1
|
Wu L, Huang X, Wang M, Chen J, Chang J, Zhang H, Zhang X, Conn A, Rossiter J, Birchall M, Song W. Tunable Light-Responsive Polyurethane-urea Elastomer Driven by Photochemical and Photothermal Coupling Mechanism. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19480-19495. [PMID: 38581369 DOI: 10.1021/acsami.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Light-driven soft actuators based on photoresponsive materials can be used to mimic biological motion, such as hand movements, without involving rigid or bulky electromechanical actuations. However, to our knowledge, no robust photoresponsive material with desireable mechanical and biological properties and relatively simple manufacture exists for robotics and biomedical applications. Herein, we report a new visible-light-responsive thermoplastic elastomer synthesized by introducing photoswitchable moieties (i.e., azobenzene derivatives) into the main chain of poly(ε-caprolactone) based polyurethane urea (PAzo). A PAzo elastomer exhibits controllable light-driven stiffness softening due to its unique nanophase structure in response to light, while possessing excellent hyperelasticity (stretchability of 575.2%, elastic modulus of 17.6 MPa, and strength of 44.0 MPa). A bilayer actuator consisting of PAzo and polyimide films is developed, demonstrating tunable bending modes by varying incident light intensities. Actuation mechanism via photothermal and photochemical coupling effects of a soft-hard nanophase is demonstrated through both experimental and theoretical analyses. We demonstrate an exemplar application of visible-light-controlled soft "fingers" playing a piano on a smartphone. The robustness of the PAzo elastomer and its scalability, in addition to its excellent biocompatibility, opens the door to the development of reproducible light-driven wearable/implantable actuators and lightweight soft robots for clinical applications.
Collapse
Affiliation(s)
- Lei Wu
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Xia Huang
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Meng Wang
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Jishizhan Chen
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Jinke Chang
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| | - Han Zhang
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Xuetong Zhang
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, PR China
| | - Andrew Conn
- Dept of Engineering Mathematics and Bristol Robotics Laboratory, University of Bristol, Bristol BS8 1UB, United Kingdom
| | - Jonathan Rossiter
- Dept of Engineering Mathematics and Bristol Robotics Laboratory, University of Bristol, Bristol BS8 1UB, United Kingdom
| | - Martin Birchall
- UCL Ear Institute, Royal National Ear Nose and Throat and Eastman Dental Hospitals (UCLH NHS Foundation Trust), University College London, London WC1X 8EE, United Kingdom
| | - Wenhui Song
- Centre of Biomaterials for in Surgical Reconstruction and Regeneration, Department of Surgical Biotechnology, Division of Surgery & Interventional Science, University College London, London NW3 2PF, United Kingdom
| |
Collapse
|
2
|
Wang CH, Chang HK, Chen KJ, Huang DH, Chang CJ, Huang KH, Chiu YD, Horie M. Facile Photoresponsive Actuators Based on Ferrocene-Doped Poly(butyl methacrylate). ACS APPLIED MATERIALS & INTERFACES 2023; 15:38846-38856. [PMID: 37537978 DOI: 10.1021/acsami.3c07788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
This paper presents facile photoresponsive actuators comprising ferrocene as a guest chromophore and poly(butyl methacrylate) (PBMA) as a host matrix. The ferrocene-doped PBMA film exhibits mechanical expansion and contraction when a 445 nm laser is turned on and off, respectively. The photoresponsive film is attached by a commercially available acetylcellulose adhesive tape, which exhibits a bending motion that is controlled by turning the laser on and off. Thereafter, the double-layer film is employed to fabricate a table-shaped lifting machine (0.7 mg) that lifts a 10.5 mg object up and down by turning the laser on and off, respectively, and the mechanical force offered by the double-layer film is recorded. Additionally, the film is coated with gold and applied to an electric circuit that serves as a reversible photoresponsive switch. This film preparation technique is applied to other chromophores (e.g., Coumarin 343, Rhodamine 6G, Sudan Blue II, and Solvent Green 3) to independently control the motions of the films with 445, 520, and 655 nm lasers. The ferrocene-containing films also exhibit photoinduced healing from mechanical damage. Finally, the photoirradiation-accompanied morphological changes in the film are observed via small-angle X-ray scattering.
