1
|
Qi Y, Lv H, Huang Q, Pan G. The Synergetic Effect of 3D Printing and Electrospinning Techniques in the Fabrication of Bone Scaffolds. Ann Biomed Eng 2024; 52:1518-1533. [PMID: 38530536 DOI: 10.1007/s10439-024-03500-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
The primary goal of bone tissue engineering is to restore and rejuvenate bone defects by using a suitable three-dimensional scaffold, appropriate cells, and growth hormones. Various scaffolding methods are used to fabricate three-dimensional scaffolds, which provide the necessary environment for cell activity and bone formation. Multiple materials may be used to create scaffolds with hierarchical structures that are optimal for cell growth and specialization. This study examines a notion for creating an optimal framework for bone regeneration using a combination of the robocasting method and the electrospinning approach. Research indicates that the integration of these two procedures enhances the benefits of each method and provides a rationale for addressing their shortcomings via this combination. The hybrid approach is anticipated to provide a manufactured scaffold that can effectively replace bone defects while possessing the necessary qualities for bone regeneration.
Collapse
Affiliation(s)
- Yongjie Qi
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Hangying Lv
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Qinghua Huang
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China
| | - Guangyong Pan
- School of Intelligent Manufacturing, Zhejiang Guangsha Vocational and Technical University of Construction, Dongyang, 322100, China.
| |
Collapse
|
2
|
Thirunavukarasu AJ, Morales-Wong F, Halim NSH, Han E, Koh SK, Zhou L, Kocaba V, Venkatraman S, Mehta JS, Riau AK. Nanohydroxyapatite Coating Attenuates Fibrotic and Immune Responses to Promote Keratoprosthesis Biointegration in Advanced Ocular Surface Disorders. ACS APPLIED MATERIALS & INTERFACES 2024; 16:25892-25908. [PMID: 38740379 PMCID: PMC11129699 DOI: 10.1021/acsami.4c04077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024]
Abstract
Keratoprosthesis (KPro) implantation is frequently the only recourse for patients with severe corneal disease. However, problems arise due to inadequate biointegration of the KPro, particularly the PMMA optical cylinder, such as tissue detachment, tissue melting, or eye-threatening infection in the interface. Here, using the AuroKPro as a model prosthesis, a surface functionalization approach─coating the optical cylinder with nanohydroxyapatite (nHAp)─was trialed in rabbit eyes with and without a proceeding chemical injury. In chemically injured eyes, which simulated total limbal epithelial stem cell deficiency, clear benefits were conferred by the coating. The total modified Hackett-McDonald score and area of tissue apposition differences 12 weeks after implantation were 5.0 and 22.5%, respectively. Mechanical push-in tests revealed that 31.8% greater work was required to detach the tissues. These differences were less marked in uninjured eyes, which showed total score and tissue apposition differences of 2.5 and 11.5%, respectively, and a work difference of 23.5%. The improved biointegration could be contributed by the attenuated expression of fibronectin (p = 0.036), collagen 3A1 (p = 0.033), and α-smooth muscle actin (p = 0.045)─proteins typically upregulated during nonadherent fibrous capsule envelopment of bioinert material─adjacent to the optical cylinders. The coating also appeared to induce a less immunogenic milieu in the ocular surface tissue, evidenced by the markedly lower expression of tear proteins associated with immune and stimulus responses. Collectively, the level of these tear proteins in eyes with coated prostheses was 1.1 ± 13.0% of naïve eyes: substantially lower than with noncoated KPros (246.5 ± 79.3% of naïve, p = 0.038). Together, our results indicated that nHAp coating may reduce the risk of prosthesis failure in severely injured eyes, which are representative of the cohort of KPro patients.
