1
|
Feng Y, Liu Y, Zhang A, Zhang C, Bo Z. Amphiphilic Photosensitizer Based on Benzothioxanthene: Exploring Aggregation-Induced Enhancement of Reactive Oxygen Species Generation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25182-25192. [PMID: 40249947 DOI: 10.1021/acsami.5c04974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
The application of photosensitizers has long been hindered by complex synthesis routes and poor water solubility. In this study, we report novel benzothioxene-based photosensitizers with significant improvements in both solubility and photodynamic efficiency. Among them, the amphiphilic molecule QA-BTXI stands out, offering exceptional water solubility and pronounced aggregation-induced enhancement of reactive oxygen species generation. At a low concentration of 25 μM, QA-BTXI exhibits potent antibacterial activity against Escherichia coli and Staphylococcus aureus. Additionally, QA-BTXI is synthesized in a cost-effective manner with 82% yield and a straightforward purification process. These findings present a promising approach to developing next-generation photosensitizers with broad potential for large-scale production and practical applications.
Collapse
Affiliation(s)
- Yujie Feng
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Yahui Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Andong Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Changdong Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhishan Bo
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
2
|
Jiokeng SLZ, Matemb Ma Ntep TJ, Fetzer MNA, Strothmann T, Fotsop CG, Kenfack Tonle I, Janiak C. Efficient Electrochemical Lead Detection by a Histidine-Grafted Metal-Organic Framework MOF-808 Electrode Material. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2509-2521. [PMID: 38170818 DOI: 10.1021/acsami.3c15931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
As the excessive presence of heavy metals in the environment significantly affects human health, it becomes necessary to develop efficient, selective, and sensitive methods for their detection. In this study, a novel electrochemical sensor for the detection of Pb2+ ions is described. The proposed sensor is based on a glassy carbon electrode (GCE) modified by a thin film of histidine-grafted metal-organic framework (MOF-808-His). The MOF-808 was obtained solvothermally, and then postsynthetically modified by substituting the coordinated acetate with histidinate. By electrochemistry, the MOF-808-His-modified GCE demonstrated high charge selectivity, while electrochemical impedance spectroscopy (EIS) and kinetic studies gave a lower charge transfer resistance (4196 Ω) and a better standard heterogeneous electron transfer rate constant (1.80 × 10-5 cm s-1) on MOF-808-modified GCE. These results indicated a swift and direct electron transfer rate from [Fe(CN)6]3-/4- to the electrode surface. Using square wave anodic stripping voltammetry (SWASV), the rapid and highly sensitive determination of Pb2+ was achieved on MOF-808-His-modified GCE. By optimizing the accumulation-detection parameters including pH of the detection medium, deposition time and potential, and concentration, a remarkable limit of detection (LoD, based on a signal-to-noise ratio of 3) of (1.12 × 10-10 ± 0.10 × 10-10) mol L-1 was obtained, with a sensitivity of (9.6 ± 0.1) μA L μmol-1. After interference and stability studies, the MOF-808-His-modified GCE was applied to the detection of Pb2+ in a tap water sample with a concentration of 10 μmol L-1 Pb2+.
Collapse
Affiliation(s)
- Sherman Lesly Zambou Jiokeng
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, P.O. Box 67, 00237 Dschang, Cameroon
| | - Tobie J Matemb Ma Ntep
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Marcus N A Fetzer
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Till Strothmann
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| | - Cyrille G Fotsop
- Institute of Chemistry, Faculty of Process and Systems Engineering, Universität Platz 2, 39106 Magdeburg, Germany
| | - Ignas Kenfack Tonle
- Electrochemistry and Chemistry of Materials, Department of Chemistry, University of Dschang, P.O. Box 67, 00237 Dschang, Cameroon
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-Heine-Universität Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
3
|
Lu XL, Shao JC, Chi HZ, Zhang W, Qin H. Self-Assembly of a Graphene Oxide Liquid Crystal for Water Treatment. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47549-47559. [PMID: 36219449 DOI: 10.1021/acsami.2c11290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Adsorbents, especially those with high removal efficiency, long life, and multi-purpose capabilities, are the most crucial components in an adsorption system. By taking advantage of the liquid-like mobility and crystal-like ordering of liquid crystal materials, a liquid crystal induction method is developed and applied to construct three-dimensional graphene-based adsorbents featuring excellent shape adaptability, a distinctive pore structure, and abundant surface functional groups. When the monoliths are used for water restoration, the large amount of residual oxygen-containing groups is more susceptible to electrophilic attack, thus contributing to cation adsorption (up to 705.4 mg g-1 for methylene blue), while the connected microvoids between the aligned graphene oxide sheets facilitate mass transfer, e.g., the high adsorption capacity for organic pollutants (196.2 g g-1 for ethylene glycol) and the high evaporation rate for water (4.01 kg m-2 h-1). This work gives a practical method for producing high-performance graphene-based functional materials for those applications that are sensitive to surface and mass transfer properties.
Collapse
Affiliation(s)
- Xin Liang Lu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Jia Cheng Shao
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Hong Zhong Chi
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Wen Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| | - Haiying Qin
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
4
|
Lin B, Xia M, Xu B, Chong B, Chen Z, Yang G. Bio-inspired nanostructured g-C3N4-based photocatalysts: A comprehensive review. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64110-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Nizami MZI, Campéon BDL, Satoh A, Nishina Y. Graphene oxide-based multi-component antimicrobial hydrogels. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mohammed Zahedul Islam Nizami
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
- Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | | - Akira Satoh
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
- Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan
| |
Collapse
|
6
|
An UiO-66/P-L-histidine composite film fabricated by electropolymerization and electrodeposition for sensing biomarker 4-nitroquinoline N-oxide. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Liu YP, Lv YT, Guan JF, Khoso FM, Jiang XY, Chen J, Li WJ, Yu JG. Rational design of three-dimensional graphene/graphene oxide-based architectures for the efficient adsorption of contaminants from aqueous solutions. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
8
|
Yang J, Wang K, Lv Z, Li W, Luo K, Cao Z. Facile Preparation and Dye Adsorption Performance of Poly( N-isopropylacrylamide- co-acrylic acid)/Molybdenum Disulfide Composite Hydrogels. ACS OMEGA 2021; 6:28285-28296. [PMID: 34723025 PMCID: PMC8552478 DOI: 10.1021/acsomega.1c04433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/05/2021] [Indexed: 05/06/2023]
Abstract
Using N-isopropylacrylamide (NIPAM) and acrylic acid (AAc) as monomers, N,N'-methylenebisacrylamide (MBA) as a cross-linking agent, and molybdenum disulfide (MoS2) as functional particles, a P(NIPAM-co-AAc)/MoS2 composite hydrogel was prepared by free radical polymerization initiated by ultraviolet light. The results of Fourier transform infrared spectroscopy, Raman spectroscopy, and scanning electron microscopy show that MoS2 has been successfully introduced into the P(NIPAM-co-AAc) system, and the obtained composite hydrogel has a porous network structure. Studies on the swelling property and dye adsorption performance show that the addition of MoS2 can increase the swelling ratio of P(NIPAM-co-AAc) hydrogels to a certain extent and can significantly improve the ability of the P(NIPAM-co-AAc) hydrogel to adsorb methylene blue (MB). The adsorption process of MB by the composite hydrogels conforms to the pseudo-second-order kinetics and the Langmuir isotherm adsorption models. The estimated equilibrium adsorption capacity (Q m) using the Langmuir isotherm model can reach 1258 mg/g, mainly due to the electrostatic interaction between the negatively charged groups -COO- and MoS2 particles on the network structure and the positively charged dye MB. The adsorption of MB by P(NIPAM-co-AAc)/MoS2 composite hydrogels depends on the temperature during adsorption. Compared with room temperature, a high temperature of 40 °C above the poly(N-isopropylacrylamide) (PNIPAM) phase transition temperature (∼32 °C) leads to a decreased adsorption capacity of the P(NIPAM-co-AAc)/MoS2 composite hydrogel for MB due to the enhanced hydrophobic properties of the network structure and the decrease of the swelling ratio. The prepared hydrogel material can be used as a good adsorbent for dyes, which is promising in wastewater treatment.