Collapse
Affiliation(s)
- Chi-Hsien Wang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Hong-Kai Chang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Kai-Jen Chen
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Dao-Hong Huang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Chiung-Ju Chang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Kuan-Hung Huang
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Yao-De Chiu
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Masaki Horie
- Department of Chemical Engineering, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| |
Collapse
|
3
|
|
4
|
van Raak RJH, Broer DJ. Biomimetic Liquid Crystal Cilia and Flagella. Polymers (Basel) 2022; 14:polym14071384. [PMID: 35406258 PMCID: PMC9003437 DOI: 10.3390/polym14071384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Cilia and flagella are a vital part of many organisms. Protozoa such as paramecia rely on the collective and coordinated beating of tubular cilia or flagella for their transport, while mammals depend on the ciliated linings of their bronchia and female reproductive tracts for the continuity of breathing and reproduction, respectively. Over the years, man has attempted to mimic these natural cilia using synthetic materials such as elastomers doped with magnetic particles or light responsive liquid crystal networks. In this review, we will focus on the progress that has been made in mimicking natural cilia and flagella using liquid crystal polymers. We will discuss the progress that has been made in mimicking natural cilia and flagella with liquid crystal polymers using techniques such as fibre drawing, additive manufacturing, or replica moulding, where we will put additional focus on the emergence of asymmetrical and out-of-plane motions.
Collapse
Affiliation(s)
- Roel J. H. van Raak
- Laboratory of Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 5, 5612 AE Eindhoven, The Netherlands;
| | - Dirk J. Broer
- Laboratory of Stimuli-Responsive Functional Materials and Devices, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Groene Loper 5, 5612 AE Eindhoven, The Netherlands;
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Groene Loper 5, 5612 AE Eindhoven, The Netherlands
- SCNU-TUE Joint Lab of Devices Integrated Responsive Materials, South China Normal University, Guangzhou Higher Education Mega Center, No. 378, West Waihuan Road, Guangzhou 510006, China
- Correspondence:
| |
Collapse
|
5
|
Liu Z, Guo G, Liao J, Yuan Y, Zhang H. Manipulated and Improved Photoinduced Deformation Property of Photoresponsive Liquid Crystal Elastomers by Copolymerization. Macromol Rapid Commun 2022; 43:e2100717. [PMID: 35083802 DOI: 10.1002/marc.202100717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/04/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zui Liu
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Guangqiang Guo
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Junqiu Liao
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Yongjie Yuan
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, Xiangtan University, Xiangtan, 411105, P. R. China
| | - Hailiang Zhang
- Key Laboratory of Polymeric Materials and Application Technology of Hunan Province, Key Laboratory of Advanced Functional Polymer Materials of Colleges and Universities of Hunan Province, Xiangtan University, Xiangtan, 411105, P. R. China
| |
Collapse
|
6
|
Chen L, Chu D, Cheng ZA, Wang M, Huang S. Designing seamless-welded liquid-crystalline soft actuators with a “glue-free” method by dynamic boroxines. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Azobenzene Based Photo-responsive Mechanical Actuator Fabricated by Intermolecular H-bond Interaction. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2504-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Guo C, Gao J, Ma S, Zhang H. Efficient preparation of chemically crosslinked recyclable photodeformable azobenzene polymer fibers with high processability and reconstruction ability via a facile post-crosslinking method. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109998] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Lei L, Han L, Ma H, Zhang R, Huang S, Shen H, Yang L, Li C, Zhang S, Bai H, Ma Q, Li Y. Cooperative and Independent Effect of Modular Functionalization on Mesomorphic Performances and Microphase Separation of Well-Designed Liquid Crystalline Diblock Copolymers. Chemistry 2020; 26:11199-11208. [PMID: 32227410 DOI: 10.1002/chem.202000268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Indexed: 11/06/2022]
