1
|
Li Y, Li P, Chen Y, Wu Y, Wei J. Interfacial deposition of Ag nanozyme on metal-polyphenol nanosphere for SERS detection of cellular glutathione. Biosens Bioelectron 2023; 228:115200. [PMID: 36921386 DOI: 10.1016/j.bios.2023.115200] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/26/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
The low polarization and low Raman cross section characteristics of glutathione (GSH) make it challenging to directly detect GSH molecules through surface enhanced Raman scattering (SERS) technology. Development of nanostructures for indirect detection of GSH applied to the SERS platform is of great interest. Herein, silver nanoparticles (Ag NPs)/copper-polyphenol colloidal spheres (denoted as CuTA@Ag) with adjustable Ag NPs coverage are prepared by deposition of Ag NPs on the metal-polyphenol colloidal spheres via an interfacial polyphenol reduction method. The size and density of the Ag NPs deposited on the out layer can be readily adjusted by tailoring the concentrations of silver precursor. It leads to activity difference for the nanozyme and SERS characteristics. The SERS properties of the obtained CuTA@Ag are studied using oxTMB, catalytic products of nanozyme, as the probing molecules. They provide satisfactory SERS performance with a low detection limit of 10-7 M (S/N = 3) and linear determination in the 1-100 μM range for GSH. Moreover, it is further able to detect the glutathione content in cancer cells with well accurate and reproducible capability, catching the signs of rising cancer marker levels. This work proposes structurally tunable nanomaterials platform for a catalytic-based SERS assay, which is expected to utilize the high sensitivity of SERS tool for GSH detection in the cellular environment.
Collapse
Affiliation(s)
- Yuxin Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Ping Li
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Yiqing Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Yue Wu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, PR China.
| |
Collapse
|
2
|
Ganesh S, Dhinakaran AK, Premnath P, Venkatakrishnan K, Tan B. Label-Free Saliva Test for Rapid Detection of Coronavirus Using Nanosensor-Enabled SERS. Bioengineering (Basel) 2023; 10:bioengineering10030391. [PMID: 36978782 PMCID: PMC10045265 DOI: 10.3390/bioengineering10030391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
The recent COVID-19 pandemic has highlighted the inadequacies of existing diagnostic techniques and the need for rapid and accurate diagnostic systems. Although molecular tests such as RT-PCR are the gold standard, they cannot be employed as point-of-care testing systems. Hence, a rapid, noninvasive diagnostic technique such as Surface-enhanced Raman scattering (SERS) is a promising analytical technique for rapid molecular or viral diagnosis. Here, we have designed a SERS- based test to rapidly diagnose SARS-CoV-2 from saliva. Physical methods synthesized the nanostructured sensor. It significantly increased the detection specificity and sensitivity by ~ten copies/mL of viral RNA (~femtomolar concentration of nucleic acids). Our technique combines the multiplexing capability of SERS with the sensitivity of novel nanostructures to detect whole virus particles and infection-associated antibodies. We have demonstrated the feasibility of the test with saliva samples from individuals who tested positive for SARS-CoV-2 with a specificity of 95%. The SERS-based test provides a promising breakthrough in detecting potential mutations that may come up with time while also preparing the world to deal with other pandemics in the future with rapid response and very accurate results.
