1
|
Yu Z, Guo B, Sha P, Yu S, Li P, Xu Z, Guo Y, Xin R, Chen L, Gao D, Ming X, Kuang Y. Bionic Microstructure/Nanofiller Heterogeneous Ultradurable Superhydrophobic Surface Based on Metal Additive Manufacturing. NANO LETTERS 2025; 25:7533-7542. [PMID: 40297976 DOI: 10.1021/acs.nanolett.5c01339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Metallic superhydrophobic surfaces often encounter several challenges, including poor durability, limited functionality, and difficulties in application to complex curved structures. Therefore, we propose a novel strategy for surface biomimetic interpenetrating phase composites (S-BIPC). This approach employs laser powder bed fusion (LPBF) technology to create biomimetic microstructures as the primary phase on the Ti6Al4V surface in a single step. Subsequently, functional nanofillers synthesized via the sol-gel method serve as the secondary phase, interpenetrating with the biomimetic microstructures to form a biomimetic heterogeneous superhydrophobic surface (BHS). The interaction among these heterogeneous surface materials endows the BHS with exceptional durability, allowing it to retain superhydrophobicity after at least 5000 cycles of sandpaper abrasion and approximately 200% compressive strain. Furthermore, the BHS exhibits self-cleaning properties, wear resistance, corrosion resistance, anti-icing capabilities, and can be applied to complex curved structures, making the S-BIPC strategy one of the most promising candidates for metallic superhydrophobic surfaces.
Collapse
Affiliation(s)
- Zhenglei Yu
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130025, China
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Binkai Guo
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Pengwei Sha
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Shengnan Yu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Panpan Li
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Zezhou Xu
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130025, China
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Yunting Guo
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin 150042, China
| | - Renlong Xin
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Lixin Chen
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Delong Gao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130025, China
| | - Xianliang Ming
- Institute of Beijing Remote Sensing Device, Beijing 100854, China
| | - Yiwu Kuang
- Shanghai Aerospace equipment manufacturer, Shanghai 200245, China
| |
Collapse
|
2
|
Dashtban Kenari SL, Mortazavi S, Mosadeghsedghi S, Atallah C, Volchek K. Advancing Ceramic Membrane Technology for Sustainable Treatment of Mining Discharge: Challenges and Future Directions. MEMBRANES 2025; 15:112. [PMID: 40277982 PMCID: PMC12029168 DOI: 10.3390/membranes15040112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025]
Abstract
Mining discharge, namely acid mine drainage (AMD), is a significant environmental issue due to mining activities and site-specific factors. These pose challenges in choosing and executing suitable treatment procedures that are both sustainable and effective. Ceramic membranes, with their durability, long lifespan, and ease of maintenance, are increasingly used in industrial wastewater treatment due to their superior features. This review provides an overview of current remediation techniques for mining effluents, focusing on the use of ceramic membrane technology. It examines pressure-driven ceramic membrane systems like microfiltration, ultrafiltration, and nanofiltration, as well as the potential of vacuum membrane distillation for mine drainage treatment. Research on ceramic membranes in the mining sector is limited due to challenges such as complex effluent composition, low membrane packing density, and poor ion separation efficiency. To assess their effectiveness, this review also considers studies conducted on simulated water. Future research should focus on enhancing capital costs, developing more effective membrane configurations, modifying membrane outer layers, evaluating the long-term stability of the membrane performance, and exploring water recycling during mineral processing.
Collapse
Affiliation(s)
| | - Saviz Mortazavi
- Office of Energy Research and Development, Natural Resources Canada, 580 Booth Street, Ottawa, ON K1A 0E4, Canada;
| | - Sanaz Mosadeghsedghi
- CanmetMINING, Natural Resources Canada, 555 Booth Street, Ottawa, ON K1A 0G1, Canada; (S.M.); (C.A.); (K.V.)
| | - Charbel Atallah
- CanmetMINING, Natural Resources Canada, 555 Booth Street, Ottawa, ON K1A 0G1, Canada; (S.M.); (C.A.); (K.V.)
| | - Konstantin Volchek
- CanmetMINING, Natural Resources Canada, 555 Booth Street, Ottawa, ON K1A 0G1, Canada; (S.M.); (C.A.); (K.V.)