Abstract
Liquid crystalline block copolymers (LCBCPs) are promising for developing functional materials owing to an assembly of better functionalities. Taking advantage of differences in reactivity between alkynyl and vinyl over temperature during hydrosilylation, a series of LCBCPs with modular functionalization of the block copolymers (BCPs) are reported by independently and site-selectively attaching azobenzene moieties containing alkynyl (LC1 ) and Si-H (LC2 ) terminals into well-designed poly(styrene)-block-polybutadienes (PS-b-PBs) and poly(4-vinylphenyldimethylsilane)-block-polybutadienes (PVPDMS-b-PBs) produced from living anionic polymerization (LAP). By the principle of modular functionalization, it is demonstrated that mono-functionalized (PVPDMS-g-LC1 )-b-PB and PS-b-(PB-g-LC2 ) not only maintain independence but also have cooperative contributions to bi-functionalized (PVPDMS-g-LC1 )-b-(PB-g-LC2 ) in terms of mesomorphic performances and microphase separation, which is evident from differential scanning calorimetry (DSC) and polarized optical morphologies (POM) and identified by powder X-ray diffractions. With the application of the new principle of modular functionalization, local-crosslinked liquid crystalline networks (LCNs) with controlled functionality are successfully synthesized, which show well-controlled phase behaviors over molecular compositions.
Collapse
Affiliation(s)
- Lan Lei
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Li Han
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Hongwei Ma
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Ruixue Zhang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Shuai Huang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Heyu Shen
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Lincan Yang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Chao Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Songbo Zhang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Hongyuan Bai
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Qingchi Ma
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, China
| |
Collapse
|
10
|
Dong H, Liu G, Zhang H. Preparation of photodeformable azobenzene polymer fibers by post-crosslinking strategy: Understanding the structure-property relationship. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Khayer K, Haque T. Density Functional Theory Calculation on the Structural, Electronic, and Optical Properties of Fluorene-Based Azo Compounds. ACS OMEGA 2020; 5:4507-4531. [PMID: 32175498 PMCID: PMC7066559 DOI: 10.1021/acsomega.9b03839] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/19/2020] [Indexed: 06/02/2023]
Abstract
In the present work, a theoretical study was carried out to study the molecular structure, harmonic vibrational frequencies, normal force field calculations, and Raman scattering activities for fluorene π-conjugation spacer containing azo-based dye named trans- and cis-bis(9H-fluoren-2-yl)diazene (AzoFL) at density functional theory using B3LYP (Becke-3-Lee-Yang-Parr) functional and 6-31+G(d,p) basis set. The theoretical calculations have also been performed with fluorene and the trans- and cis-isomers of diazene, difluorodiazene by the same method DFT-B3LYP/6-31+G(d,p) and basis set. The present DFT calculation shows that the trans-AzoFL is more stable than the cis-AzoFL by 16.33 kcal/mol. We also report the results of new assignments of vibrational frequencies obtained on the basis of the present calculations. Time-dependent DFT (TD-DFT) and ZIndo calculations have been performed to study the UV-vis absorption behavior and frontier molecular orbitals for the above-mentioned compounds. The UV-vis spectrum from TD-DFT calculation shows the π-π* transition bands at λmax 423.53 nm (εmax 6.0 × 104 M-1 cm-1) and at λmax 359.45 nm (εmax 1.7 × 104 M-1 cm-1), respectively, for trans- and cis-AzoFL. Compared to parent trans-diazene (λmax 178.97 nm), a significant variation to longer wavelength (∼245 nm) is observed due to the incorporation of the fluorene (FL) ring into the -N=N- backbone. The co-planarity of the two FL rings with the longer N=N bond length compared to the unsubstituted parent diazene indicates the effective red shift due to the extended π-conjugation in trans-AzoFL. The nonplanarity of cis-AzoFL (48.1° tilted about the C-N bond relative to the planar N=N-C bond) reflects its ∼64 nm blue shift compared to that of trans-counterpart.