Collapse
Affiliation(s)
- Swarna Ganesh
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Ashok Kumar Dhinakaran
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Priyatha Premnath
- Department of biomedical engineering, College of Engineering and Applied Sciences, University of Wisconsin, Milwaukee, WI 53211, USA
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| | - Bo Tan
- Keenan Research Center for Biomedical Science, Unity Health Toronto, Toronto, ON M5B 1W8, Canada
- Institute for Biomedical Engineering, Science and Technology (I BEST), Partnership between Toronto Metropolitan University and St. Michael's Hospital, Toronto, ON M5B 1W8, Canada
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Toronto Metropolitan University, 350 Victoria Street, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
3
|
Au NPs decorated holey g-C3N4 as a dual-mode sensing platform of SERS and SALDI-MS for selective discrimination of L-cysteine. J Colloid Interface Sci 2022; 626:608-618. [DOI: 10.1016/j.jcis.2022.06.176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/08/2022] [Accepted: 06/29/2022] [Indexed: 12/29/2022]
|
4
|
Sargazi S, Fatima I, Hassan Kiani M, Mohammadzadeh V, Arshad R, Bilal M, Rahdar A, Díez-Pascual AM, Behzadmehr R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int J Biol Macromol 2022; 206:115-147. [PMID: 35231532 DOI: 10.1016/j.ijbiomac.2022.02.137] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/01/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
Thanks to their unique attributes, such as good sensitivity, selectivity, high surface-to-volume ratio, and versatile optical and electronic properties, fluorescent-based bioprobes have been used to create highly sensitive nanobiosensors to detect various biological and chemical agents. These sensors are superior to other analytical instrumentation techniques like gas chromatography, high-performance liquid chromatography, and capillary electrophoresis for being biodegradable, eco-friendly, and more economical, operational, and cost-effective. Moreover, several reports have also highlighted their application in the early detection of biomarkers associated with drug-induced organ damage such as liver, kidney, or lungs. In the present work, we comprehensively overviewed the electrochemical sensors that employ nanomaterials (nanoparticles/colloids or quantum dots, carbon dots, or nanoscaled metal-organic frameworks, etc.) to detect a variety of biological macromolecules based on fluorescent emission spectra. In addition, the most important mechanisms and methods to sense amino acids, protein, peptides, enzymes, carbohydrates, neurotransmitters, nucleic acids, vitamins, ions, metals, and electrolytes, blood gases, drugs (i.e., anti-inflammatory agents and antibiotics), toxins, alkaloids, antioxidants, cancer biomarkers, urinary metabolites (i.e., urea, uric acid, and creatinine), and pathogenic microorganisms were outlined and compared in terms of their selectivity and sensitivity. Altogether, the small dimensions and capability of these nanosensors for sensitive, label-free, real-time sensing of chemical, biological, and pharmaceutical agents could be used in array-based screening and in-vitro or in-vivo diagnostics. Although fluorescent nanoprobes are widely applied in determining biological macromolecules, unfortunately, they present many challenges and limitations. Efforts must be made to minimize such limitations in utilizing such nanobiosensors with an emphasis on their commercial developments. We believe that the current review can foster the wider incorporation of nanomedicine and will be of particular interest to researchers working on fluorescence technology, material chemistry, coordination polymers, and related research areas.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, 98167-43463 Zahedan, Iran
| | - Iqra Fatima
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Maria Hassan Kiani
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 1313199137, Iran
| | - Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 45320, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, P. O. Box. 98613-35856, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| | - Razieh Behzadmehr
- Department of Radiology, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
5
|
Luo JS, Jin YP, Guo YM, Li Q. Redox-controlled synthesis of fluorescent polydopamine nanoparticles for label-free detection of glutathione. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
Quantification using statistical parameters derived from signal intensity distributions in surface enhanced Raman scattering (SERS). Anal Chim Acta 2021; 1181:338931. [PMID: 34556236 DOI: 10.1016/j.aca.2021.338931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/22/2022]
Abstract
Raman spectroscopy is a powerful method, which provides information on molecular structures, conformations, interactions etc. However, its applications are severely restricted because of low sensitivity. Although surface enhanced Raman scattering (SERS) significantly enhances sensitivity and enables single-molecular detection, quantification by this method is still challenging because of large signal fluctuations. In the present study, the signal intensity distributions (SIDs) in SERS of adenine and thymine on the silver nanoparticle (AgNP) platform are analyzed based on more than 10000 spectra to pursue the possibility of SERS quantification. The signals always involve large fluctuations but show statistically relevant patterns. SIDs are well represented by the exponentially modified Gaussian function, which is characterized by reproducible parameters. Thus, robust quantification is feasible using the parameters derived from the SIDs. At least 200 spectra for a given concentration are necessary to derive reproducible parameter values from the SID. The mean signal intensity determined from the SIDs is proportional to the adenine concentration in the range of 10-75 μM. However, this parameter becomes independent of the adenine concentration in the lower concentration range. In such concentrations, minor events, which give distinct SERS spectra, occasionally occur but have only marginal impacts on the mean signal intensity. The corrected standard deviation of the SID, which is estimated from the complementary error function, well represents the minor events and provides a clear correlation with the concentration in the range of 0.5-7.5 μM. Furthermore, the quantification in the nanomolar range is made possible by the incorporation of sample freezing, which enables to enrich target analytes and AgNPs in a liquid phase confined by ice.