Collapse
Affiliation(s)
- Arun J. Thirunavukarasu
- Tissue
Engineering and Cell Therapy Group, Singapore
Eye Research Institute, Singapore 169856, Singapore
- Oxford
University Clinical Academic Graduate School, University of Oxford, Oxford OX3 9DU, United
Kingdom
| | - Fernando Morales-Wong
- Tissue
Engineering and Cell Therapy Group, Singapore
Eye Research Institute, Singapore 169856, Singapore
- Singapore
National Eye Centre, Singapore 168751, Singapore
- Autonomous
University of Nuevo Leon, San Nicolas
de los Garza, Nuevo Leon 66455, Mexico
| | | | - Evelina Han
- Tissue
Engineering and Cell Therapy Group, Singapore
Eye Research Institute, Singapore 169856, Singapore
| | - Siew Kwan Koh
- Ocular
Proteomics Group, Singapore Eye Research
Institute, Singapore 169856, Singapore
| | - Lei Zhou
- Department
of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Centre
for Eye and Vision Research, Shatin, Hong Kong
| | - Viridiana Kocaba
- Tissue
Engineering and Cell Therapy Group, Singapore
Eye Research Institute, Singapore 169856, Singapore
| | - Subramanian Venkatraman
- Department
of Materials Science and Engineering, National
University of Singapore, Singapore 117575, Singapore
- iHealthTech, National University of Singapore, Singapore 117599, Singapore
| | - Jodhbir S. Mehta
- Tissue
Engineering and Cell Therapy Group, Singapore
Eye Research Institute, Singapore 169856, Singapore
- Singapore
National Eye Centre, Singapore 168751, Singapore
- Ophthalmology
and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Andri K. Riau
- Tissue
Engineering and Cell Therapy Group, Singapore
Eye Research Institute, Singapore 169856, Singapore
- Ophthalmology
and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
3
|
Al-Kaisy HA, Al-Tamimi BH, Hamad QA, Abed MS. Investigation of Roughness, Morphology, and Wettability Characteristics of Biopolymer Composite Coating on SS 316L for Biomedical Applications. Int J Biomater 2024; 2024:5568047. [PMID: 38268700 PMCID: PMC10807940 DOI: 10.1155/2024/5568047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 01/26/2024] Open
Abstract
This project aims to create a 316L stainless steel coated with a biocomposite based on chitosan for use in the biomedical industry. To completely coat the material, the dip-coating technique was used to apply plain chitosan, chitosan nanosilver, chitosan biotin, and chitosan-nanosilver-biotin in that order. This coating's surface morphology was investigated with field emission scanning electron microscopy (FESEM). Surface roughness, average size distribution, and 2D and 3D surface tomography were all investigated using scanning probe microscopy and atomic force microscopy (SPM and AFM). The Fourier transform infrared (FTIR) spectroscopy technique was used to quantify changes in functional groups. To evaluate the coated samples' wettability, contact angle measurements were also performed. The chitosan (CS) + nanosilver, CS + biotin, and CS + biotin + nanosilver-coated 316L stainless steel showed roughness values of about 8.68, 4.21, and 3.3 nm, respectively, compared with the neat chitosan coating, which exhibits 12 nm roughness, indicating a strong effect of biotin and nanosilver on surface topography whereas the coating layers were homogenous, measuring around 33 nm in thickness. For CS + nanosilver and CS + biotin, the average size of agglomerates was approximately 444 nm and 355 nm, respectively. The coatings showed adequate wettability for biomedical applications, were homogeneous, and had no cracks. Their contact angles were around 51-75 degrees. All of these results point to the composite coating's intriguing potential for use in biological applications.
Collapse
Affiliation(s)
- Hanaa A. Al-Kaisy
- Department of Materials Engineering, University of Technology, Baghdad, Iraq
| | - Basma H. Al-Tamimi
- Department of Materials Engineering, University of Technology, Baghdad, Iraq
| | - Qahtan A. Hamad
- Department of Materials Engineering, University of Technology, Baghdad, Iraq
| | - Mayyadah S. Abed
- Department of Materials Engineering, University of Technology, Baghdad, Iraq
| |
Collapse
|
4
|
Dorozhkin SV. There Are over 60 Ways to Produce Biocompatible Calcium Orthophosphate (CaPO4) Deposits on Various Substrates. JOURNAL OF COMPOSITES SCIENCE 2023; 7:273. [DOI: 10.3390/jcs7070273] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
A The present overview describes various production techniques for biocompatible calcium orthophosphate (abbreviated as CaPO4) deposits (coatings, films and layers) on the surfaces of various types of substrates to impart the biocompatible properties for artificial bone grafts. Since, after being implanted, the grafts always interact with the surrounding biological tissues at the interfaces, their surface properties are considered critical to clinical success. Due to the limited number of materials that can be tolerated in vivo, a new specialty of surface engineering has been developed to desirably modify any unacceptable material surface characteristics while maintaining the useful bulk performance. In 1975, the development of this approach led to the emergence of a special class of artificial bone grafts, in which various mechanically stable (and thus suitable for load-bearing applications) implantable biomaterials and artificial devices were coated with CaPO4. Since then, more than 7500 papers have been published on this subject and more than 500 new publications are added annually. In this review, a comprehensive analysis of the available literature has been performed with the main goal of finding as many deposition techniques as possible and more than 60 methods (double that if all known modifications are counted) for producing CaPO4 deposits on various substrates have been systematically described. Thus, besides the introduction, general knowledge and terminology, this review consists of two unequal parts. The first (bigger) part is a comprehensive summary of the known CaPO4 deposition techniques both currently used and discontinued/underdeveloped ones with brief descriptions of their major physical and chemical principles coupled with the key process parameters (when possible) to inform readers of their existence and remind them of the unused ones. The second (smaller) part includes fleeting essays on the most important properties and current biomedical applications of the CaPO4 deposits with an indication of possible future developments.