Collapse
Affiliation(s)
- Khurshida Khayer
- Department of Chemistry, Jahangirnagar
University, Savar, Dhaka 1342, Bangladesh
| | - Tahmina Haque
- Department of Chemistry, Jahangirnagar
University, Savar, Dhaka 1342, Bangladesh
| |
Collapse
|
12
|
Tsuei M, Shivrayan M, Kim YK, Thayumanavan S, Abbott NL. Optical “Blinking” Triggered by Collisions of Single Supramolecular Assemblies of Amphiphilic Molecules with Interfaces of Liquid Crystals. J Am Chem Soc 2020; 142:6139-6148. [DOI: 10.1021/jacs.9b13360] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Michael Tsuei
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Manisha Shivrayan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Young-Ki Kim
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Nicholas L. Abbott
- Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
13
|
Dattler D, Fuks G, Heiser J, Moulin E, Perrot A, Yao X, Giuseppone N. Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors. Chem Rev 2019; 120:310-433. [PMID: 31869214 DOI: 10.1021/acs.chemrev.9b00288] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Precise control over molecular movement is of fundamental and practical importance in physics, biology, and chemistry. At nanoscale, the peculiar functioning principles and the synthesis of individual molecular actuators and machines has been the subject of intense investigations and debates over the past 60 years. In this review, we focus on the design of collective motions that are achieved by integrating, in space and time, several or many of these individual mechanical units together. In particular, we provide an in-depth look at the intermolecular couplings used to physically connect a number of artificial mechanically active molecular units such as photochromic molecular switches, nanomachines based on mechanical bonds, molecular rotors, and light-powered rotary motors. We highlight the various functioning principles that can lead to their collective motion at various length scales. We also emphasize how their synchronized, or desynchronized, mechanical behavior can lead to emerging functional properties and to their implementation into new active devices and materials.
Collapse
Affiliation(s)
- Damien Dattler
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Gad Fuks
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Joakim Heiser
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Emilie Moulin
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Alexis Perrot
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Xuyang Yao
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| | - Nicolas Giuseppone
- SAMS Research Group, Institute Charles Sadron, CNRS , University of Strasbourg , 23 rue du Loess , BP 84047, 67034 Strasbourg Cedex 2 , France
| |
Collapse
|
14
|
Pang X, Lv JA, Zhu C, Qin L, Yu Y. Photodeformable Azobenzene-Containing Liquid Crystal Polymers and Soft Actuators. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1904224. [PMID: 31595576 DOI: 10.1002/adma.201904224] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/10/2019] [Indexed: 05/22/2023]
Abstract
Photodeformable liquid crystal polymers (LCPs) that adapt their shapes in response to light have aroused a dramatic growth of interest in the past decades, since light as a stimulus enables the remote control and diverse deformations of materials. This review focuses on the growing research on photodeformable LCPs, including their basic actuation mechanisms, the various deformation modes, the newly designed molecular structures, and the improvement of processing techniques. Special attention is devoted to the novel molecular structures of LCPs, which allow for easy processing and alignment. The soft actuators with various deformation modes such as bending, twisting, and rolling in response to light are also covered with the emphasis on their photo-induced bionic functions. Potential applications in energy harvesting, self-cleaning surfaces, sensors, and photo-controlled microfluidics are further illustrated. The existing challenges and future directions are discussed at the end of this review.