Collapse
|
7
|
Demirci G, Muszyńska J, Cetinkaya O, Filipczak P, Zhang Y, Nowaczyk G, Halagan K, Ulanski J, Matyjaszewski K, Pietrasik J, Kozanecki M. Effective SERS materials by loading Ag nanoparticles into poly(acrylic acid-stat-acrylamide)-block-polystyrene nano-objects prepared by PISA. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
8
|
Payne TD, Moody AS, Wood AL, Pimiento PA, Elliott JC, Sharma B. Raman spectroscopy and neuroscience: from fundamental understanding to disease diagnostics and imaging. Analyst 2020; 145:3461-3480. [PMID: 32301450 DOI: 10.1039/d0an00083c] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neuroscience would directly benefit from more effective detection techniques, leading to earlier diagnosis of disease. The specificity of Raman spectroscopy is unparalleled, given that a molecular fingerprint is attained for each species. It also allows for label-free detection with relatively inexpensive instrumentation, minimal sample preparation, and rapid sample analysis. This review summarizes Raman spectroscopy-based techniques that have been used to advance the field of neuroscience in recent years.
Collapse
Affiliation(s)
- Taylor D Payne
- University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Amber S Moody
- National Center of Toxicological Research, 3900 NCTR Rd, Jefferson, AR 72079, USA
| | - Avery L Wood
- University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Paula A Pimiento
- University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - James C Elliott
- University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA.
| | - Bhavya Sharma
- University of Tennessee, Knoxville, 1420 Circle Drive, Knoxville, TN 37996, USA.
| |
Collapse
|
9
|
Akkilic N, Geschwindner S, Höök F. Single-molecule biosensors: Recent advances and applications. Biosens Bioelectron 2019; 151:111944. [PMID: 31999573 DOI: 10.1016/j.bios.2019.111944] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/26/2019] [Accepted: 11/29/2019] [Indexed: 02/07/2023]
Abstract
Single-molecule biosensors serve the unmet need for real time detection of individual biological molecules in the molecular crowd with high specificity and accuracy, uncovering unique properties of individual molecules which are hidden when measured using ensemble averaging methods. Measuring a signal generated by an individual molecule or its interaction with biological partners is not only crucial for early diagnosis of various diseases such as cancer and to follow medical treatments but also offers a great potential for future point-of-care devices and personalized medicine. This review summarizes and discusses recent advances in nanosensors for both in vitro and in vivo detection of biological molecules offering single-molecule sensitivity. In the first part, we focus on label-free platforms, including electrochemical, plasmonic, SERS-based and spectroelectrochemical biosensors. We review fluorescent single-molecule biosensors in the second part, highlighting nanoparticle-amplified assays, digital platforms and the utilization of CRISPR technology. We finally discuss recent advances in the emerging nanosensor technology of important biological species as well as future perspectives of these sensors.
Collapse
Affiliation(s)
- Namik Akkilic
- Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden.