Collapse
Affiliation(s)
- Jianping Yang
- Department
of Orthopedics, Changzhou Hospital of Traditional
Chinese Medicine, 25 Heping North Road, Changzhou 213000, Jiangsu, P.
R. China
| | - Kailun Wang
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Zhengxiang Lv
- Department
of Orthopedics, Changzhou Hospital of Traditional
Chinese Medicine, 25 Heping North Road, Changzhou 213000, Jiangsu, P.
R. China
| | - Wenjun Li
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Keming Luo
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Zheng Cao
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
- Changzhou
University Huaide College, Jingjiang 214500, P. R. China
- National
Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, P. R.
China
| |
Collapse
|
9
|
Boronate affinity imprinted hydrogel sorbent from biphasic synergistic high internal phase emulsions reactor for specific enrichment of Luteolin. J Colloid Interface Sci 2021; 601:782-792. [PMID: 34107316 DOI: 10.1016/j.jcis.2021.05.165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/20/2022]
Abstract
The dynamic coexistence of heterostructures is crucial for the synergistic function of molecularly imprinted polymers (MIPs) derived from high internal phase emulsions (HIPEs). In this work, hydrophilic boronate affinity imprinted hydrogel sorbents (H-UIO-66-NH2-IHIPEs) were prepared by biphasic synergistic HIPEs droplet reactors filled with reactive microencapsulation system, and used to capture and separate cis-diol containing luteolin (LTL) from complex extraction samples with high selectivity. As the main solid emulsifier, UiO-66-NH2, prototype zirconium-based metal-organic frameworks (MOFs) greatly improves the mechanical performance of the hydrogel, whilst preventing overuse of surfactants. Space-confined formation of imprinted sites in the external phase is realized in the presence of hydrophilic acrylamide phenylboric acid monomer (H-BA), which endows the specific affinity with pH responsiveness to LTL. In addition, the filled microinclusion compound containing elastic monomer octadecyl methacrylate (SMA) and functional monomer glycidyl methacrylate (GMA) simultaneously added interfacial cross-linking reaction to provide stable pore volume and pore shape. Combined with these excellent properties, H-UIO-66-NH2-IHIPEs showed fast capture kinetics (75 min) and large uptake amount (39.77 mg g-1) at 298 K, and confirmed the existence of a uniform chemisorption monolayer. Moreover, excellent recyclability of 6.24% loss in adsorption amount after five adsorption-desorption cycles was observed. Finally, the LTL content of the purified product (about 97.38%) was higher than that of the crude extract (about 85.0%). This study sheds a new light for the design of novel imprinted hydrogel sorbents combined with binary synergistic components.
Collapse
|
10
|
Phan LMT, Vo TAT, Hoang TX, Cho S. Graphene Integrated Hydrogels Based Biomaterials in Photothermal Biomedicine. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:906. [PMID: 33918204 PMCID: PMC8065877 DOI: 10.3390/nano11040906] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022]
Abstract
Recently, photothermal therapy (PTT) has emerged as one of the most promising biomedical strategies for different areas in the biomedical field owing to its superior advantages, such as being noninvasive, target-specific and having fewer side effects. Graphene-based hydrogels (GGels), which have excellent mechanical and optical properties, high light-to-heat conversion efficiency and good biocompatibility, have been intensively exploited as potential photothermal conversion materials. This comprehensive review summarizes the current development of graphene-integrated hydrogel composites and their application in photothermal biomedicine. The latest advances in the synthesis strategies, unique properties and potential applications of photothermal-responsive GGel nanocomposites in biomedical fields are introduced in detail. This review aims to provide a better understanding of the current progress in GGel material fabrication, photothermal properties and potential PTT-based biomedical applications, thereby aiding in more research efforts to facilitate the further advancement of photothermal biomedicine.
Collapse
Affiliation(s)
- Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Korea
- School of Medicine and Pharmacy, The University of Danang, Danang 550000, Vietnam
| | - Thuy Anh Thu Vo
- Department of Life Science, Gachon University, Seongnam-si 13120, Korea; (T.A.T.V.); (T.X.H.)
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam-si 13120, Korea; (T.A.T.V.); (T.X.H.)
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si 13120, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
11
|
Jiang L, Wen Y, Zhu Z, Liu X, Shao W. A Double cross-linked strategy to construct graphene aerogels with highly efficient methylene blue adsorption performance. CHEMOSPHERE 2021; 265:129169. [PMID: 33310315 DOI: 10.1016/j.chemosphere.2020.129169] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/19/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
A novel lysine and EDA double cross-linked graphene aerogel (LEGA) was constructed. The prepared LEGA was utilized as a methylene blue (MB) adsorbent in the wastewater treatment. It exhibits a three-dimensional interconnected porous structure benefiting dye adsorption. Its compression property is highly enhanced with the addition of lysine. Adsorption isotherm and kinetics of MB onto LEGA were discussed. Their results show that MB adsorption onto LEGA was fitted to follow Langmuir adsorption isotherm model and the pseudo-second-order kinetic model. LEGA has an excellent adsorption capacity towards MB as high as 332.23 mg/g and its MB adsorption process is proved to be an exothermic process. The mechanism for MB adsorption onto LEGA was proposed as the ion exchange, electrostatic interaction, π-π stacking interaction and hydrogen bonding. Thus, LEGA is confirmed to be a sustainable and green MB adsorbent with highly removal efficiency in the treatment of wastewater.
Collapse
Affiliation(s)
- Lei Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, PR China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Yanyi Wen
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Zhongjie Zhu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Xiufeng Liu
- State Key Laboratory of Natural Medicines, Department of Biotechnology of TCM, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Wei Shao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, PR China; College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, PR China.
| |
Collapse
|
12
|
Yongsheng X, Xintong L, Hongwei H, Yuexiao S, Qing X, Wenchao P. Aminated N-doped graphene hydrogel for long-term catalytic oxidation in strong acidic environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123742. [PMID: 33113727 DOI: 10.1016/j.jhazmat.2020.123742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/26/2020] [Accepted: 08/15/2020] [Indexed: 06/11/2023]
Abstract
Metal-based catalysts in advanced oxidation processes (AOPs) are not stable under strong acidic condition due to the remarkable leaching, which will also lead to a secondary pollution. In this study, an aminated N-doped graphene hydrogel (ANGH) is synthesized from graphene oxide and ethylenediamine (EDA) via an in-situ hydrothermal process. The ANGH shows a free-standing structure and has high catalytic activity especially in phenol degradation under strong-acidic condition because of a non-radical dominated mechanism determined in this process. On the large scale, a longer lifetime of ∼1700 min for ANGH is obtained under strong-acidic condition on a dynamic amplifying device, 2.9 times longer than that at neutral condition. It is proposed that amine N can be protected by hydrogen ions from being oxidized, thus leading to the better stability. Meanwhile, the active sites of ANGH can transform from N containing groups into oxygenous groups, and the deactivated material can be reutilized 10 times for rhodamine B degradation on a large scale. The ANGH synthesized facilely and could be recycled repeatedly, which is also very stable in the strong acidic environment, thus should have great potential in wastewater remediation.