Collapse
Affiliation(s)
- Xinlei Pang
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Jiu-An Lv
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Chongyu Zhu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Lang Qin
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yanlei Yu
- Department of Materials Science & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| |
Collapse
|
15
|
Ditter D, Braun LB, Zentel R. Influences of Ortho‐Fluoroazobenzenes on Liquid Crystalline Phase Stability and 2D (Planar) Actuation Properties of Liquid Crystalline Elastomers. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- David Ditter
- Institut für Organische Chemie Johannes Gutenberg‐Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Lukas B. Braun
- Institut für Organische Chemie Johannes Gutenberg‐Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| | - Rudolf Zentel
- Institut für Organische Chemie Johannes Gutenberg‐Universität Mainz Duesbergweg 10–14 55128 Mainz Germany
| |
Collapse
|
16
|
Liu M, Yin L, Wang L, Miao T, Cheng X, Wang Y, Zhang W, Zhu X. Synthesis of monodisperse aromatic azo oligomers toward gaining new insight into the isomerization of π-conjugated azo systems. Polym Chem 2019. [DOI: 10.1039/c9py00001a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The unique E → Z photoisomerization mechanism of monodisperse fluorene-azo oligomers was studied and the trans-[trans–trans]n-cis model was proposed. This novel model will give new insight into the isomerization of π-conjugated azo systems.
Collapse
Affiliation(s)
- Meng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Lu Yin
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Laibing Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Tengfei Miao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiaoxiao Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yong Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
17
|
Hendrikx M, Ter Schiphorst J, van Heeswijk EPA, Koçer G, Knie C, Bléger D, Hecht S, Jonkheijm P, Broer DJ, Schenning APHJ. Re- and Preconfigurable Multistable Visible Light Responsive Surface Topographies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1803274. [PMID: 30353702 DOI: 10.1002/smll.201803274] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/05/2018] [Indexed: 05/22/2023]
Abstract
Light responsive materials that are able to change their shape are becoming increasingly important. However, preconfigurable bistable or even multi-stable visible light responsive coatings have not been reported yet. Such materials will require less energy to actuate and will have a longer lifetime. Here, it is shown that fluorinated azobenzenes can be used to create rewritable and pre-configurable responsive surfaces that show multi-stable topographies. These surface structures can be formed and removed by using low intensity green and blue light, respectively. Multistable preconfigured surface topographies can also be created in the absence of a mask. The method allows for full control over the surface structures as the topographical changes are directly linked to the molecular isomerization processes. Preliminary studies reveal that these light responsive materials are suitable as adaptive biological surfaces.
Collapse
Affiliation(s)
- Matthew Hendrikx
- Eindhoven University of Technology, Stimuli-responsive Functional Materials and Devices SFD, Het Kranenveld, Helix Building 14, 5600 MB, Eindhoven, The Netherlands
- Eindhoven University of Technology, Institute of Complex Molecular Systems, De Zaale, Ceres Building 7, 5612 AJ, Eindhoven, The Netherlands
| | - Jeroen Ter Schiphorst
- Eindhoven University of Technology, Stimuli-responsive Functional Materials and Devices SFD, Het Kranenveld, Helix Building 14, 5600 MB, Eindhoven, The Netherlands
- Eindhoven University of Technology, Institute of Complex Molecular Systems, De Zaale, Ceres Building 7, 5612 AJ, Eindhoven, The Netherlands
| | - Ellen P A van Heeswijk
- Eindhoven University of Technology, Stimuli-responsive Functional Materials and Devices SFD, Het Kranenveld, Helix Building 14, 5600 MB, Eindhoven, The Netherlands
| | - Gülistan Koçer
- TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Christopher Knie
- Humboldt-Universitat zu Berlin, Department of Chemistry and IRIS Adlershof, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - David Bléger
- Humboldt-Universitat zu Berlin, Department of Chemistry and IRIS Adlershof, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Stefan Hecht