| | - Stefan Geschwindner
- Structure, Biophysics and Fragment-based Lead Generation, Discovery Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Fredrik Höök
- Department of Applied Physics, Division of Biological Physics, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
10
|
Wang J, Qiu C, Mu X, Pang H, Chen X, Liu D. Ultrasensitive SERS detection of rhodamine 6G and p-nitrophenol based on electrochemically roughened nano-Au film. Talanta 2019; 210:120631. [PMID: 31987213 DOI: 10.1016/j.talanta.2019.120631] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/30/2019] [Accepted: 12/07/2019] [Indexed: 12/14/2022]
Abstract
Quantitative analysis of organic pollutants in environmental water is an important issue for ecological environment and human health. In this paper, the quantitative analysis of rhodamine 6G (R6G) and p-nitrophenol (PNP) is performed by the surface enhanced Raman scattering (SERS) technology. The enhancement of Raman signals is achieved on the surface of an electrochemically roughened nano-Au film. The SERS performance depends on the microstructure of roughened nano-Au films, which is affected by the thickness of Au films and electrochemical roughening parameters. The structure-dependence of SERS performance is validated by finite element simulation of local electromagnetic field distribution. An obvious SERS effect of R6G with an enhancement factor of 108 is obtained on the roughened nano-Au film. A sensitive SERS detection of R6G with a linear range of 10-9-10-5 M and a detection limit of 10-11 M is realized. Moreover, a wide linear range of 10-9-10-3 M is obtained for the detection of PNP. The roughened nano-Au film is an effective substrate for the SERS detection of organic pollutants with high reproducibility and good stability. Therefore, the electrochemical technology in this study is expected to be a very promising method for the fabrication of high-performance SERS substrate.
Collapse
Affiliation(s)
- Jiangcai Wang
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
| | - Cuicui Qiu
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China; Tianjin Research Institute for Advanced Equipment, Tsinghua University, Tianjin, 300300, China.
| | - Xijiao Mu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hua Pang
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
| | - Xinchun Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China
| | - Dameng Liu
- State Key Laboratory of Tribology, Tsinghua University, Beijing, 100084, China; Tianjin Research Institute for Advanced Equipment, Tsinghua University, Tianjin, 300300, China.
| |
Collapse
|
11
|
Zou S, Ma L, Li J, Liu Y, Zhao D, Zhang Z. Ag Nanorods-Based Surface-Enhanced Raman Scattering: Synthesis, Quantitative Analysis Strategies, and Applications. Front Chem 2019; 7:376. [PMID: 31214564 PMCID: PMC6558050 DOI: 10.3389/fchem.2019.00376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022] Open
Abstract
Surface-Enhanced Raman Scattering (SERS) is a powerful technology that provides abundant chemical fingerprint information with advantages of high sensitivity and time-saving. Advancements in SERS substrates fabrication allow Ag nanorods (AgNRs) possess superior sensitivity, high uniformity, and excellent reproducibility. To further promote AgNRs as a promising SERS substrate candidate to a broader application scope, oxides are integrated with AgNRs by virtue of their unique properties which endow the AgNRs-oxide hybrid with high stability and recyclability. Aside from SERS substrates fabrication, significant developments in quantitative analysis strategies offer enormous approaches to minimize influences resulted from variations of measuring conditions and to provide the reasonable data analysis. In this review, we discuss various fabrication approaches for AgNRs and AgNRs-oxide hybrids to achieve efficient SERS platforms. Then, we introduce three types of strategies which are commonly employed in chemical quantitative analysis to reach a reliable result. Further, we highlight SERS applications including food safety, environment safety, biosensing, and vapor sensing, demonstrating the potential of SERS as a powerful and promising technique. Finally, we conclude with the current challenges and future prospects toward efficient SERS manipulations for broader real-world applications.
Collapse
Affiliation(s)
- Sumeng Zou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Lingwei Ma
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China
| | - Jianghao Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yuehua Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Dongliang Zhao
- Department of Functional Material Research, Central Iron and Steel Research Institute, Beijing, China
| | - Zhengjun Zhang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Chinnakkannu Vijayakumar S, Venkatakrishnan K, Tan B. 3D quantum theranosomes: a new direction for label-free theranostics. NANOSCALE HORIZONS 2019; 4:495-515. [PMID: 32254103 DOI: 10.1039/c8nh00287h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Quantum-scale materials offer great potential in the field of cancer theranostics. At present, quantum materials are severely limited due to 0D & 1D materials lacking biocompatibility, resulting in coated materials with labelled tags for fluorescence excitation. In addition, the application of magnetic quantum materials has not been reported to date for cancer theranostics. In this current research study, we introduce the concept of applying nickel-based magnetic 3D quantum theranosomes for label-free broadband fluorescence enhancement and cancer therapy. To begin with, we present two (primary and secondary) distinct quantum theranosomes for cancer detection and differentiation (HeLa & MDAMB-231) from mammalian fibroblast cells. The primary theranosomes exhibit a metal enhanced fluorescence (MEF) property through localized surface plasmon resonance to act as cancer detectors, whereas the secondary theranosomes act as cancer differentiators through the fluorescence quenching of HeLa cancer cells. Apart from the above, the synthesized magnetic quantum theranosomes introduced therapeutic functionality wherein the theranosomes mimicked a tumor microenvironment by selectively accelerating the proliferation of mammalian fibroblasts cells while at the same time inducing cancer therapy. These quantum theranosomes were synthesized using femtosecond pulse laser ablation and self-assembled to form an interconnected 3D structure. The 3D architecture and the physicochemical properties of the laser synthesized quantum theranosomes closely resembled a tumor microenvironment. Furthermore, we anticipate that our current recorded findings can shed further light upon these unique magnetic quantum theranosomes as potential contenders towards opening an entirely new direction in the field of cancer theranostics.