| |
Collapse
|
3
|
Ding M, Wang Y, Gong X, Luo M, Yin X, Yu J, Zhang S, Ding B. Fluorine-Free Nanofiber/Network Membranes with Interconnected Tortuous Channels for High-Performance Liquid-Repellency and Breathability. ACS NANO 2025; 19:5539-5548. [PMID: 39885764 DOI: 10.1021/acsnano.4c14213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The excessive use of fluoride in fibrous membranes poses significant bioaccumulative threats to the environment and human health. However, most existing membranes used in protective clothing and desalination systems show high fluorine dependence and inevitable trade-offs between liquid repellency and breathability. Herein, fluorine-free bonded scaffolded nanofiber/network membranes are developed using the electro-coating-netting technique to achieve high-performance liquid-repellency and breathability. By manipulating the stretching of electrospun jets and the polarization of electrets, rough and electrostatic wetting nanofibers are obtained as scaffolds, on which long-chain alkyl precursors are coated to assemble 2D networks consisting of nanowires with diameters of ∼42 nm and bonding points. The resultant fluorine-free membranes exhibit small pore sizes of ∼460 nm, highly interconnected tortuous channels, a water contact angle of ∼138°, and elastic elongation up to 300%, thereby providing both high-performance liquid repellency (125 kPa) and vapor permeability (4206 g m-2 d-1), making them effective for use in protective clothing and desalination. This work could inspire innovative design of ecofriendly nanofibrous materials for high-performance filtration and separation.
Collapse
Affiliation(s)
- Mingle Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| | - Yuan Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| | - Xiaobao Gong
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| | - Mukun Luo
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xia Yin
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| |
Collapse
|
4
|
Mujahid M, Umar Farooq M, Wang C, Arkook B, Harb M, Ren LF, Shao J. An Opportunity for Synergizing Desalination by Membrane Distillation Assisted Reverse-Electrodialysis for Water/Energy Recovery. CHEM REC 2024; 24:e202400098. [PMID: 39289830 DOI: 10.1002/tcr.202400098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/17/2024] [Indexed: 09/19/2024]
Abstract
Industry, agriculture, and a growing population all have a major impact on the scarcity of clean-water. Desalinating or purifying contaminated water for human use is crucial. The combination of thermal membrane systems can outperform conventional desalination with the help of synergistic management of the water-energy nexus. High energy requirement for desalination is a key challenge for desalination cost and its commercial feasibility. The solution to these problems requires the intermarriage of multidisciplinary approaches such as electrochemistry, chemical, environmental, polymer, and materials science and engineering. The most feasible method for producing high-quality freshwater with a reduced carbon footprint is demanding incorporation of industrial low-grade heat with membrane distillation (MD). More precisely, by using a reverse electrodialysis (RED) setup that is integrated with MD, salinity gradient energy (SGE) may be extracted from highly salinized MD retentate. Integrating MD-RED can significantly increase energy productivity without raising costs. This review provides a comprehensive summary of the prospects, unresolved issues, and developments in this cutting-edge field. In addition, we summarize the distinct physicochemical characteristics of the membranes employed in MD and RED, together with the approaches for integrating them to facilitate effective water recovery and energy conversion from salt gradients and freshwater.
Collapse
Affiliation(s)
- Muhammad Mujahid
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Muhammad Umar Farooq
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chao Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Bassim Arkook
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Moussab Harb
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Long-Fei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
5
|
Delanka-Pedige HMK, Young RB, Abutokaikah MT, Chen L, Wang H, Imihamillage KABI, Thimons S, Jahne MA, Williams AJ, Zhang Y, Xu P. Non-targeted analysis and toxicity prediction for evaluation of photocatalytic membrane distillation removing organic contaminants from hypersaline oil and gas field-produced water. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134436. [PMID: 38688221 PMCID: PMC11694490 DOI: 10.1016/j.jhazmat.2024.134436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Membrane distillation (MD) has received ample recognition for treating complex wastewater, including hypersaline oil and gas (O&G) produced water (PW). Rigorous water quality assessment is critical in evaluating PW treatment because PW consists of numerous contaminants beyond the targets listed in general discharge and reuse standards. This study evaluated a novel photocatalytic membrane distillation (PMD) process, with and without a UV light source, against a standard vacuum membrane distillation (VMD) process for treating PW, utilizing targeted analyses and a non-targeted chemical identification workflow coupled with toxicity predictions. PMD with UV light resulted in better removals of dissolved organic carbon, ammoniacal nitrogen, and conductivity. Targeted organic analyses identified only trace amounts of acetone and 2-butanone in distillates. According to non-targeted analysis, the number of suspects reduced from 65 in feed to 25-30 across all distillate samples. Certain physicochemical properties of compounds influenced contaminant rejection in different MD configurations. According to preliminary toxicity predictions, VMD, PMD with and without UV distillate samples, respectively contained 21, 22, and 23 suspects associated with critical toxicity concerns. Overall, non-targeted analysis together with toxicity prediction provides a competent supportive tool to assess treatment efficiency and potential impacts on public health and the environment during PW reuse.