- Humboldt-Universitat zu Berlin, Department of Chemistry and IRIS Adlershof, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Pascal Jonkheijm
- TechMed Centre and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Dirk J Broer
- Eindhoven University of Technology, Stimuli-responsive Functional Materials and Devices SFD, Het Kranenveld, Helix Building 14, 5600 MB, Eindhoven, The Netherlands
- Eindhoven University of Technology, Institute of Complex Molecular Systems, De Zaale, Ceres Building 7, 5612 AJ, Eindhoven, The Netherlands
| | - Albertus P H J Schenning
- Eindhoven University of Technology, Stimuli-responsive Functional Materials and Devices SFD, Het Kranenveld, Helix Building 14, 5600 MB, Eindhoven, The Netherlands
- Eindhoven University of Technology, Institute of Complex Molecular Systems, De Zaale, Ceres Building 7, 5612 AJ, Eindhoven, The Netherlands
| |
Collapse
|
18
|
Self-assembly of liquid-crystalline block copolymers in thin films: control of microdomain orientation. Polym J 2018. [DOI: 10.1038/s41428-018-0065-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Guin T, Settle MJ, Kowalski BA, Auguste AD, Beblo RV, Reich GW, White TJ. Layered liquid crystal elastomer actuators. Nat Commun 2018; 9:2531. [PMID: 29955053 PMCID: PMC6023890 DOI: 10.1038/s41467-018-04911-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/29/2018] [Indexed: 11/25/2022] Open
Abstract
Liquid crystalline elastomers (LCEs) are soft, anisotropic materials that exhibit large shape transformations when subjected to various stimuli. Here we demonstrate a facile approach to enhance the out-of-plane work capacity of these materials by an order of magnitude, to nearly 20 J/kg. The enhancement in force output is enabled by the development of a room temperature polymerizable composition used both to prepare individual films, organized via directed self-assembly to retain arrays of topological defect profiles, as well as act as an adhesive to combine the LCE layers. The material actuator is shown to displace a load >2500× heavier than its own weight nearly 0.5 mm.
Collapse
Affiliation(s)
- Tyler Guin
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH, 45433, USA
- Azimuth Corporation, 4027 Colonel Glenn Hwy, Beavercreek, OH, 45431, USA
| | - Michael J Settle
- Air Force Research Laboratory, Aerospace Systems Directorate, Wright-Patterson Air Force Base, OH, 45433, USA
- University of Dayton Research Institute, 1700 S Patterson Blvd, Dayton, OH, 45469, USA
| | - Benjamin A Kowalski
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH, 45433, USA
- Azimuth Corporation, 4027 Colonel Glenn Hwy, Beavercreek, OH, 45431, USA
| | - Anesia D Auguste
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Richard V Beblo
- Air Force Research Laboratory, Aerospace Systems Directorate, Wright-Patterson Air Force Base, OH, 45433, USA
- University of Dayton Research Institute, 1700 S Patterson Blvd, Dayton, OH, 45469, USA
| | - Gregory W Reich
- Air Force Research Laboratory, Aerospace Systems Directorate, Wright-Patterson Air Force Base, OH, 45433, USA
| | - Timothy J White
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, OH, 45433, USA.
| |
Collapse
|
20
|
Guin T, Kowalski BA, Rao R, Auguste AD, Grabowski CA, Lloyd PF, Tondiglia VP, Maruyama B, Vaia RA, White TJ. Electrical Control of Shape in Voxelated Liquid Crystalline Polymer Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1187-1194. [PMID: 29239172 DOI: 10.1021/acsami.7b13814] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Liquid crystal elastomers (LCEs) exhibit anisotropic mechanical, thermal, and optical properties. The director orientation within an LCE can be spatially localized into voxels [three-dimensional (3-D) volume elements] via photoalignment surfaces. Here, we prepare nanocomposites in which both the orientation of the LCE and single-walled carbon nanotube (SWNT) are locally and arbitrarily oriented in discrete voxels. The addition of SWNTs increases the stiffness of the LCE in the orientation direction, yielding a material with a 5:1 directional modulus contrast. The inclusion of SWNT modifies the thermomechanical response and, most notably, is shown to enable distinctive electromechanical deformation of the nanocomposite. Specifically, the incorporation of SWNTs sensitizes the LCE to a dc field, enabling uniaxial electrostriction along the orientation direction. We demonstrate that localized orientation of the LCE and SWNT allows complex 3-D shape transformations to be electrically triggered. Initial experiments indicate that the SWNT-polymer interfaces play a crucial role in enabling the electrostriction reported herein.