Collapse
Affiliation(s)
- Sivaprasad Chinnakkannu Vijayakumar
- Ultrashort Laser Manufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria street, Toronto, Ontario M5B 2K3, Canada.
| | | | | |
Collapse
|
13
|
Guo Y, Zhang X, Wu FG. A graphene oxide-based switch-on fluorescent probe for glutathione detection and cancer diagnosis. J Colloid Interface Sci 2018; 530:511-520. [DOI: 10.1016/j.jcis.2018.06.041] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/16/2018] [Accepted: 06/18/2018] [Indexed: 01/23/2023]
|
14
|
Sánchez-Illana Á, Mayr F, Cuesta-García D, Piñeiro-Ramos JD, Cantarero A, Guardia MDL, Vento M, Lendl B, Quintás G, Kuligowski J. On-Capillary Surface-Enhanced Raman Spectroscopy: Determination of Glutathione in Whole Blood Microsamples. Anal Chem 2018; 90:9093-9100. [DOI: 10.1021/acs.analchem.8b01492] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | - Daniel Cuesta-García
- Molecular Science Institute, University of Valencia, PO Box 22085, 46071 Valencia, Spain
| | | | - Andrés Cantarero
- Molecular Science Institute, University of Valencia, PO Box 22085, 46071 Valencia, Spain
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, 50 Dr. Moliner Street, 46100 Burjassot, Valencia, Spain
| | - Máximo Vento
- Division of Neonatology, University & Polytechnic Hospital La Fe, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/151, A-1060 Vienna, Austria
| | - Guillermo Quintás
- Health and Biomedicine, Leitat Technological Center, Avda Fernando Abril Martorell 106, 46026 Valencia, Spain
| | | |
Collapse
|
15
|
Yang C, Chen Y, Liu D, Chen C, Wang J, Fan Y, Huang S, Lei W. Nanocavity-in-Multiple Nanogap Plasmonic Coupling Effects from Vertical Sandwich-Like Au@Al 2O 3@Au Arrays for Surface-Enhanced Raman Scattering. ACS APPLIED MATERIALS & INTERFACES 2018; 10:8317-8323. [PMID: 29441776 DOI: 10.1021/acsami.7b17228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of ideal three-dimensional (3D) tailorable surface-enhanced Raman scattering (SERS) substrates with the properties of timesaving, large area, high throughput, single or few molecules detection, reproducibility, reusable ability, and high density of "hot spots" has been the mainstream challenge and the robust task. Here, we construct perpendicular sandwich-like Au@Al2O3@Au hybrid nanosheets (PSHNs) on the Al foil as a 3D flexible substrate for SERS. The design of 3D PSHNs incorporates several advantageous aspects for SERS to enhance the performance of plasmonic diamers via bifunctions of vertical Al2O3 nanosheets (NSs) including the nanoscaffold and nanobaffle plate effects. As a nanoscaffold, it increases the space utilization of Au-Au diamers, whereas as a nanobaffle, it forms densely homogeneous Au@Al2O3@Au nanojunctions by sub-4 nm thickness of Al2O3 NSs as the dielectric isolated layer for the double-sided exposure of slitlike surface plasmon resonance. The optimized PSHN substrate exhibits a fascinating SERS sensitivity with an experimental enhancement factor of 1012 and is able to detect rhodamine B at an extremely low concentration up to the limit of single or few molecules (10-18 M), as well as can be recycled without the loss of SERS enhancement via the simple impregnation process. These advantages will greatly facilitate the wider use of SERS in many fields.