Collapse
Affiliation(s)
- Xu Yongsheng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, China
| | - Li Xintong
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, China
| | - He Hongwei
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, China
| | - Song Yuexiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, China
| | - Xia Qing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, China
| | - Peng Wenchao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300050, China.
| |
Collapse
|
13
|
Alsharabasy AM, Pandit A, Farràs P. Recent Advances in the Design and Sensing Applications of Hemin/Coordination Polymer-Based Nanocomposites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003883. [PMID: 33217074 DOI: 10.1002/adma.202003883] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 09/10/2020] [Indexed: 06/11/2023]
Abstract
The fabrication of biomimetic catalysts as substituents for enzymes is of critical interest in the field due to the problems associated with the extraction, purification, and storage of enzymes in sensing applications. Of these mimetics, hemin/coordination polymer-based nanocomposites, mainly hemin/metal-organic frameworks (MOF), have been developed for various biosensing applications because of the unique properties of each component, while trying to mimic the normal biological functions of heme within the protein milieu of enzymes. This critical review first discusses the different catalytic functions of heme in the body in the form of enzyme/protein structures. The properties of hemin dimerization are then elucidated with the supposed models of hemin oxidation. After that, the progress in the fabrication of hemin/MOF nanocomposites for the sensing of diverse biological molecules is discussed. Finally, the challenges in developing this type of composites are examined as well as possible proposals for future directions to enhance the sensing performance in this field further.
Collapse
Affiliation(s)
- Amir M Alsharabasy
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, H91W2TY, Ireland
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, H91W2TY, Ireland
| | - Pau Farràs
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, H91W2TY, Ireland
- School of Chemistry, Ryan Institute, National University of Ireland Galway, Galway, H91CF50, Ireland
| |
Collapse
|
14
|
Sun Z, Zhong Y, Xu H, Wang B, Zhang L, Sui X, Feng X, Mao Z. In situ growth of CuS NPs on 3D porous cellulose macrospheres as recyclable biocatalysts for organic dye degradation. RSC Adv 2021; 11:36554-36563. [PMID: 35494360 PMCID: PMC9043433 DOI: 10.1039/d1ra06876h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/26/2021] [Indexed: 11/21/2022] Open
Abstract
Aiming at recyclable catalyst carriers, porous cellulose macrospheres from wood pulp dissolved in an alkaline urea system were regenerated by simple injection regeneration. After solvent exchange, porous cellulose macrospheres (CMs) with a high specific surface area of 325.3 m2 g−1 were obtained by lyophilization, and CuS nanoparticles (CuS NPs) were coated on CMs by in situ growth in the liquid phase to achieve CuS-supported CM macrospheres (CuS@CM). The results indicated that the CuS@CM biocatalyst was successfully prepared with an average diameter of approximately 1.2 mm. In addition, CuS@CM was further used as a heterogeneous catalyst for the catalytic degradation of methylene blue (MB) and methyl orange (MO) model dyes during the oxidation of hydrogen peroxide (H2O2). In the presence of low doses of H2O2, the degradation rate of MB reached 94.8% within 10 min, showing high catalytic activity under neutral and alkaline conditions. After five cycles, 90.1% of the original catalytic activity was still retained, indicating that the prepared CuS@CM composite possessed excellent catalytic activity and reusability. CuS nanoparticles were grown in situ on 3D porous cellulose macrospheres for an excellent rapid cycling removal of organic dyes.![]()
Collapse
Affiliation(s)
- Zhouquan Sun
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Yi Zhong
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Hong Xu
- Lu Thai Textile Co., LTD, Zibo, 255000, China
| | - Bijia Wang
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Linping Zhang
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Xiaofeng Sui
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
| | - Xueling Feng
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
- National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai, 201620, China
| | - Zhiping Mao
- Key Lab of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, No. 2999 North Renmin Road, Shanghai, 201620, China
- National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai, 201620, China
- Innovation Center for Textile Science and Technology of Donghua University, Shanghai, 201620, China
| |
Collapse
|
15
|
The cyanobacterial polysaccharide sacran: characteristics, structures, and preparation of LC gels. Polym J 2020. [DOI: 10.1038/s41428-020-00426-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Fang H, Wang M, Yi H, Zhang Y, Li X, Yan F, Zhang L. Electrostatic Assembly of Porphyrin-Functionalized Porous Membrane toward Biomimetic Photocatalytic Degradation Dyes. ACS OMEGA 2020; 5:8707-8720. [PMID: 32337433 PMCID: PMC7178780 DOI: 10.1021/acsomega.0c00135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Porphyrin-based catalytic oxidation is one of the most representative biomimetic catalysis. To mimic the biomimetic catalytic oxidation of nature, a positive charged porous membrane, quaternized polysulfone (QPSf) membrane with spongelike structure, was prepared for supporting meso-tetraphenylsulfonato porphyrin (TPPS). The influence of polymer concentration, coagulation bath, and additives on the structure of the substrate membrane was explored, and the optimized membrane with porosity of 87.1% and water flux of 371 L·m-2·h-1 at 0.1 MPa was obtained. Monolayer TPPS was adsorbed on the QPSf membrane surface by the electrostatic self-assembly approach, and the adsorption process followed the pseudo second-order kinetic model and Langmuir adsorption isotherm equation. The resulting TPPS@QPSf membrane showed excellent visible light response, and the photocatalytic performance for dyes was then enhanced dramatically after TPPS was immobilized on the membrane. The removal efficiencies for rhodamine B (RhB), methylene blue (MB), and methyl orange (MO) were 92.1, 94.1, and 92.1% under visible light irradiation, respectively. The primary photocatalytic degradation of the dye was a zero-order reaction, and the secondary reaction of degradation followed pseudo first-order kinetics. Finally, the TPPS@QPSf membrane can be reused for photocatalytic degradation of RhB for 10 cycles with no obvious change on removal efficiency, which indicated that this membrane is a promising material for dyeing water treatment coupled with visible light irradiation.
Collapse
Affiliation(s)
- Hongbo Fang
- Sinopec
Petroleum Engineering Co., Ltd., Dongying 257026, P. R.