Collapse
Affiliation(s)
- Tyler Guin
- Air Force Research Laboratory, Materials and Manufacturing Directorate , 3005 Hobson Way, Wright-Patterson AFB, Ohio 45433-7750, United States
- Azimuth Corporation , 4027 Colonel Glenn Highway, Beavercreek, Ohio 45431, United States
| | - Benjamin A Kowalski
- Air Force Research Laboratory, Materials and Manufacturing Directorate , 3005 Hobson Way, Wright-Patterson AFB, Ohio 45433-7750, United States
- Azimuth Corporation , 4027 Colonel Glenn Highway, Beavercreek, Ohio 45431, United States
| | - Rahul Rao
- Air Force Research Laboratory, Materials and Manufacturing Directorate , 3005 Hobson Way, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Anesia D Auguste
- Air Force Research Laboratory, Materials and Manufacturing Directorate , 3005 Hobson Way, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Christopher A Grabowski
- Air Force Research Laboratory, Materials and Manufacturing Directorate , 3005 Hobson Way, Wright-Patterson AFB, Ohio 45433-7750, United States
- UES, Inc. , 4401 Dayton Xenia Rd, Beavercreek, Ohio 45432, United States
| | - Pamela F Lloyd
- Air Force Research Laboratory, Materials and Manufacturing Directorate , 3005 Hobson Way, Wright-Patterson AFB, Ohio 45433-7750, United States
- UES, Inc. , 4401 Dayton Xenia Rd, Beavercreek, Ohio 45432, United States
| | - Vincent P Tondiglia
- Air Force Research Laboratory, Materials and Manufacturing Directorate , 3005 Hobson Way, Wright-Patterson AFB, Ohio 45433-7750, United States
- Azimuth Corporation , 4027 Colonel Glenn Highway, Beavercreek, Ohio 45431, United States
| | - Benji Maruyama
- Air Force Research Laboratory, Materials and Manufacturing Directorate , 3005 Hobson Way, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Richard A Vaia
- Air Force Research Laboratory, Materials and Manufacturing Directorate , 3005 Hobson Way, Wright-Patterson AFB, Ohio 45433-7750, United States
| | - Timothy J White
- Air Force Research Laboratory, Materials and Manufacturing Directorate , 3005 Hobson Way, Wright-Patterson AFB, Ohio 45433-7750, United States
| |
Collapse
|
21
|
Chen Y, Wang L, Pan X, Wu J, Zhang W, Zhang Z, Zhu X. Establishment of a molecular design to obtain visible-light-activated azoxy polymer actuators. Polym Chem 2018. [DOI: 10.1039/c8py00199e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Visible-light-activated main-chain and hyperbranched azoxy polymers were prepared directly from bis-/trinitro-functionalized monomers via photochemical reduction.
Collapse
Affiliation(s)
- Yang Chen
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu
- Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Laibing Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu
- Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiangqiang Pan
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu
- Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jin'an Wu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu
- Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Wei Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu
- Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zhengbiao Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu
- Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu
- Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
22
|
Abstract
A light-driven polypropylene (PP) fabric as an actuator was fabricated in which a light-responsive polymeric film acts as an active layer and a PP fabric acts as a passive layer.