Collapse
Affiliation(s)
- Chen Yang
- Institute for Frontier Materials , Deakin University , Locked Bag 2000 , Geelong , Victoria 3220 , Australia
| | - Ying Chen
- Institute for Frontier Materials , Deakin University , Locked Bag 2000 , Geelong , Victoria 3220 , Australia
| | - Dan Liu
- Institute for Frontier Materials , Deakin University , Locked Bag 2000 , Geelong , Victoria 3220 , Australia
| | - Cheng Chen
- Institute for Frontier Materials , Deakin University , Locked Bag 2000 , Geelong , Victoria 3220 , Australia
| | - Jiemin Wang
- Institute for Frontier Materials , Deakin University , Locked Bag 2000 , Geelong , Victoria 3220 , Australia
| | - Ye Fan
- Institute for Frontier Materials , Deakin University , Locked Bag 2000 , Geelong , Victoria 3220 , Australia
| | - Shaoming Huang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering , Wenzhou University , Wenzhou 325035 , P. R. China
| | - Weiwei Lei
- Institute for Frontier Materials , Deakin University , Locked Bag 2000 , Geelong , Victoria 3220 , Australia
| |
Collapse
|
16
|
Yu S, Liu Z, Zhang J, Li H, Xu N, Yuan XX, Wu Y. An azo-coupling reaction-based surface enhanced resonance Raman scattering approach for ultrasensitive detection of salbutamol. RSC Adv 2018; 8:5536-5541. [PMID: 35542390 PMCID: PMC9078234 DOI: 10.1039/c7ra12927k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/11/2018] [Indexed: 01/04/2023] Open
Abstract
To date, great achievements with GC-MS, HPLC-MS, and fluorescence biosensing techniques have been made to detect illegal additives of salbutamol (SAL) in swine meat. However, these methods are not suitable for rapid on-site screening due to either costly instruments or rather complicated and/or time consuming sample pretreatments. Herein, a simple, rapid and ultrasensitive approach based on an azo-coupling reaction and surface-enhanced resonance Raman scattering (SERRS) is presented. By combining with a magnetic SERS substrate, an indirect detection for SAL, with a LOD of 1.0 × 10-11 M (2.39 pg mL-1), was realized. Moreover, a colorimetric method for naked eye detection was successfully carried out for rapid screening of SAL in concentrations higher than 2.09 × 10-5 M (5 μg mL-1). In addition, the proposed method was successfully applied for the rapid determination of SAL in real swine meat. The entire process, including pretreatment, coupling reaction and SERRS detection, was performed within 7 min. Moreover, the SERRS fingerprint band being specific to corresponding functional group guarantees the selectivity for the target molecule. Therefore, the proposed strategy in the present study offers a new way to identify trace amounts of analytes, such as SAL as well as other illegal additives in health-related products and food.