Collapse
Affiliation(s)
- Sergey V. Dorozhkin
- Faculty of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1-2, Moscow 119991, Russia
| |
Collapse
|
5
|
Mičky S, Bodík M, Mičetić M, Fetzer F, Strienz M, Held V, Jergel M, Schnepf A, Schreiber F, Šiffalovič P. Multilayer Langmuir Film of Monodisperse Au Nanoclusters: Unusual Growth via Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14850-14856. [PMID: 36440917 DOI: 10.1021/acs.langmuir.2c02514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The assembly of nanomaterials into thin films is an important area in the nanofabrication of novel devices. The monodispersity of nanoparticles plays an essential role in the resulting quality of the assembled mono- and multilayers. Larger polydispersity leads to smaller lateral correlation lengths and smaller domains of aligned nanoparticles, thus resulting in more point and line defects. Perfectly monodisperse nanoparticles should therefore minimize the number of defects in the assembled films. Despite tremendous progress in reducing the polydispersity of nanoparticles, there has been limited research on the assembly of thin films out of perfectly monodisperse nanoclusters. Here, we show a formation of Langmuir films using perfectly monodisperse gold nanoclusters with composition Au32(nBu3P)12Cl8 exhibiting a diameter of 1.8 nm. Using both in situ and ex situ small-angle X-ray scattering, we show that the monolayer formed on a Langmuir-Blodgett trough exhibits long-range order. Moreover, after compressing the monolayer, we found that the stress accumulated prior to the monolayer collapse triggers a transition to a short-range order not previously reported. If such monolayer is compressed further, the second layer is not formed as in the case of standard nanoparticles. Instead, a growth of islands by an odd number of layers is observed, leading to a thin film with a structure consisting of two different orientations of the hexagonal lattice. Such anomalous behavior may have implications for the possibilities of thin-film formation.
Collapse
Affiliation(s)
- Simon Mičky
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11Bratislava, Slovakia
| | - Michal Bodík
- Nanotechnology Group, ETH Zürich, Säumerstrasse 4, 8803Rüschlikon, Switzerland
| | | | - Florian Fetzer
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, D-72076Tübingen, Germany
| | - Markus Strienz
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, D-72076Tübingen, Germany
| | - Vladimír Held
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11Bratislava, Slovakia
| | - Matej Jergel
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11Bratislava, Slovakia
- Center for Advanced Materials Application, Dúbravská cesta 9, 845 11Bratislava, Slovakia
| | - Andreas Schnepf
- Chemistry Department, University Tübingen, Auf der Morgenstelle 18, D-72076Tübingen, Germany
| | - Frank Schreiber
- Institut für Angewandte Physik, Universität Tübingen, Auf der Morgenstelle 10, D-72076Tübingen, Germany
| | - Peter Šiffalovič
- Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11Bratislava, Slovakia
- Center for Advanced Materials Application, Dúbravská cesta 9, 845 11Bratislava, Slovakia
| |
Collapse
|
6
|
Mansoor B, Chen W. Nanoparticle deposition pattern during colloidal droplet evaporation as in-situ investigated by Low-Field NMR: The critical role of bound water. J Colloid Interface Sci 2022; 613:709-719. [DOI: 10.1016/j.jcis.2022.01.083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/17/2023]
|
7
|
binte M. Yusoff NZ, Riau AK, Yam GHF, binte Halim NSH, Mehta JS. Isolation and Propagation of Human Corneal Stromal Keratocytes for Tissue Engineering and Cell Therapy. Cells 2022; 11:cells11010178. [PMID: 35011740 PMCID: PMC8750693 DOI: 10.3390/cells11010178] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 12/13/2022] Open
Abstract
The human corneal stroma contains corneal stromal keratocytes (CSKs) that synthesize and deposit collagens and keratan sulfate proteoglycans into the stromal matrix to maintain the corneal structural integrity and transparency. In adult corneas, CSKs are quiescent and arrested in the G0 phase of the cell cycle. Following injury, some CSKs undergo apoptosis, whereas the surviving cells are activated to become stromal fibroblasts (SFs) and myofibroblasts (MyoFBs), as a natural mechanism of wound healing. The SFs and MyoFBs secrete abnormal extracellular matrix proteins, leading to corneal fibrosis and scar formation (corneal opacification). The issue is compounded by the fact that CSK transformation into SFs or MyoFBs is irreversible in vivo, which leads to chronic opacification. In this scenario, corneal transplantation is the only recourse. The application of cell therapy by replenishing CSKs, propagated in vitro, in the injured corneas has been demonstrated to be efficacious in resolving early-onset corneal opacification. However, expanding CSKs is challenging and has been the limiting factor for the application in corneal tissue engineering and cell therapy. The supplementation of serum in the culture medium promotes cell division but inevitably converts the CSKs into SFs. Similar to the in vivo conditions, the transformation is irreversible, even when the SF culture is switched to a serum-free medium. In the current article, we present a detailed protocol on the isolation and propagation of bona fide human CSKs and the morphological and genotypic differences from SFs.
Collapse
Affiliation(s)
- Nur Zahirah binte M. Yusoff
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (N.Z.b.M.Y.); (A.K.R.); (N.S.H.b.H.)
| | - Andri K. Riau
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (N.Z.b.M.Y.); (A.K.R.); (N.S.H.b.H.)
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Gary H. F. Yam
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Nuur Shahinda Humaira binte Halim
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (N.Z.b.M.Y.); (A.K.R.); (N.S.H.b.H.)