Collapse
Affiliation(s)
| | - Robert B Young
- Chemical Analysis and Instrumentation Laboratory, New Mexico State University, Las Cruces, NM 88003, United States
| | - Maha T Abutokaikah
- Chemical Analysis and Instrumentation Laboratory, New Mexico State University, Las Cruces, NM 88003, United States
| | - Lin Chen
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Huiyao Wang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Kanchana A B I Imihamillage
- Department of Engineering Technology and Surveying Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Sean Thimons
- Oak Ridge Institute for Science and Education, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Michael A Jahne
- Office of Research and Development, US Environmental Protection Agency, 26 West Martin Luther King Drive, Cincinnati, OH 45268, United States
| | - Antony J Williams
- Office of Research and Development, US Environmental Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, United States
| | - Yanyan Zhang
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States
| | - Pei Xu
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM 88003, United States.
| |
Collapse
|
6
|
Zhang H, Zhao X. Enhanced Anti-Wetting Methods of Hydrophobic Membrane for Membrane Distillation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300598. [PMID: 37219004 PMCID: PMC10427381 DOI: 10.1002/advs.202300598] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/24/2023] [Indexed: 05/24/2023]
Abstract
Increasing issues of hydrophobic membrane wetting occur in the membrane distillation (MD) process, stimulating the research on enhanced anti-wetting methods for membrane materials. In recent years, surface structural construction (i.e., constructing reentrant-like structures), surface chemical modification (i.e., coating organofluorides), and their combination have significantly improved the anti-wetting properties of the hydrophobic membranes. Besides, these methods change the MD performance (i.e., increased/decreased vapor flux and increased salt rejection). This review first introduces the characterization parameters of wettability and the fundamental principles of membrane surface wetting. Then it summarizes the enhanced anti-wetting methods, the related principles, and most importantly, the anti-wetting properties of the resultant membranes. Next, the MD performance of hydrophobic membranes prepared by different enhanced anti-wetting methods is discussed in desalinating different feeds. Finally, facile and reproducible strategies are aspired for the robust MD membrane in the future.
Collapse
Affiliation(s)
- Honglong Zhang
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| | - Xuan Zhao
- Lab of Environmental Science & TechnologyINETTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
7
|
Zhu Z, Liu Z, Tan G, Qi J, Zhou Y, Li J. Interlayered Interface of a Thin Film Composite Janus Membrane for Sieving Volatile Substances in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7612-7623. [PMID: 37104662 DOI: 10.1021/acs.est.3c00093] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Hypersaline wastewater treatment using membrane distillation (MD) has gained significant attention due to its ability to completely reject nonvolatile substances. However, a critical limitation of current MD membranes is their inability to intercept volatile substances owing to their large membrane pores. Additionally, the strong interaction between volatile substances and MD membranes underwater tends to cause membrane wetting. To overcome these challenges, we developed a dual-layer thin film composite (TFC) Janus membrane through electrospinning and sequential interfacial polymerization of a polyamide (PA) layer and cross-linking a polyvinyl alcohol/polyacrylic acid (PP) layer. The resulting Janus membrane exhibited high flux (>27 L m-2 h-1), salt rejection of ∼100%, phenol rejection of ∼90%, and excellent resistance to wetting and fouling. The interlayered interface between the PA and PP layer allowed the sieve of volatile substances by limiting their dissolution-diffusion, with the increasing hydrogen bond network formation preventing their transport. In contrast, small water molecules with powerful dynamics were permeable through the TFC membrane. Both experimental and molecular dynamics simulation results elucidated the sieving mechanism. Our findings demonstrate that this type of TFC Janus membrane can serve as a novel strategy to design next-generation MD membranes against volatile and non-volatile contaminants, which can have significant implications in the treatment of complex hypersaline wastewater.
Collapse
Affiliation(s)
- Zhigao Zhu
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Zhu Liu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311200, China
| | - Guangming Tan
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yujun Zhou
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
8
|
Xu Z, Xu L, Wang Y, Li Q, Cui S, Nie Z, Wei Q. Growing nearly vertically aligned ZnO nanorod arrays on porous α-Al2O3 membranes to enhance the separation of MTBE from aqueous solution. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
9
|
Pang S, Si Z, Li G, Wu H, Cui Y, Zhang C, Ren C, Yang S, Pang S, Qin P. A fluorinated, defect-free ZIF-8/PDMS mixed matrix membrane for enhancing ethanol pervaporation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Zhang Y, Chong JY, Xu R, Wang R. Hydrophobic ceramic membranes fabricated via fatty acid chloride modification for solvent resistant membrane distillation (SR-MD). J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Tunable hydrophobicity and roughness on PVDF surface by grafting to mode – Approach to enhance membrane performance in membrane distillation process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Sun L, Zhang R, Hu L, Chen X, Lu X, Li Z. Hydrophobic and Rapid-Response Sensor Inks: Array-Based Fingerprinting of Perfumes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27339-27346. [PMID: 35642335 DOI: 10.1021/acsami.2c03081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Counterfeited perfumes mixed with inexpensive additives for commercial purposes pose a great threat to cosmetic market competition and human health. Herein, a 24-element, solid-state colorimetric sensor array employing chemo-responsive dye inks for accurate discrimination of a variety of fragrance bases and "sniffing out" real perfumes from adulterated samples was first reported. The physiochemical robustness and gas response kinetics of the sensor array were optimized with the streamlined design of the channel geometry and hydrophobic modification of the sensor substrate. A unique and distinguishable color change profile was obtained within 2 min exposure of diluted vapor that enabled clear fingerprinting of chemically similar perfume samples. Four commercial perfume products were successfully distinguished and categorized according to their similarity to relevant perfume bases using chemometric methods including hierarchical clustering and principal component analysis. The sensor array also allows the discrimination of ethanol-diluted fragrance bases from the pristine sample, revealing its potential for quality assurance of perfumes and other cosmetics. Such easy-to-use, disposable, and miniaturized chemical sensing detectors therefore prove exceptionally valuable for fast analysis of luxuries such as perfumes and other industrial products with complex chemical compositions.