China
| | - Mingxia Wang
- School
of Materials Science and Engineering, Tiangong
University, Tianjin 300387, P. R. China
| | - Hong Yi
- PetroChina
Changqing Oilfield Company, Oil Production Plant No. 2, Qingyang 745100, P. R. China
| | - Yanyan Zhang
- School
of Materials Science and Engineering, Tiangong
University, Tianjin 300387, P. R. China
| | - Xiaodan Li
- School
of Chemistry and Chemical Engineering, Tiangong
University, Tianjin 300387, P. R. China
| | - Feng Yan
- School
of Chemistry and Chemical Engineering, Tiangong
University, Tianjin 300387, P. R. China
| | - Lu Zhang
- Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
17
|
Araújo CMB, Oliveira do Nascimento GF, Bezerra da Costa GR, Baptisttella AMS, Fraga TJM, Assis Filho RB, Ghislandi MG, Motta Sobrinho MA. Real textile wastewater treatment using nano graphene‐based materials: Optimum pH, dosage, and kinetics for colour and turbidity removal. CAN J CHEM ENG 2020. [DOI: 10.1002/cjce.23712] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Caroline M. B. Araújo
- Chemical Engineering DepartmentUniversidade Federal de Pernambuco (UFPE) Recife Brazil
| | | | | | | | - Tiago J. M. Fraga
- Chemical Engineering DepartmentUniversidade Federal de Pernambuco (UFPE) Recife Brazil
| | - Romero B. Assis Filho
- Chemical Engineering DepartmentUniversidade Federal de Pernambuco (UFPE) Recife Brazil
- Department of ChemistryInstituto Federal de Pernambuco (IFPE) Recife Brazil
| | - Marcos G. Ghislandi
- Engineering Campus (UACSA)Universidade Federal Rural de Pernambuco (UFRPE) Recife Brazil
| | | |
Collapse
|
18
|
Liu Y, Wang L, Xue N, Wang P, Pei M, Guo W. Ultra-Highly Efficient Removal of Methylene Blue Based on Graphene Oxide/TiO 2/Bentonite Sponge. MATERIALS 2020; 13:ma13040824. [PMID: 32054129 PMCID: PMC7078707 DOI: 10.3390/ma13040824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/06/2020] [Accepted: 02/09/2020] [Indexed: 11/23/2022]
Abstract
An ultra-highly efficient Graphene Oxide/TiO2/Bentonite (GO/TiO2/Bent) sponge was synthesized using an in situ hydrothermal method. GO/TiO2/Bent sponge with a GO mass concentration of 10% exhibited the highest treatment efficiency of methylene blue (MB), combining adsorption and photocatalytic degradation, and achieved a maximum removal efficiency of 100% within about 70 min. To further prove the ultra-high removal capacity of the sponge, the concentration of MB in water increased to ten times the original concentration. At so high a MB concentration, the removal rate was still as high as 80% in 90 min. The photocatalytic mechanism of GO/TiO2/Bent sponge was discussed through XPS, PL and radicals quenching experiments. Here Bent can immobilize TiO2 and react with a photo-generated hole to increase the amount of hydroxyl radical; effectively enhancing the degradation of MB.GO sponge enlarges the sensitivity range of TiO2 to visible light by increasing the charge separation of TiO2 and reducing the recombination of photo-generated electron–hole pairs. Additionally, GO sponge with an interconnected porous structure provides an effective platform to immobilize TiO2/bent and makes them be easily recovered. The as-prepared sponge develops a simple and cost-effective strategy to realize the ultra-highly efficient treatment of dyes in wastewater.
Collapse
Affiliation(s)
- Yuan Liu
- School of chemistry and chemical Engineering, University of Jinan, Jinan 250022, China; (Y.L.); (P.W.); (M.P.)
| | - Luyan Wang
- School of chemistry and chemical Engineering, University of Jinan, Jinan 250022, China; (Y.L.); (P.W.); (M.P.)
- Correspondence: ; Tel.: +86-531-89736800
| | - Ni Xue
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| | - Pengxiang Wang
- School of chemistry and chemical Engineering, University of Jinan, Jinan 250022, China; (Y.L.); (P.W.); (M.P.)
| | - Meishan Pei
- School of chemistry and chemical Engineering, University of Jinan, Jinan 250022, China; (Y.L.); (P.W.); (M.P.)
| | - Wenjuan Guo
- Institute of Surface Analysis and Chemical Biology, University of Jinan, Jinan 250022, China;
| |
Collapse
|
19
|
Graphene-based adsorbents for water remediation by removal of organic pollutants: Theoretical and experimental insights. Chem Eng Res Des 2020. [DOI: 10.1016/j.cherd.2019.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Enhanced catalytic degradation of bisphenol A by hemin-MOFs supported on boron nitride via the photo-assisted heterogeneous activation of persulfate. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115822] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Zhou Q, Li G, Chen K, Yang H, Yang M, Zhang Y, Wan Y, Shen Y, Zhang Y. Simultaneous Unlocking Optoelectronic and Interfacial Properties of C60 for Ultrasensitive Immunosensing by Coupling to Metal–Organic Framework. Anal Chem 2019; 92:983-990. [DOI: 10.1021/acs.analchem.9b03915] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Qing Zhou
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Guanghui Li
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai 201203, China
| | - Kaiyang Chen
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Hong Yang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Mengran Yang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yuye Zhang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai 201203, China
| | - Yanfei Shen
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing 211189, China
| |
Collapse
|
22
|
Fraga TJM, de Lima LEM, de Souza ZSB, Carvalho MN, Freire EMPDL, Ghislandi MG, da Motta MA. Amino-Fe 3O 4-functionalized graphene oxide as a novel adsorbent of Methylene Blue: kinetics, equilibrium, and recyclability aspects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28593-28602. [PMID: 30203343 DOI: 10.1007/s11356-018-3139-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Graphene oxide (GO) was synthetized from graphite oxidation via the modified Hummers method. Afterwards, the GO was functionalized with diethylenetriamine (DETA) and FeCl3 to obtain the novel amino-iron oxide functionalized graphene (GO-NH2-Fe3O4). FTIR, XRD, SEM with EDX, and Raman spectroscopy were performed to characterize both GO and GO-NH2-Fe3O4. The GO-NH2-Fe3O4 was then evaluated as adsorbent of the cationic dye Methylene Blue (MB); analysis of the point of zero net charge (pHPZC) and pH effect showed that the GO-NH2-Fe3O4 pHPZC was 8.2; hence, the MB adsorption was higher at pH 12.0. Adsorption kinetics studies indicated that the system reached the equilibrium state after 5 min, with adsorption capacity at equilibrium (qe) and kinetic constant (kS) of 966.39 mg g-1 and 3.17∙10-2 g mg-1 min-1, respectively; moreover, the pseudo-second-order model was better fitted to the experimental data. Equilibrium studies showed maximum adsorption capacity of 1047.81 mg g-1; furthermore, Langmuir isotherm better fitted the adsorption. Recycling experiments showed that the GO-NH2-Fe3O4 maintained the MB removal rate above 95% after 10 cycles. All the results showed sorbent high adsorption capacity and outstanding regeneration capability and evidenced the employment of novel GO-NH2-Fe3O4 as a profitable adsorbent of textile dyes.