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore; (N.Z.b.M.Y.); (A.K.R.); (N.S.H.b.H.)
- Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
- Corneal and External Eye Disease Department, Singapore National Eye Centre, Singapore 168751, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Correspondence: ; Tel.: +65-6322-8378
| |
Collapse
|
8
|
El Hariri El Nokab M, Sebakhy KO. Solid State NMR Spectroscopy a Valuable Technique for Structural Insights of Advanced Thin Film Materials: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1494. [PMID: 34200088 PMCID: PMC8228666 DOI: 10.3390/nano11061494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 01/05/2023]
Abstract
Solid-state NMR has proven to be a versatile technique for studying the chemical structure, 3D structure and dynamics of all sorts of chemical compounds. In nanotechnology and particularly in thin films, the study of chemical modification, molecular packing, end chain motion, distance determination and solvent-matrix interactions is essential for controlling the final product properties and applications. Despite its atomic-level research capabilities and recent technical advancements, solid-state NMR is still lacking behind other spectroscopic techniques in the field of thin films due to the underestimation of NMR capabilities, availability, great variety of nuclei and pulse sequences, lack of sensitivity for quadrupole nuclei and time-consuming experiments. This article will comprehensively and critically review the work done by solid-state NMR on different types of thin films and the most advanced NMR strategies, which are beyond conventional, and the hardware design used to overcome the technical issues in thin-film research.
Collapse
Affiliation(s)
- Mustapha El Hariri El Nokab
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands;
| | - Khaled O. Sebakhy
- Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
9
|
Jang CH, Kim W, Kim G. Effects of fibrous collagen/CDHA/hUCS biocomposites on bone tissue regeneration. Int J Biol Macromol 2021; 176:479-489. [PMID: 33571590 DOI: 10.1016/j.ijbiomac.2021.02.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 01/24/2021] [Accepted: 02/06/2021] [Indexed: 12/17/2022]
Abstract
Collagen- and bioceramic-based composites have been widely used in hard tissue engineering because they are analogous to the organic/inorganic constituents of native bones. However, biocomposites based on collagen and bioceramics show low mechanical stiffness and limited osteogenic activities. To elevate the low biophysical and biological activities, we have introduced a new biocomposite structure. Herein, we propose a biocomposite mimicking not only the physical structure of the extracellular matrix (ECM) structure but also the biochemical components of native bone tissues. Several components including fibrillated collagen, calcium-deficient hydroxyapatite (CDHA) obtained from α-tricalcium phosphate hydrolysis, and human umbilical cord serum (hUCS) were used to generate a unique structure of the biocomposite. The 3D-printed composites were topographically similar to the nanofibrous ECM and exhibited a mechanically stable structure. We also evaluated the in vitro biocompatibilities of the biocomposite using human adipose stem cells and found that the collagen/hUCS/CDHA scaffold accelerated the in vitro osteogenic differentiation of human adipose-derived stem cells and in vivo osteogenesis in a mastoid obliterated rat model.
Collapse
Affiliation(s)
- Chul Ho Jang
- Department of Otolaryngology, Chonnam National University Medical School, Gwangju 61469, South Korea.
| | - WonJin Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea
| | - GeunHyung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University (SKKU), Suwon 16419, South Korea; Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
10
|
Sharifi S, Islam MM, Sharifi H, Islam R, Nilsson PH, Dohlman CH, Mollnes TE, Paschalis EI, Chodosh J. Sputter Deposition of Titanium on Poly(Methyl Methacrylate) Enhances Corneal Biocompatibility. Transl Vis Sci Technol 2020; 9:41. [PMID: 33442495 PMCID: PMC7774111 DOI: 10.1167/tvst.9.13.41] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 11/15/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To evaluate titanium (Ti) sputtering of the poly(methyl methacrylate) (PMMA) stem of the Boston Keratoprosthesis (BK) as a method to enhance interfacial adhesion between the PMMA and the recipient corneal tissue. Methods PMMA specimens were plasma treated with Ar/O2 and coated with Ti using a DC magnetron sputtering instrument. The topography and hydrophilicity of the surfaces were characterized using atomic force microscopy and a water contact angle instrument, respectively. Scratch hardness and adhesion of the Ti film were measured using a mechanical tester. Biocompatibility assessments were performed using cultured human corneal fibroblasts and whole blood ex vivo. The optical quality of the Ti sputtered BK was evaluated using a custom-made optical bench. Results By contact angle studies, the Ti coating improved PMMA hydrophilicity to match that of medical-grade Ti (Ti-6Al-4V-ELI). Ti sputtering of contact surfaces resulted in a plate-like morphology with increased surface roughness, without impacting the transparency of the BK optical component. Scratch testing indicated that the mechanical behavior of the Ti coating was similar to that of casted Ti, and the coating was stable in pull-off adhesion testing. Sputtered Ti film was highly biocompatible based on tests of cell viability, adhesion, proliferation, differentiation, collagen deposition, and keratocan expression, the properties of which exceeded those of uncoated PMMA and did not induce increased complement activation. Conclusions Titanium coating of the BK stem generated a mechanically and biologically favorable interface, which may help to enhance corneal stromal adhesion and biocompatibility. Translational Relevance Improving the biocompatibility of the BK PMMA stem may improve long-term outcomes of implantation.