Collapse
Affiliation(s)
- Jiaojiao Shang
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- D-20146 Hamburg
- Germany
| | - Shaojian Lin
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- D-20146 Hamburg
- Germany
| | - Patrick Theato
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- D-20146 Hamburg
- Germany
- Institute for Chemical Technology and Polymer Chemistry
| |
Collapse
|
23
|
Liu Q, Zhan Y, Wei J, Ji W, Hu W, Yu Y. Dual-responsive deformation of a crosslinked liquid crystal polymer film with complex molecular alignment. SOFT MATTER 2017; 13:6145-6151. [PMID: 28795180 DOI: 10.1039/c7sm01291h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Crosslinked liquid crystal polymers (CLCPs) containing azobenzene mesogens have been developed as stimuli-responsive materials, which can undergo photodeformation and thus convert light energy into mechanical force. The deformation behavior of CLCPs is strongly influenced by the alignment of the mesogens; however, a precise control of the alignment domain at micro-scale is still a challenge. Here we report complex molecular alignment in the CLCP film by using photoalignment technology. First, azo dye SD1 is aligned in-plane by UV light with a discrete alternating striped director profile. The SD1 molecules in adjacent strips are aligned orthogonal, and the widths of the strips are controlled in several hundred micrometers by a photomask with grating patterns. Then the liquid crystal molecules in the CLCP film are aligned by SD1 through the anchoring effect on one side (SD1 side), and aligned perpendicular by the polyimide (PI) alignment layer on the other side (PI side). With these alignments, two kinds of splayed structures are formed through the depth of the film. When irradiated by UV light, the film bends toward the SD1 side with the bending direction along the diagonal of the film, determined by the resultant direction of molecular alignment on the SD1 side. When irradiated by blue light and heat, the bending direction is along the edge of the film. This dual-responsive deformable film with complex alignment is anticipated to be used in shape-changing biomedical devices, multiple controllable switches, and microactuators.
Collapse
Affiliation(s)
- Quan Liu
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | | | | | | | | | | |
Collapse
|
24
|
Pang X, Xu B, Qing X, Wei J, Yu Y. Photo-Induced Bending Behavior of Post-Crosslinked Liquid Crystalline Polymer/Polyurethane Blend Films. Macromol Rapid Commun 2017; 39. [PMID: 28665501 DOI: 10.1002/marc.201700237] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 05/13/2017] [Indexed: 12/31/2022]
Abstract
Photoresponsive blend films with post-crosslinked liquid crystalline polymer (CLCP) as a photosensitive component and flexible polyurethane (PU) as the matrix are successfully fabricated. After being uniaxially stretched, even at low concentration, the azobenzene-containing CLCP effectively transfers its photoresponsiveness to the photoinert PU matrix, resulting in the fast photo-induced bending behavior of whole blend film thanks to the effective dispersion of CLCP. Specifically, the blend film shows photo-induced deformations upon exposure to unpolarized UV light at ambient temperature. The film unbends after thermal treatment, and the randomly orientated mesogens in the film can be realigned by the mechanical stretching, which endows the film with a reversible deformation behavior. The photosensitive blend film possesses favorable mechanical property and good processability at low cost, and it is a promising candidate for a new generation of actuators.
Collapse
Affiliation(s)
- Xinlei Pang
- Department of Materials Science, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Bo Xu
- Department of Materials Science, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Xin Qing
- Department of Materials Science, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Jia Wei
- Department of Materials Science, Fudan University, 220 Handan Road, Shanghai, 200433, China
| | - Yanlei Yu
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai, 200433, China
| |
Collapse
|
25
|
Zeng H, Wani OM, Wasylczyk P, Priimagi A. Light‐Driven, Caterpillar‐Inspired Miniature Inching Robot. Macromol Rapid Commun 2017; 39. [DOI: 10.1002/marc.201700224] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 04/28/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Hao Zeng
- Laboratory of Chemistry and BioengineeringTampere University of Technology P.O. Box 541 FI‐33101 Tampere Finland
| | - Owies M. Wani
- Laboratory of Chemistry and BioengineeringTampere University of Technology P.O. Box 541 FI‐33101 Tampere Finland
| | - Piotr Wasylczyk
- Photonic Nanostructure FacilityInstitute of Experimental PhysicsFaculty of PhysicsUniversity of Warsaw ul. Pasteura 5 02‐093 Warsaw Poland
| | - Arri Priimagi
- Laboratory of Chemistry and BioengineeringTampere University of Technology P.O. Box 541 FI‐33101 Tampere Finland
| |
Collapse
|