Collapse
Affiliation(s)
- Shihua Yu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University 2699 Qianjin Avenue Changchun 130012 China
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology Jilin 132022 China
| | - Zhigang Liu
- Center of Analysis and Measurement, Jilin Institute of Chemical Technology Jilin 132022 China
| | - Jianpo Zhang
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology Jilin 132022 China
| | - Hongwei Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University 2699 Qianjin Avenue Changchun 130012 China
| | - Na Xu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology Jilin 132022 China
| | - Xin-Xin Yuan
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University 2699 Qianjin Avenue Changchun 130012 China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University 2699 Qianjin Avenue Changchun 130012 China
| |
Collapse
|
17
|
Bu Y, Zhu G, Li S, Qi R, Bhave G, Zhang D, Han R, Sun D, Liu X, Hu Z, Liu X. Silver-Nanoparticle-Embedded Porous Silicon Disks Enabled SERS Signal Amplification for Selective Glutathione Detection. ACS APPLIED NANO MATERIALS 2018; 1:410-417. [PMID: 31891124 PMCID: PMC6936757 DOI: 10.1021/acsanm.7b00290] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
As the major redox couple and nonprotein thiol source in human tissues, the level of glutathione (GSH) has been a concern for its relation with many diseases. However, the similar physical and chemical properties of interference molecules such as cysteine (Cys) and homocysteine (Hcy) make discriminative detection of GSH in complex biological fluids challenging. Here we report a novel surface-enhanced Raman scattering (SERS) platform, based on silver-nanoparticle-embedded porous silicon disks (PSDs/Ag) substrates for highly sensitive and selective detection of GSH in biofluids. Silver nanoparticles (AgNPs) were reductively synthesized and aggregated directly into pores of PSDs, achieving a SERS enhancement factor (EF) up to 2.59 × 107. Ellman's reagent 5,5'-ditho-bis (2-nitrobenzoic acid) (DTNB) was selected as the Raman reactive reporting agent, and the GSH quantification was determined using enzymatic recycling method, and allowed the detection limit of GSH to be down to 74.9 nM using a portable Raman spectrometer. Moreover, the significantly overwhelmed enhancement ratio of GSH over other substances enables the discrimination of GSH detection in complex biofluids.
Collapse
Affiliation(s)
- Yang Bu
- College of Materials Sciences and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Guixian Zhu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
- School of Instrument Science and Optoelectronics Engineering, Beijing Information Science and Technology University, Beijing 100192, China
| | - Shengliang Li
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Ruogu Qi
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Gauri Bhave
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Dechen Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, College of Life Science, Jilin University, Jilin 130012, China
| | - Ruixuan Han
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Dali Sun
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Xiangfeng Liu
- College of Materials Sciences and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongbo Hu
- College of Materials Sciences and Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuewu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, United States
| |
Collapse
|
18
|
|
19
|
Powell JA, Venkatakrishnan K, Tan B. Toward Universal SERS Detection of Disease Signaling Bioanalytes Using 3D Self-Assembled Nonplasmonic near-Quantum-Scale Silicon Probe. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40127-40142. [PMID: 29083860 DOI: 10.1021/acsami.7b15393] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Currently, the quantum-scale surface-enhanced Raman scattering (SERS) properties of Si materials have yet to be discovered for universal biosensing applications. In this study, a potential universal biosensing probe is generated by activating the SERS functionality of Si nanostructures through near quantum-scale (nQS) engineering. We introduce herein 3D nonplasmonic Si nanomesh structure with nQS defects for SERS biosensing applications. Through ionization of a single-crystal defect-free Si wafer, highly defect-rich Si subnano-orbs (sNOs) are fabricated and self-assemble as connective 3D Si nanomesh structures with enhanced SERS biosensing activity. By amending the laser ionization and ion-ion interactions, we observe the controlled synthesis of engineered nQS defects in the form of nQS-grain boundary disorder or surface nQS voids within the interconnected Si sNOs. To our knowledge, it is shown here for the first time that defect-rich Si nanomesh structures exhibit enhanced Raman activity, with the nQS morphological and crystallographic defects acting as the prime SERS contributors without a plasmonic contribution. The SERS biosensing sensitivity with the synthesized defect-rich Si nanomesh structures without an additional plasmonic material was evaluated using of a tripeptide biomarker l-glutathione (GSH); we observe an enhancement factor value of ∼102 for the GSH biomolecules with 10-9 M sensitivity, a phenomena to our knowledge that has yet to be reported. Additionally, the SERS detection of multiple disease-signaling biomolecules (cysteine, tryptophan, and methionine) is achieved at very low analyte concentration (10-9 M). These results indicate a potential new dimension to universal SERS biosensing applications with these unique nonplasmonic defect-rich 3D nQS-Si nanostructures.