Collapse
Affiliation(s)
- Sina Sharifi
- Disruptive Technology Laboratory and Schepens Eye Research Institute, Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Mohammad Mirazul Islam
- Disruptive Technology Laboratory and Schepens Eye Research Institute, Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Hannah Sharifi
- Disruptive Technology Laboratory and Schepens Eye Research Institute, Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rakibul Islam
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway
| | - Per H Nilsson
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway.,Linnaeus Center for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Claes H Dohlman
- Disruptive Technology Laboratory and Schepens Eye Research Institute, Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, Rikshospitalet, University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, Bodø, Norway; Faculty of Health Sciences, K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Eleftherios I Paschalis
- Disruptive Technology Laboratory and Schepens Eye Research Institute, Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - James Chodosh
- Disruptive Technology Laboratory and Schepens Eye Research Institute, Massachusetts Eye and Ear; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Biomimetic vs. Direct Approach to Deposit Hydroxyapatite on the Surface of Low Melting Point Polymers for Tissue Engineering. NANOMATERIALS 2020; 10:nano10112162. [PMID: 33138141 PMCID: PMC7693928 DOI: 10.3390/nano10112162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 01/27/2023]
Abstract
Polymers are widely used in many applications in the field of biomedical engineering. Among eclectic selections of polymers, those with low melting temperature (Tm < 200 °C), such as poly(methyl methacrylate), poly(lactic-co-glycolic acid), or polyethylene, are often used in bone, dental, maxillofacial, and corneal tissue engineering as substrates or scaffolds. These polymers, however, are bioinert, have a lack of reactive surface functional groups, and have poor wettability, affecting their ability to promote cellular functions and biointegration with the surrounding tissue. Improving the biointegration can be achieved by depositing hydroxyapatite (HAp) on the polymeric substrates. Conventional thermal spray and vapor phase coating, including the Food and Drug Administration (FDA)-approved plasma spray technique, is not suitable for application on the low Tm polymers due to the high processing temperature, reaching more than 1000 °C. Two non-thermal HAp coating approaches have been described in the literature, namely, the biomimetic deposition and direct nanoparticle immobilization techniques. In the current review, we elaborate on the unique features of each technique, followed by discussing the advantages and disadvantages of each technique to help readers decide on which method is more suitable for their intended applications. Finally, the future perspectives of the non-thermal HAp coating are given in the conclusion.
Collapse
|
12
|
Dave TV, Nayak A, Palo M, Goud Y, Tripuraneni D, Gupta S. Custom ocular prosthesis-related concerns: patient feedback survey-based report vis-à-vis objective clinical grading scales. Orbit 2020; 40:357-363. [PMID: 32744109 DOI: 10.1080/01676830.2020.1797826] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Purpose: To report the outcomes of a survey on patients' concerns and satisfaction with custom ocular prosthesis (COP) wear and compare with objective clinician grading scales.Methods: The questionnaire was answered by 156 participants. General social concerns and prosthesis-related concerns were plotted on a scale of 0 to 10, indicating least to maximum satisfaction and also not concerned to very concerned. Comparison between subjective patient and objective clinician scores was done.Results: The mean age at presentation was 27.53 ± 15.53 years (range 3-72 years).For patients that underwent a prior surgical procedure, mean satisfaction with the surgery was 9.42 ± 1.27. Mean satisfaction with the COP was 8.98 ± 1.75. The median satisfaction score for the primary surgery as well as for the outcome of the custom ocular prosthesis was 10. Commonest prosthesis-related concerns were reduced motility (mean 3 ± 2, median 3), watering, crusting and discharge (mean 2 ± 2, median 2), and difference in the size of the prosthetic eye relative to the other eye (mean 1 ± 2, median 1). Subjective patient concern responses and the objective clinician grading correlated strongly for movement of the prosthesis (r = -0.84, p < .0001), periocular fullness (r = 0.65, p < .0001), color of the prosthesis (r = -0.8, p < .0001) and size relative to the other eye (r = 0.7, p < .0001).Conclusion: Custom ocular prosthesis usage had a high satisfaction score with minimal concerns. Commonest prosthesis-related concerns correlated strongly with objective clinician grading.
