemically investigated both experimentally and theoretically, revealing that J1-J3 possess large Stokes shifts and the two-photon absorption action cross sections range from 38 to 97 GM in the near-infrared region. This indicates that J1 could specifically stain nucleoli by targeting the nucleolar rRNA from the recognition experiments in vitro, the two-photon imaging experiments, and the stimulated emission depletion in vivo. The mechanism of action in which J1 binds to the nucleolar rRNA was researched via both experiments and molecular modeling. The high binding selectivity of J1 to nucleolar RNA over cytosolic RNA made this probe a potential candidate to visualize rRNA probe in the living cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aidong Wang
- School of Chemistry and Chemical Engineering, Huangshan College, Huangshan University , Huangshan 245041, P. R. China
| | | | | | | | | |
Collapse
|
23
|
Peng Z, Han X, Li S, Al-Youbi AO, Bashammakh AS, El-Shahawi MS, Leblanc RM. Carbon dots: Biomacromolecule interaction, bioimaging and nanomedicine. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.06.001] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
24
|
Mu X, Wang JY, Bai X, Xu F, Liu H, Yang J, Jing Y, Liu L, Xue X, Dai H, Liu Q, Sun YM, Liu C, Zhang XD. Black Phosphorus Quantum Dot Induced Oxidative Stress and Toxicity in Living Cells and Mice. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20399-20409. [PMID: 28553710 DOI: 10.1021/acsami.7b02900] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Black phosphorus (BP), as an emerging successor to layered two-dimensional materials, has attracted extensive interest in cancer therapy. Toxicological studies on BP are of great importance for potential biomedical applications, yet not systemically explored. Herein, toxicity and oxidative stress of BP quantum dots (BPQDs) at cellular, tissue, and whole-body levels are evaluated by performing the systemic in vivo and in vitro experiments. In vitro investigations show that BPQDs at high concentration (200 μg/mL) exhibit significant apoptotic effects on HeLa cells. In vivo investigations indicate that oxidative stress, including lipid peroxidation, reduction of catalase activity, DNA breaks, and bone marrow nucleated cells (BMNC) damage, can be induced by BPQDs transiently but recovered gradually to healthy levels. No apparent pathological damages are observed in all organs, especially in the spleen and kidneys, during the 30-day period. This work clearly shows that BPQDs can cause acute toxicities by oxidative stress responses, but the inflammatory reactions can be recovered gradually with time for up to 30 days. Thus, BPQDs do not give rise to long-term appreciable toxicological responses.
Collapse
Affiliation(s)
- Xiaoyu Mu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University , Tianjin 300350, China
| | - Jun-Ying Wang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University , Tianjin 300350, China
| | - Xueting Bai
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University , Tianjin 300350, China
| | - Fujuan Xu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University , Tianjin 300350, China
| | - Haixia Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University , Tianjin 300350, China
| | - Jiang Yang
- Environment, Energy and Natural Resources Center, Department of Environmental Science and Engineering, Fudan University , Shanghai 200433, China
| | - Yaqi Jing
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University , Tianjin 300350, China
| | - Lingfang Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University , Tianjin 300350, China
| | - Xuhui Xue
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Haitao Dai
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University , Tianjin 300350, China
| | - Qiang Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Yuan-Ming Sun
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192, China
| | - Changlong Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University , Tianjin 300350, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University , Tianjin 300350, China
- Tianjin Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| |
Collapse
|
25
|
Bai X, Wang J, Mu X, Yang J, Liu H, Xu F, Jing Y, Liu L, Xue X, Dai H, Liu Q, Sun YM, Liu C, Zhang XD. Ultrasmall WS2 Quantum Dots with Visible Fluorescence for Protection of Cells and Animal Models from Radiation-Induced Damages. ACS Biomater Sci Eng 2017; 3:460-470. [DOI: 10.1021/acsbiomaterials.6b00714] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xueting Bai
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
| | - Junying Wang
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
| | - Xiaoyu Mu
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
| | - Jiang Yang
- Environment,
Energy and Natural Resources Center, Department of Environmental Science
and Engineering, Fudan University, No. 220, Handan Road, Shanghai 200433, China
| | - Haixia Liu
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
| | - Fujuan Xu
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
| | - Yaqi Jing
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
| | - Lingfang Liu
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
| | - Xuhui Xue
- Tianjin
Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation
Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Haitao Dai
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
| | - Qiang Liu
- Tianjin
Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation
Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yuan-Ming Sun
- Tianjin
Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation
Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Changlong Liu
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
| | - Xiao-Dong Zhang
- Tianjin
Key Laboratory of Low Dimensional Materials Physics and Preparing
Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin 300350, China
- Tianjin Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|