Collapse
Affiliation(s)
- Tiago José Marques Fraga
- Chemical Engineering Department, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Avenue, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil.
| | - Letticia Emely Maria de Lima
- Center of Biosciences, Federal University of Pernambuco (UFPE), W/N Prof. Moraes Rego Avenue, Cidade Universitária, Recife, Pernambuco, 50670-420, Brazil
| | - Ziani Santana Bandeira de Souza
- Chemical Engineering Department, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Avenue, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
| | - Marilda Nascimento Carvalho
- Chemical Engineering Department, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Avenue, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
| | - Eleonora Maria Pereira de Luna Freire
- Chemical Engineering Department, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Avenue, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
| | - Marcos Gomes Ghislandi
- Engineering Campus - UACSA, Federal Rural University of Pernambuco (UFRPE), 300 Cento e sessenta e Três Av, Cabo de Santo Agostinho, Pernambuco, Brazil
| | - Maurício Alves da Motta
- Chemical Engineering Department, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Avenue, Cidade Universitária, Recife, Pernambuco, 50670-901, Brazil
| |
Collapse
|
23
|
Khurana B, Gierlich P, Meindl A, Gomes-da-Silva LC, Senge MO. Hydrogels: soft matters in photomedicine. Photochem Photobiol Sci 2019; 18:2613-2656. [PMID: 31460568 DOI: 10.1039/c9pp00221a] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Photodynamic therapy (PDT), a shining beacon in the realm of photomedicine, is a non-invasive technique that utilizes dye-based photosensitizers (PSs) in conjunction with light and oxygen to produce reactive oxygen species to combat malignant tissues and infectious microorganisms. Yet, for PDT to become a common, routine therapy, it is still necessary to overcome limitations such as photosensitizer solubility, long-term side effects (e.g., photosensitivity) and to develop safe, biocompatible and target-specific formulations. Polymer based drug delivery platforms are an effective strategy for the delivery of PSs for PDT applications. Among them, hydrogels and 3D polymer scaffolds with the ability to swell in aqueous media have been deeply investigated. Particularly, hydrogel-based formulations present real potential to fulfill all requirements of an ideal PDT platform by overcoming the solubility issues, while improving the selectivity and targeting drawbacks of the PSs alone. In this perspective, we summarize the use of hydrogels as carrier systems of PSs to enhance the effectiveness of PDT against infections and cancer. Their potential in environmental and biomedical applications, such as tissue engineering photoremediation and photochemistry, is also discussed.
Collapse
Affiliation(s)
- Bhavya Khurana
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland.
| | - Piotr Gierlich
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland. and CQC, Coimbra Chemistry Department, University of Coimbra, Coimbra, Portugal
| | - Alina Meindl
- Physik Department E20, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany
| | | | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St James's Hospital, Dublin 8, Ireland. and Physik Department E20, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany and Institute for Advanced Study (TUM-IAS), Technische Universität München, Lichtenberg-Str. 2a, 85748 Garching, Germany
| |
Collapse
|
24
|
Baruah U, Das A, Manna U. Synthesis of Dual-Functional and Robust Underwater Superoleophobic Interfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:28571-28581. [PMID: 31298026 DOI: 10.1021/acsami.9b10977] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fish-scale-mimicked super oil-repelling wettability that functions under water has emerged as an important avenue for developing various functional materials. Mainly, polymeric hydrogel, brittle metal oxides, and electrostatic multilayers have been utilized for synthesizing an artificial underwater superoleophobic interface, and most of these reported artificial bioinspired wettabilities are likely to be compromised under practically relevant severe settings. Moreover, a design of a dual-functional fish-scale-mimicked interface that would be capable of separating water-soluble organic pollutants, in addition to the eco-friendly removal of different forms of contaminated oils under severe settings, could be highly useful in addressing globally recognized severe water pollution problems. In this report, a dual-functional underwater superoleophobic membrane is introduced for simultaneous removal of contaminated dyes and oil/oily phase, where graphene oxide (GO) nanosheets were strategically integrated with naturally abundant and environmentally friendly cotton fibers by adopting mussel-inspired chemistry. The synthesized membrane was found to exhibit fish-scale-mimicked nonadhesive underwater superoleophobicity, and this super oil repellency remained unaffected even after prolonged exposures to various practically relevant harsh chemical and physical conditions. Moreover, this material was capable of rapid (within 2 min) adsorption of water-soluble cationic organic dyes with high adsorption capacity (136 mg/g for methylene blue), following linear pseudo-second-order kinetics. The biomimicked extreme oil repellency was exploited for separating different forms (bulk and emulsion) of oil/oily (both sedimenting and floating) contaminants with high separation efficiency (above 98%), and the immobilized GO in the biomimicked membrane parallely allowed cationic organic dyes (methylene blue and crystal violet) to be removed from the aqueous phase through a single-step gravity-driven filtration process. The performance of simultaneous removal of cationic dyes and oil/oily contaminants remained unaffected even under various practically relevant severe settings including extremes of pH, sea water, river water, and so forth. Furthermore, the dual-functional biomimicked membrane was repetitively (10 times) used for successful separation of both the contaminated cationic dye and oil/oily phase from the aqueous phase, without affecting the separation efficiency. This simple approach is likely to provide a facile basis for addressing the problem of water pollution under practically relevant diverse and severe settings.
Collapse
Affiliation(s)
- Upama Baruah
- Department of Chemistry , Indian Institute of Technology-Guwahati , Kamrup, Guwahati , Assam 781039 , India
| | - Avijit Das
- Department of Chemistry , Indian Institute of Technology-Guwahati , Kamrup, Guwahati , Assam 781039 , India
| | - Uttam Manna
- Department of Chemistry , Indian Institute of Technology-Guwahati , Kamrup, Guwahati , Assam 781039 , India
- Centre for Nanotechnology , Indian Institute of Technology-Guwahati , Amingaon , Kamrup, Assam 781039 , India
| |
Collapse
|
25
|
Zhao Y, Cai X, Zhang Y, Chen C, Wang J, Pei R. Porphyrin-based metal-organic frameworks: protonation induced Q band absorption. NANOSCALE 2019; 11:12250-12258. [PMID: 31210225 DOI: 10.1039/c9nr02463h] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, porphyrin-based MOF nanosheets were formulated. The as-developed Gd-TCPP MOF nanosheets could be protonated significantly in an acidic solution, which greatly enhanced the UV-vis absorption at 665 nm. Also, a significant structural reorganization occurred to achieve a nanowire structure. As the center of the porphyrin had a metal coordination atom, the Q band absorption had better stability due to their inability to be protonated. These results confirm that the UV-vis absorption of the MOFs can be regulated via porphyrin protonation, and the protonation of the nanosheets in the acidic solution can be avoided by adding a metal coordination atom to the porphyrin center. We also found that zinc ions had better coordination ability with the pyrrole nitrogen of the inner porphyrin core of Gd-TCPP MOF nanosheets. Finally, the protonation of MOFs was confirmed by the yield of singlet oxygen. Also, metallic oxide nanoparticles can be formed in situ and adsorbed on the Gd-TCPP MOF nanosheets. These results are useful for the preparation of metallic oxide nanoparticle-loaded nanomaterials. This work may open novel avenues for changing the UV-vis absorption of porphyrin-based nanomaterials.