Collapse
Affiliation(s)
- Tarjani Vivek Dave
- Ophthalmic Plastic Surgery Service, LV Prasad Eye Institute, Hyderabad, India
| | - Arpita Nayak
- Ophthalmic Plastic Surgery Service, LV Prasad Eye Institute, Hyderabad, India
| | - Mansha Palo
- Ocular Prosthesis Laboratory, LV Prasad Eye Institute, Hyderabad, India
| | - Yashwanth Goud
- Ocular Prosthesis Laboratory, LV Prasad Eye Institute, Hyderabad, India
| | | | - Sachin Gupta
- Ocular Prosthesis Laboratory, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
13
|
Riau AK, Lwin NC, Gelfand L, Hu H, Liedberg B, Chodosh J, Venkatraman SS, Mehta JS. Surface modification of corneal prosthesis with nano-hydroxyapatite to enhance in vivo biointegration. Acta Biomater 2020; 107:299-312. [PMID: 31978623 DOI: 10.1016/j.actbio.2020.01.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 12/11/2022]
Abstract
The majority of clinical corneal prostheses (KPros) adopt a core-skirt configuration. This configuration is favored owing to the optic core (generally a cylindrical, acrylic-based material, such as PMMA), that not only provides a clear window for the patients' vision, but also confers resistance to biodegradability. The surrounding skirt (typically a biological material, such as corneal tissue) allows for host tissue integration. However, due to poor biointegration between the dissimilar core and skirt materials, it results in a weak adhesion at the interface, giving rise to clinical complications, such as bacterial infections in the tissue-PMMA interface and device extrusion. Here, we physically immobilized nano-hydroxyapatite (nHAp) on a PMMA cylinder via a dip-coating technique, to create a bioactive surface that improved biointegration in vivo. We established that the nHAp coating was safe and stable in the rabbit cornea over five weeks. More importantly, we found that apoptotic, wound healing and inflammatory responses to nHAp-coated PMMA were substantially milder than to non-coated PMMA. More mature collagen, similar to the non-operated cornea, was maintained in the corneal stroma adjacent to the nHAp-coated implant edge. However, around the non-coated cylinder, an abundant new and loose connective tissue formed, similar to bone tissue response to bioinert scaffolds. As a result of superior biointegration, tissue adhesion with nHAp-coated PMMA cylinders was also significantly enhanced compared to non-coated cylinders. This study set a precedent for the future application of the nHAp coating on clinical KPros. STATEMENT OF SIGNIFICANCE: Currently, all clinical corneal prostheses utilize as-manufactured, non-surface modified PMMA optic cylinder. The bioinert cylinder, however, has poor biointegration and adhesion with the surrounding biological tissue, which can give rise to postoperative complications, such as microbial invasion in the tissue-PMMA loose interface and PMMA optic cylinder extrusion. In the current study, we showed that surface modification of the PMMA cylinder with bioactive nano-hydroxyapatite (nHAp) significantly enhanced its biointegration with corneal stromal tissue in vivo. The superior biointegration of the nHAp-coated PMMA was signified by a more attenuated corneal wound healing, inflammatory and fibrotic response, and better tissue apposition, as well as a significantly improved corneal stromal tissue adhesion when compared to the non-coated PMMA.
Collapse
|
14
|
Li X, Zhang W, Lin W, Qiu H, Qi Y, Ma X, Qi H, He Y, Zhang H, Qian J, Zhang G, Gao R, Zhang D, Ding J. Long-Term Efficacy of Biodegradable Metal-Polymer Composite Stents After the First and the Second Implantations into Porcine Coronary Arteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15703-15715. [PMID: 32159942 DOI: 10.1021/acsami.0c00971] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A biodegradable coronary stent is expected to eliminate the adverse events of an otherwise eternally implanting material after vessel remodeling. Both biocorrodible metals and biodegradable polymers have been tried as the matrix of the new-generation stent. Herein, we utilized a metal-polymer composite material to combine the advantages of the high mechanical strength of metals and the adjustable degradation rate of polymers to prepare the biodegradable stent. After coating polylactide (PLA) on the surface of iron, the degradation of iron was accelerated significantly owing to the decrease of local pH resulting from the hydrolysis of PLA, etc. We implanted the metal-polymer composite stent (MPS) into the porcine artery and examined its degradation in vivo, with the corresponding metal-based stent (MBS) as a control. Microcomputed tomography (micro-CT), coronary angiography (CA), and optical coherence tomography (OCT) were performed to observe the stents and vessels during the animal experiments. The MPS exhibited faster degradation than MBS, and the inflammatory response of MPS was acceptable 12 months after implantation. Additionally, we implanted another MPS after 1-year implantation of the first MPS to investigate the result of the MPS in the second implantation. The feasibility of the biodegradable MPS in second implantation in mammals was also confirmed.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Wanqian Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Wenjiao Lin
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Hong Qiu
- Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Yongli Qi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xun Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Haiping Qi
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Yao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Hongjie Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jie Qian
- Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Gui Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Runlin Gao
- Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Deyuan Zhang
- R&D Center, Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen 518057, China
- R&D Center, Biotyx Medical (Shenzhen) Co., Ltd., Shenzhen 518109, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
15
|
Novel Synthesis of Core-Shell Biomaterials from Polymeric Filaments with a Bioceramic Coating for Biomedical Applications. COATINGS 2020. [DOI: 10.3390/coatings10030283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone tissue engineering is constantly in need of new material development with improved biocompatibility or mechanical features closer to those of natural bone. Other important factors are the sustainability, cost, and origin of the natural precursors involved in the technological process. This study focused on two widely used polymers in tissue engineering, namely polylactic acid (PLA) and thermoplastic polyurethane (TPU), as well as bovine-bone-derived hydroxyapatite (HA) for the manufacturing of core-shell structures. In order to embed the ceramic particles on the polymeric filaments surface, the materials were introduced in an electrical oven at various temperatures and exposure times and under various pressing forces. The obtained core-shell structures were characterized in terms of morphology and composition, and a pull-out test was used to demonstrate the particles adhesion on the polymeric filaments structure. Thermal properties (modulated temperature and exposure time) and the pressing force’s influence upon HA particles’ insertion degree were evaluated. More to the point, the form variation factor and the mass variation led to the optimal technological parameters for the synthesis of core-shell materials for prospect additive manufacturing and regenerative medicine applications.