Collapse
Affiliation(s)
| | - Krishnan Venkatakrishnan
- Affiliate Scientist, Keenan Research Center for Biomedical Science, St. Michael's Hospital , 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| | | |
Collapse
|
20
|
Fan D, Shang C, Gu W, Wang E, Dong S. Introducing Ratiometric Fluorescence to MnO 2 Nanosheet-Based Biosensing: A Simple, Label-Free Ratiometric Fluorescent Sensor Programmed by Cascade Logic Circuit for Ultrasensitive GSH Detection. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25870-25877. [PMID: 28696093 DOI: 10.1021/acsami.7b07369] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glutathione (GSH) plays crucial roles in various biological functions, the level alterations of which have been linked to varieties of diseases. Herein, we for the first time expanded the application of oxidase-like property of MnO2 nanosheet (MnO2 NS) to fluorescent substrates of peroxidase. Different from previously reported fluorescent quenching phenomena, we found that MnO2 NS could not only largely quench the fluorescence of highly fluorescent Scopoletin (SC) but also surprisingly enhance that of nonfluorescent Amplex Red (AR) via oxidation reaction. If MnO2 NS is premixed with GSH, it will be reduced to Mn2+ and lose the oxidase-like property, accompanied by subsequent increase in SC's fluorescence and decrease in AR's. On the basis of the above mechanism, we construct the first MnO2 NS-based ratiometric fluorescent sensor for ultrasensitive and selective detection of GSH. Notably, this ratiometric sensor is programmed by the cascade logic circuit (an INHIBIT gate cascade with a 1 to 2 decoder). And a linear relationship between ratiometric fluorescent intensities of the two substrates and logarithmic values of GSH's concentrations is obtained. The detection limit of GSH is as low as 6.7 nM, which is much lower than previous ratiometric fluorescent sensors, and the lowest MnO2 NS-based fluorescent GSH sensor reported so far. Furthermore, this sensor is simple, label-free, and low-cost; it also presents excellent applicability in human serum samples.
Collapse
Affiliation(s)
- Daoqing Fan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Changshuai Shang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Wenling Gu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences , Beijing 100039, China
| |
Collapse
|
21
|
Abstract
SERS signal enhancements inside and outside the junctions of the dimers were experimentally calculated.
Collapse
Affiliation(s)
- Hyeokjin Yoon
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| | - Jung Sang Suh
- Department of Chemistry
- Seoul National University
- Seoul 08826
- Republic of Korea
| |
Collapse
|
22
|
Roji M AM, G J, Raj T AB. A retrospect on the role of piezoelectric nanogenerators in the development of the green world. RSC Adv 2017. [DOI: 10.1039/c7ra05256a] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This paper gives a detailed report of the evolution and potential applications of piezoelectric nanogenerators (PENGs).
Collapse
Affiliation(s)
- Ani Melfa Roji M
- Department of Electronics and Communication Engineering
- PSN College of Engineering and Technology
- Tirunelveli
- India – 627152
| | - Jiji G
- Department of Electronics and Communication Engineering
- PSN College of Engineering and Technology
- Tirunelveli
- India – 627152
| | - Ajith Bosco Raj T
- Department of Electronics and Communication Engineering
- PSN College of Engineering and Technology
- Tirunelveli
- India – 627152
| |
Collapse
|
23
|
Alexander Powell J, Venkatakrishnan K, Tan B. A primary SERS-active interconnected Si-nanocore network for biomolecule detection with plasmonic nanosatellites as a secondary boosting mechanism. RSC Adv 2017. [DOI: 10.1039/c7ra01970j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report in this study, the development of a polymorphic biosensitive Si nanocore superstructure as a SERS biosensing platform.
Collapse
Affiliation(s)
- Jeffery Alexander Powell
- Ultrashort Laser Nanomanufacturing Research Facility
- Department of Mechanical and Industrial Engineering
- Ryerson University
- Toronto
- Canada
| | - Krishnan Venkatakrishnan
- Ultrashort Laser Nanomanufacturing Research Facility
- Department of Mechanical and Industrial Engineering
- Ryerson University
- Toronto
- Canada
| | - Bo Tan
- Nano-imaging Lab
- Department of Aerospace Engineering
- Ryerson University
- Toronto
- Canada
| |
Collapse
|