Collapse
Affiliation(s)
- Yuewu Zhao
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Xue Cai
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China. and Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Ye Zhang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Changchong Chen
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Jine Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China. and School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
26
|
Guo SF, Chen XY, Wang P, Chen C, Pan RH, Ling YT, Tang YZ. Preparation of Molecularly Imprinted Composites Initiated by Hemin/Graphene Hybrid Nanosheets and Its Application in Detection of Sulfamethoxazole. Curr Med Sci 2019; 39:159-165. [PMID: 30868507 DOI: 10.1007/s11596-019-2014-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/12/2018] [Indexed: 12/27/2022]
Abstract
Molecularly imprinted polymers (MIPs) exhibit high selectivity resulting from imprinted cavities and superior performance from functional materials, which have attracted much attention in many fields. However, the combination of MIPs film and functional materials is a great challenge. In this study, hemin/graphene hybrid nanosheets (H-GNs) were used to initiate the imprinted polymerization by catalyzing the generation of free radicals. Thus, MIPs using sulfamethoxazole as the template was directly prepared on the surface of H-GNs without any film modification. Most importantly, the template could be absorbed on the H-GNs to enhance the number of imprinted sites per unit surface area, which could improve the selectivity of MIPs film. Thus, the composites could exhibit high adsorption capacity (29.4 mg/g), imprinting factor (4.2) and excellent conductivity, which were modified on the surface of electrode for rapid, selective and sensitive detection of sulfamethoxazole in food and serum samples. The linear range was changed from 5 μg/kg to 1 mg/g and the limit of detection was 1.2 μg/kg. This sensor was free from interference caused by analogues of sulfamethoxazole, which provides a novel insight for the preparation of MIPs-based sensor and its application in food safety monitoring and human exposure study.
Collapse
Affiliation(s)
- Shao-Fei Guo
- Hubei Entry-Exit Inspection and Quarantine Bureau of PRC, Wuhan, 430022, China
| | - Xiao-Yu Chen
- Hubei Entry-Exit Inspection and Quarantine Bureau of PRC, Wuhan, 430022, China
| | - Peng Wang
- Hubei Entry-Exit Inspection and Quarantine Bureau of PRC, Wuhan, 430022, China
| | - Cheng Chen
- Hubei Entry-Exit Inspection and Quarantine Bureau of PRC, Wuhan, 430022, China
| | - Rui-Hua Pan
- Hubei Entry-Exit Inspection and Quarantine Bureau of PRC, Wuhan, 430022, China
| | - Yue-Tao Ling
- Hubei Entry-Exit Inspection and Quarantine Bureau of PRC, Wuhan, 430022, China
| | - Yi-Zhu Tang
- Hubei Institute of Sport Science, Wuhan, 430205, China.
| |
Collapse
|
27
|
Yi H, Jiang M, Huang D, Zeng G, Lai C, Qin L, Zhou C, Li B, Liu X, Cheng M, Xue W, Xu P, Zhang C. Advanced photocatalytic Fenton-like process over biomimetic hemin-Bi2WO6 with enhanced pH. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.06.037] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Lu M, Deng Y, Luo Y, Lv J, Li T, Xu J, Chen SW, Wang J. Graphene Aerogel-Metal-Organic Framework-Based Electrochemical Method for Simultaneous Detection of Multiple Heavy-Metal Ions. Anal Chem 2018; 91:888-895. [PMID: 30338985 DOI: 10.1021/acs.analchem.8b03764] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The development of an effective method for detecting heavy-metal ions remains a serious task because of their high toxicity to public health and environments. Herein, a new electrochemical method based on a graphene aerogel (GA) and metal-organic framework (MOF) composites was developed for simultaneous detection of multiple heavy-metal ions in aqueous solutions. The GA-MOF composites were synthesized via the in situ growth of the MOF UiO-66-NH2 crystal on the GA matrix. GA not only serves as the backbone for UiO-66-NH2 but also enhances the conductivity of the composites by accelerating the electron transfer in the matrix. UiO-66-NH2 worked as a binding site for heavy-metal ions because of the interaction between hydrophilic groups and metal cations. The detection performance of the GA-UiO-66-NH2 composite-modified electrodes was determined. The developed electrochemical method can be successfully applied for individual and simultaneous detection of heavy-metal ions, namely, Cd2+, Pb2+, Cu2+,and Hg2+, in aqueous solutions with high sensitivity and selectivity. The method can also be used for simultaneous detection of Cd2+, Pb2+, Cu2+, and Hg2+ in river water and the leaching solutions of soil and vegetable with high accuracy and reliability. This work provides a new approach for simultaneous detection of multiple heavy-metal ions in practical applications.
Collapse
Affiliation(s)
- Muxin Lu
- College of Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , P.R. China
| | - Yajuan Deng
- College of Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , P.R. China
| | - Yi Luo
- College of Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , P.R. China
| | - Junping Lv
- College of Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , P.R. China
| | - Tianbao Li
- College of Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , P.R. China
| | - Juan Xu
- College of Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , P.R. China
| | - Shu-Wei Chen
- College of Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , P.R. China
| | - Jinyi Wang
- College of Chemistry and Pharmacy , Northwest A&F University , Yangling , Shaanxi 712100 , P.R. China
| |
Collapse
|
29
|
Liao G, Hu J, Chen Z, Zhang R, Wang G, Kuang T. Preparation, Properties, and Applications of Graphene-Based Hydrogels. Front Chem 2018; 6:450. [PMID: 30327765 PMCID: PMC6174303 DOI: 10.3389/fchem.2018.00450] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/07/2018] [Indexed: 11/13/2022] Open
Abstract
As a new carbon-based nanomaterial, graphene has exhibited unique advantages in significantly improving the combination properties of traditional polymer hydrogels. The specific properties of graphene, such as high electrical conductivity, high thermal conductivity and excellent mechanical properties, have made graphene not only a gelator to self-assemble into the graphene-based hydrogels (GBH) with extraordinary electromechanical performance, but also a filler to blend with small molecules and macromolecules for the preparation of multifunctional GBH. It fully exploits the practical applications of traditional hydrogels. This review summarizes the preparation methods, properties, and the applications of GBH. Further developments and challenges of GBH are also prospected.
Collapse
Affiliation(s)
- Guochao Liao
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, University of Chinese Medicine, Guangzhou, China
| | - Junfeng Hu
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, China
| | - Zhou Chen
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, China
| | - Ruiqian Zhang
- Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu, China
| | - Guanchun Wang
- Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China, Chengdu, China
| | - Tairong Kuang
- Key Laboratory of Polymer Processing Engineering of Ministry of Education, South China University of Technology, Guangzhou, China
| |
Collapse
|
30
|
Song J, Ling Y, Xie Y, Liu L, Zhu H. One-pot engineering TiO 2/graphene interface for enhanced adsorption and photocatalytic degradation of multiple organics. NANOTECHNOLOGY 2018; 29:395701. [PMID: 29897345 DOI: 10.1088/1361-6528/aacc56] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is challenging to design a multifunctional structure or composite for the simultaneous adsorption and photocatalytic degradation of organic pollutants in water. Towards this goal, in this work we innovatively engineered interfacial sites between TiO2 particles and reduced graphene oxide (RGO) sheets by employing an in situ one-pot one-step solvothermal method. The interface was associated with the content of RGO, solvothermal time and solvent ratio of n-pentanol to n-hexane. It was found that with a moderate amount of RGO (25%), TiO2 nanoparticles were well dispersed on the surface of the RGO or wrapped by the RGO, thus leading to full contact and strong interactions to form a Ti-O-C interfacial structure. But with low content of RGO (6%), TiO2 aggregates were a mixture of nanosheets, nanoparticles and nanorods. 25%RGO/TiO2 also had 175% higher surface area (146 m2 g-1), 95% larger volume (0.339 cm3 g-1) and smaller band gap than 6%RGO/TiO2. More importantly, 25%RGO/TiO2 demonstrated higher adsorption efficiency (25%) and four times faster degradation rate than TiO2 (0%). It also exhibited good capability to eliminate multiple organics and stable long-term cycle performance (up to 93% retention after 30 cycles). Its superiority was attributed to the large surface area and unique interface between the TiO2 and RGO, which not only provided more active sites to capture pollutants, but enhanced charge transfer (3 μA cm-2, five times higher than TiO2). This work offers a promising way to purify water through engineering new material structure and integrating adsorption and photodegradation technologies.