Collapse
|
16
|
Kim W, Kim G. Collagen/bioceramic-based composite bioink to fabricate a porous 3D hASCs-laden structure for bone tissue regeneration. Biofabrication 2019; 12:015007. [DOI: 10.1088/1758-5090/ab436d] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Riau AK, Aung TT, Setiawan M, Yang L, Yam GHF, Beuerman RW, Venkatraman SS, Mehta JS. Surface Immobilization of Nano-Silver on Polymeric Medical Devices to Prevent Bacterial Biofilm Formation. Pathogens 2019; 8:E93. [PMID: 31261752 PMCID: PMC6789847 DOI: 10.3390/pathogens8030093] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 01/22/2023] Open
Abstract
: Bacterial biofilm on medical devices is difficult to eradicate. Many have capitalized the anti-infective capability of silver ions (Ag+) by incorporating nano-silver (nAg) in a biodegradable coating, which is then laid on polymeric medical devices. However, such coating can be subjected to premature dissolution, particularly in harsh diseased tissue microenvironment, leading to rapid nAg clearance. It stands to reason that impregnating nAg directly onto the device, at the surface, is a more ideal solution. We tested this concept for a corneal prosthesis by immobilizing nAg and nano-hydroxyapatite (nHAp) on poly(methyl methacrylate), and tested its biocompatibility with human stromal cells and antimicrobial performance against biofilm-forming pathogens, Pseudomonas aeruginosa and Staphylococcus aureus. Three different dual-functionalized substrates-high Ag (referred to as 75:25 HAp:Ag); intermediate Ag (95:5 HAp:Ag); and low Ag (99:1 HAp:Ag) were studied. The 75:25 HAp:Ag was effective in inhibiting biofilm formation, but was cytotoxic. The 95:5 HAp:Ag showed the best selectivity among the three substrates; it prevented biofilm formation of both pathogens and had excellent biocompatibility. The coating was also effective in eliminating non-adherent bacteria in the culture media. However, a 28-day incubation in artificial tear fluid revealed a ~40% reduction in Ag+ release, compared to freshly-coated substrates. The reduction affected the inhibition of S. aureus growth, but not the P. aeruginosa. Our findings suggest that Ag+ released from surface-immobilized nAg diminishes over time and becomes less effective in suppressing biofilm formation of Gram-positive bacteria, such as S. aureus. This advocates the coating, more as a protection against perioperative and early postoperative infections, and less as a long-term preventive solution.
Collapse
Affiliation(s)
- Andri K Riau
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| | - Thet T Aung
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
| | - Melina Setiawan
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
| | - Liang Yang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gary H F Yam
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
- Ophthalmology and Visual Sciences ACP, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
| | - Roger W Beuerman
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
- Ophthalmology and Visual Sciences ACP, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
- SRP Neuroscience and Emerging Infectious Disease, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
| | - Subbu S Venkatraman
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jodhbir S Mehta
- Tissue Engineering and Stem Cell Group, Singapore Eye Research Institute, Singapore 169856, Singapore.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
- Ophthalmology and Visual Sciences ACP, Duke-National University of Singapore Medical School, Singapore 169857, Singapore.
- Corneal and External Eye Disease Service, Singapore National Eye Centre, Singapore 168751, Singapore.
| |
Collapse
|
18
|
Mobaraki M, Abbasi R, Omidian Vandchali S, Ghaffari M, Moztarzadeh F, Mozafari M. Corneal Repair and Regeneration: Current Concepts and Future Directions. Front Bioeng Biotechnol 2019; 7:135. [PMID: 31245365 PMCID: PMC6579817 DOI: 10.3389/fbioe.2019.00135] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 05/20/2019] [Indexed: 12/13/2022] Open
Abstract
The cornea is a unique tissue and the most powerful focusing element of the eye, known as a window to the eye. Infectious or non-infectious diseases might cause severe visual impairments that need medical intervention to restore patients' vision. The most prominent characteristics of the cornea are its mechanical strength and transparency, which are indeed the most important criteria considerations when reconstructing the injured cornea. Corneal strength comes from about 200 collagen lamellae which criss-cross the cornea in different directions and comprise nearly 90% of the thickness of the cornea. Regarding corneal transparency, the specific characteristics of the cornea include its immune and angiogenic privilege besides its limbus zone. On the other hand, angiogenic privilege involves several active cascades in which anti-angiogenic factors are produced to compensate for the enhanced production of proangiogenic factors after wound healing. Limbus of the cornea forms a border between the corneal and conjunctival epithelium, and its limbal stem cells (LSCs) are essential in maintenance and repair of the adult cornea through its support of corneal epithelial tissue repair and regeneration. As a result, the main factors which threaten the corneal clarity are inflammatory reactions, neovascularization, and limbal deficiency. In fact, the influx of inflammatory cells causes scar formation and destruction of the limbus zone. Current studies about wound healing treatment focus on corneal characteristics such as the immune response, angiogenesis, and cell signaling. In this review, studied topics related to wound healing and new approaches in cornea regeneration, which are mostly related to the criteria mentioned above, will be discussed.