Collapse
Affiliation(s)
- Jianhua Song
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, People's Republic of China
| | | | | | | | | |
Collapse
|
31
|
Liu S, Mei L, Liang X, Liao L, Lv G, Ma S, Lu S, Abdelkader A, Xi K. Anchoring Fe 3O 4 Nanoparticles on Carbon Nanotubes for Microwave-Induced Catalytic Degradation of Antibiotics. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29467-29475. [PMID: 30091894 DOI: 10.1021/acsami.8b08280] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microwave-induced catalytic degradation is considered amongst the most efficient techniques to remove antibiotic such as chlortetracycline from contaminated water. Described here is a new microwave-induced oxidation catalyst based on carbon nanotubes (CNTs) decorated uniformly with nanoparticles of Fe3O4. The combination of dielectric loss and magnetic loss of the material contributed to its stronger microwave absorption and the ability to produce more "hot spots". These hot spots promoted the oxidation of common antibiotics such as chlortetracycline, tetracycline, and oxytetracycline under microwave irradiation. Experiments with the addition of scavenger showed that hydroxy radicals (•OH) together with superoxide radicals (•O2-) contributed to the antibiotics removal as well. The final degradation products included CO2 and NO3- as confirmed by mass spectroscopy and ion chromatography analyses. The results indicated that the Fe3O4/CNTs was an efficient catalyst for microwave-induced oxidation.
Collapse
Affiliation(s)
- Shiyuan Liu
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology , China University of Geosciences , Beijing 100083 , PR China
| | - Lefu Mei
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology , China University of Geosciences , Beijing 100083 , PR China
| | - Xiaoliang Liang
- Key Laboratory of Mineralogy and Metallogeny , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , PR China
| | - Libing Liao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology , China University of Geosciences , Beijing 100083 , PR China
| | - Guocheng Lv
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology , China University of Geosciences , Beijing 100083 , PR China
| | - Shuaifei Ma
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology , China University of Geosciences , Beijing 100083 , PR China
| | - Shiyao Lu
- Department of Applied Chemistry, School of Science, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory for Mechanical Behavior of Materials , Xi'an Jiaotong University , Xi'an 710049 , PR China
| | - Amr Abdelkader
- Department of Design and Engineering, Faculty of Science & Technology , Bournemouth University , Poole , Dorset BH12 5BB , United Kingdom
- Department of Materials Science and Metallurgy , University of Cambridge , Cambridge CB3 0FS , United Kingdom
| | - Kai Xi
- Department of Materials Science and Metallurgy , University of Cambridge , Cambridge CB3 0FS , United Kingdom
| |
Collapse
|
32
|
Lu Y, Biswas MC, Guo Z, Jeon JW, Wujcik EK. Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosens Bioelectron 2018; 123:167-177. [PMID: 30174272 DOI: 10.1016/j.bios.2018.08.037] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 11/26/2022]
Abstract
Recent years, an explosive growth of wearable technology has been witnessed. A highly stretchable and sensitive wearable strain sensor which can monitor motions is in great demand in various fields such as healthcare, robotic systems, prosthetics, visual realities, professional sports, entertainments, etc. An ideal strain sensor should be highly stretchable, sensitive, and robust enough for long-term use without degradation in performance. This review focuses on recent advances in polymer nanocomposite based wearable strain sensors. With the merits of highly stretchable polymeric matrix and excellent electrical conductivity of nanomaterials, polymer nanocomposite based strain sensors are successfully developed with superior performance. Unlike conventional strain gauge, new sensing mechanisms include disconnection, crack propagation, and tunneling effects leading to drastically resistance change play an important role. A rational choice of materials selection and structure design are required to achieve high sensitivity and stretchability. Lastly, prospects and challenges are discussed for future polymer nanocomposite based wearable strain sensor and their potential applications.
Collapse
Affiliation(s)
- Yang Lu
- Materials Engineering and Nanosensor [MEAN] Laboratory, Department of Chemical and Biological Engineering, The University of Alabama, P.O. Box 870203, Tuscaloosa, AL 35487, USA
| | - Manik Chandra Biswas
- Jeon Research Group, Department of Chemical and Biological Engineering, The University of Alabama, P.O. Box 870203, Tuscaloosa, AL 35487, USA
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong 266590, China
| | - Ju-Won Jeon
- Jeon Research Group, Department of Chemical and Biological Engineering, The University of Alabama, P.O. Box 870203, Tuscaloosa, AL 35487, USA; Department of Applied Chemistry, Kookmin University, Seoul, Republic of Korea.
| | - Evan K Wujcik
- Materials Engineering and Nanosensor [MEAN] Laboratory, Department of Chemical and Biological Engineering, The University of Alabama, P.O. Box 870203, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
33
|
Li H, Wang C, Xun S, He J, Jiang W, Zhang M, Zhu W, Li H. An accurate empirical method to predict the adsorption strength for π-orbital contained molecules on two dimensional materials. J Mol Graph Model 2018; 82:93-100. [DOI: 10.1016/j.jmgm.2018.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
34
|
Khare P, Bhati A, Anand SR, Gunture, Sonkar SK. Brightly Fluorescent Zinc-Doped Red-Emitting Carbon Dots for the Sunlight-Induced Photoreduction of Cr(VI) to Cr(III). ACS OMEGA 2018; 3:5187-5194. [PMID: 31458732 PMCID: PMC6641713 DOI: 10.1021/acsomega.8b00047] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/04/2018] [Indexed: 05/07/2023]
Abstract
The present finding deals with a simple and low-cost fabrication of surface-passivated, brightly fluorescent zinc-oxide-decorated, red-emitting excitation-independent ultrafluorescent CDs, denoted as "CZnO-Dots". Surface doping of zinc oxide significantly improved the quantum yield by up to ∼72%, and these brightly fluorescent red-emitting CZnO-Dots have been employed for the aqueous-phase photoreduction of 100 ppm hexavalent chromium(VI) to trivalent chromium(III) under the influence of sunlight irradiation. The overall utility of the prepared CZnO-Dots can be ascertained by their recyclability over seven cycles.