Collapse
Affiliation(s)
- Mohammadmahdi Mobaraki
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Reza Abbasi
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Sajjad Omidian Vandchali
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Maryam Ghaffari
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fathollah Moztarzadeh
- Biomaterials Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Yao X, Liu R, Liang X, Ding J. Critical Areas of Proliferation of Single Cells on Micropatterned Surfaces and Corresponding Cell Type Dependence. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15366-15380. [PMID: 30964630 DOI: 10.1021/acsami.9b03780] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Material cues to influence cell proliferation are a fundamental issue in the fields of biomaterials, cell biology, tissue engineering, and regenerative medicine. This paper aims to investigate the proliferation of single mammal cells on micropatterned material surfaces. To this end, we prepared cell-adhesive circular microislands with 20 areas on the nonfouling background and systematically examined adhesion and proliferation behaviors of different kinds of single cells (primary stem and nonstem cells, cancer and normal cell lines) on micropatterns. On the basis of the analysis of experimental data, we found two critical areas about cell proliferation: (1) the critical spreading area of cells from almost no proliferation to confined proliferation, denoted as AP and (2) the critical spreading area of cells from confined proliferation to almost free proliferation, denoted as AFP. We further summarized the relative size relationship between these two critical areas and the characteristic areas of cell adhesion on both patterned and nonpatterned surfaces. While proliferation of single primary cells was affected by cell spreading, those cell lines, irrespective of normal and cancer cells, did not exhibit significant cell-spreading effects. As a result, this study reveals that proliferation of single cells is dependent upon spreading area, in particular for primary cells on material surfaces.
Collapse
Affiliation(s)
- Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , People's Republic of China
| | - Ruili Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , People's Republic of China
| | - Xiangyu Liang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , People's Republic of China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200438 , People's Republic of China
| |
Collapse
|
20
|
Dinh TN, Hou S, Park S, Shalek BA, Jeong KJ. Gelatin Hydrogel Combined with Polydopamine Coating to Enhance Tissue Integration of Medical Implants. ACS Biomater Sci Eng 2018; 4:3471-3477. [PMID: 31131316 DOI: 10.1021/acsbiomaterials.8b00886] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Soft tissue integration of medical implants is important to prevent bacterial infection and implant failure. A bioadhesive that forms firm binding between the implant and the surrounding tissue and facilitates the wound-healing process will be a great tool to establish the desired tissue-implant integration. In this project, we introduce a novel method that can be used to enhance integration between any implant material and any tissue using an enzyme-crosslinked gelatin hydrogel combined with polydopamine (PDA) coating. PDA coating was shown to enhance the binding between the gelatin hydrogel and three model implant materials - aluminum, poly(methyl methacrylate) (PMMA) and titanium. When combined with the gelatin hydrogel, pig cornea tissue adhered more strongly to the PDA coated surfaces than to the uncoated surfaces. The enzyme-crosslinked gelatin hydrogel was non-cytotoxic to human dermal fibroblasts and it also allowed the cells to adhere and proliferate. Altogether, the results indicate that the combination of PDA coating with gelatin hydrogel can be used to enhance the integration of various medical implants.
Collapse
Affiliation(s)
- Thanh N Dinh
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Shujie Hou
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Shiwha Park
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Benjamin A Shalek
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| | - Kyung Jae Jeong
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824
| |
Collapse
|
21
|
Du X, Fu S, Zhu Y. 3D printing of ceramic-based scaffolds for bone tissue engineering: an overview. J Mater Chem B 2018; 6:4397-4412. [PMID: 32254656 DOI: 10.1039/c8tb00677f] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Currently, one of the most promising strategies in bone tissue engineering focuses on the development of biomimetic scaffolds. Ceramic-based scaffolds with favorable osteogenic ability and mechanical properties are promising candidates for bone repair. Three-dimensional (3D) printing is an additive manufacturing technique, which allows the fabrication of patient-specific scaffolds with high structural complexity and design flexibility, and gains growing attention. This review aims to highlight advances in 3D printing of ceramic-based scaffolds for bone tissue engineering. Technical limitations and practical challenges are emphasized and design considerations are also discussed.
Collapse
Affiliation(s)
- Xiaoyu Du
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China.
| | | | | |
Collapse
|