Collapse
Affiliation(s)
| | | | - Satyesh Raj Anand
- Department of Chemistry, Malaviya
National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Gunture
- Department of Chemistry, Malaviya
National Institute of Technology, Jaipur, Jaipur 302017, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya
National Institute of Technology, Jaipur, Jaipur 302017, India
| |
Collapse
|
35
|
Vellaichamy B, Periakaruppan P. Synergistic Combination of a Novel Metal-Free Mesoporous Band-Gap-Modified Carbon Nitride Grafted Polyaniline Nanocomposite for Decontamination of Refractory Pollutant. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b01098] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
36
|
Okajima MK, Sornkamnerd S, Kaneko T. Development of Functional Bionanocomposites Using Cyanobacterial Polysaccharides. CHEM REC 2018. [PMID: 29543373 DOI: 10.1002/tcr.201700074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cyanobacteria are regarded as very eco-friendly microreactors for the production of various biomolecules such as polysaccharides by fixing not only carbon but also nitrogen in water. Cyanobacterial polysaccharides having various functional groups such as hydroxyls, carboxyls, sulfates, etc. have the ability to interact with metals or inorganics, to create bionanocomposites. Sacran, a supergiant cyanobacterial anionic polysaccharide extracted from the extracellular matrix of Aphanothece sacrum which is mass-cultivated in freshwater, is mainly used to create functional bionanocomposites. Gel-type bionanocomposites of sacran with various metal cations are formed and showed photoresponsive functions. Metal recovery is performed from the sacran bionanocomposite gels. Sacran chains are complexed with multi-wall carbon nanotubes (MWCNT) to give viscose dispersion from which MWCNT bionanocomposites can be collected by electrophoresis. The MWCNT/sacran dispersion retains the capability of adsorbing various metal ions to form hardened hydrogel beads. Finally, natural inorganic sepiolite can be used for sacran bionanocomposites which show an efficient neodymium ion adsorption ability. Thus, cyanobacterial polysaccharides are useful for preparing eco-friendly and functional bionanocomposites with various hard materials.
Collapse
Affiliation(s)
- Maiko K Okajima
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Saranyoo Sornkamnerd
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| | - Tatsuo Kaneko
- Graduate School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|
37
|
Zhang C, Chen Z, Guo W, Zhu C, Zou Y. Simple fabrication of Chitosan/Graphene nanoplates composite spheres for efficient adsorption of acid dyes from aqueous solution. Int J Biol Macromol 2018; 112:1048-1054. [PMID: 29447965 DOI: 10.1016/j.ijbiomac.2018.02.074] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/25/2018] [Accepted: 02/11/2018] [Indexed: 01/03/2023]
Abstract
A facile method for the fabrication of crosslinked chitosan/graphene nanoplates composite sphere (CS/GNPs) was presented. The obtained samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopic (XPS) and thermogravimetric analysis (TGA). The adsorption activities of CS/GNPs for methyl orange (MO) and acid red 1 (AR1) were evaluated such as the effect of pH and GNPs content, as well as adsorption kinetics and isotherms. In view of practical, the reusability of CS/GNPs was also tested. The resulting adsorption capacity for MO is 230.91mgg-1 and 132.94mgg-1 for AR1, respectively. After saturated adsorption, CS/GNPs can be efficiently regenerated and reused with little uptake loss. Therefore, CS/GNPs is the apromising adsorbent with non-toxic, efficient, low-cost and easy to prepare for the dye removal.
Collapse
Affiliation(s)
- Conglu Zhang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi, Liaoning Province 117004, PR China.
| | - Zezhi Chen
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi, Liaoning Province 117004, PR China; School of Resource and Environment Project, Wuhan University of Technology, Wuhan, Hubei Province 430070, PR China
| | - Wei Guo
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi, Liaoning Province 117004, PR China
| | - Chengwu Zhu
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi, Liaoning Province 117004, PR China
| | - Yajie Zou
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Benxi, Liaoning Province 117004, PR China
| |
Collapse
|
38
|
Dare NA, Brammer L, Bourne SA, Egan TJ. Fe(III) Protoporphyrin IX Encapsulated in a Zinc Metal–Organic Framework Shows Dramatically Enhanced Peroxidatic Activity. Inorg Chem 2018; 57:1171-1183. [DOI: 10.1021/acs.inorgchem.7b02612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nicola A. Dare
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Lee Brammer
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom
| | - Susan A. Bourne
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| | - Timothy J. Egan
- Department of Chemistry, University of Cape Town, Private Bag, Rondebosch 7701, South Africa
| |
Collapse
|
39
|
Zhao Z, Li L, Geleta GS, Ma L, Wang Z. Polyacrylamide-Phytic Acid-Polydopamine Conducting Porous Hydrogel for Efficient Removal of Water-Soluble Dyes. Sci Rep 2017; 7:7878. [PMID: 28801677 PMCID: PMC5554154 DOI: 10.1038/s41598-017-08220-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/07/2017] [Indexed: 01/13/2023] Open
Abstract
Removal of toxic dyes from wastewater has become a hot topic in both academic and industrial fields since there is growing concern about the threat of sewage to human health. Herein, we demonstrate that the three-dimensional porous polyacrylamide-phytic acid-polydopamine (termed as PAAM/PA/PDA) hydrogel can be served as reusable adsorbent with high efficiency for either anionic or cationic dyes. Using methyl blue (MB), methylene blue (YMB), methyl violet (MV) and neutral red (NR) as model dyes, we investigate the effect of pH, temperature, dye concentration, and PAAM/PA/PDA hydrogel mass on the adsorption. The experimental maximum adsorption capacities are more than 350.67 mg g-1 for four selected dyes. Adsorption kinetic and thermodynamic analysis suggests that the dyes are adsorbed on the PAAM/PA/PDA hydrogel through the strong π-π stacking and anion-cation interaction, and the adsorption process satisfies a pseudo-second-order model. Furthermore, the free-standing PAAM/PA/PDA hydrogel can be easily removed from water after adsorption process, and regenerated by adjusting solution pH values.
Collapse
Affiliation(s)
- Zhen Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Leijiao Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
| | - Girma Selale Geleta
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lina Ma
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China.
| |
Collapse
|
40
|
Im K, Nguyen DN, Kim S, Kong HJ, Kim Y, Park CS, Kwon OS, Yoon H. Graphene-Embedded Hydrogel Nanofibers for Detection and Removal of Aqueous-Phase Dyes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10768-10776. [PMID: 28301130 DOI: 10.1021/acsami.7b01163] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A facile route to graphene/polymer hydrogel nanofibers was developed. An aqueous dispersion of graphene (containing >40% bilayer graphene flakes) stabilized by a functionalized water-soluble polymer with phenyl side chains was successfully electrospun to yield nanofibers. Subsequent vapor-phase cross-linking of the nanofibers produced graphene-embedded hydrogel nanofibers (GHNFs). Interestingly, the GHNFs showed chemical sensitivity to the cationic dyes methylene blue (MB) and crystal violet (CV) in the aqueous phase. The adsorption capacities were as high as 0.43 and 0.33 mmol g-1 s-1 for MB and CV, respectively, even in a 1.5 mL s-1 flow system. A density functional theory calculation revealed that aqueous-phase MB and CV dyes were oriented parallel to the graphene surface and that the graphene/dye ensembles were stabilized by secondary physical bonding mechanisms such as the π-π stacking interaction in an aqueous medium. The GHNFs exhibited electrochemical properties arising mainly from the electric double-layer capacitance, which were applied in a demonstration of GHNF-based membrane electrodes (5 cm in diameter) for detecting the dyes in the flow system. It is believed that the GHNF membrane can be a successful model candidate for commercialization of graphene due to its easy-to-fabricate process and remarkable properties.
Collapse
Affiliation(s)
| | | | | | | | | | - Chul Soon Park
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon 34141, South Korea
| | - Oh Seok Kwon
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon 34141, South Korea
| | | |
Collapse
|