Collapse
Affiliation(s)
- Linlin Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Ruohan Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Luoyu Hu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Xiaofeng Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Xiaohui Lu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
13
|
A Methyl-Modified Silica Layer Supported on Porous Ceramic Membranes for the Enhanced Separation of Methyl Tert-Butyl Ether from Aqueous Solution. MEMBRANES 2022; 12:membranes12050452. [PMID: 35629778 PMCID: PMC9144733 DOI: 10.3390/membranes12050452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/04/2022]
Abstract
As a kind of volatile organic compound (VOC), methyl tert-butyl ether (MTBE) is hazardous to human health and destructive to the environment if not handled properly. MTBE should be removed before the release of wastewater. The present work supported the methyl-modified silica layer (MSL) on porous α-Al2O3 ceramic membranes with methyltrimethoxysilane (MTMS) as a precursor and pre-synthesized mesoporous silica microspheres as dopants by the sol-gel reaction and dip-coating method. MTMS is an environmentally friendly agent compared to fluorinated alkylsilane. The MSL-supported Al2O3 ceramic membranes were used for MTBE/water separation by pervaporation. The NMR spectra revealed that MTMS evolves gradually from an oligomer to a highly cross-linked methyl-modified silica species. Methyl-modified silica species and pre-synthesized mesoporous silica microspheres combine into hydrophobic mesoporous MSL. MSL makes the α-Al2O3 ceramic membranes transfer from amphiphilic to hydrophobic and oleophilic. The MSL-supported α-Al2O3 ceramic membranes (MSL-10) exhibit an MTBE/water separation factor of 27.1 and a total flux of 0.448 kg m−2 h−1, which are considerably higher than those of previously reported membranes that are modified by other alkylsilanes via the post-grafting method. The mesopores within the MSL provide a pathway for the transport of MTBE molecules across the membranes. The presence of methyl groups on the external and inner surface is responsible for the favorable separation performance and the outstanding long-term stability of the MSL-supported porous α-Al2O3 ceramic membranes.
Collapse
|
14
|
Araki S, Nishikawa Y, Nakata M, Li K, Yamamoto H. Synthesis of hydrophobic silica membranes derived from propyl trimethoxy silane and bis(triethoxysilyl)ethane for separation of volatile organic compounds from aqueous solutions. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Bioconjugation Strategy for Ceramic Membranes Decorated with Candida Antarctica Lipase B-Impact of Immobilization Process on Material Features. MATERIALS 2022; 15:ma15020671. [PMID: 35057388 PMCID: PMC8779185 DOI: 10.3390/ma15020671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/31/2021] [Accepted: 01/12/2022] [Indexed: 11/17/2022]
Abstract
A strategy for the bioconjugation of the enzyme Candida antarctica lipase B onto titania ceramic membranes with varied pore sizes (15, 50, 150, and 300 kDa) was successfully performed. The relationship between the membrane morphology, i.e.,the pore size of the ceramic support, and bioconjugation performance was considered. Owing to the dimension of the enzyme (~33 kDa), the morphology of the ceramics allowed (50, 150, and 300 kDa) or did not allow (15 kDa) the entrance of the enzyme molecules into the porous structure. Such a strategy made it possible to better understand the changes in the material (morphology) and physicochemical features (wettability, adhesiveness, and surface charge) of the samples, which were systematically examined. The silane functionalization and enzyme immobilization were accomplished via the covalent route. The samples were characterized after each stage of the modification, which was very informative from the material point of view. As a consequence of the modification, significant changes in the contact angle, roughness, adhesion, and zeta potential were observed. For instance, for the 50 kDa membrane, the contact angle increased from 29.1 ± 1.5° for the pristine sample to 72.3 ± 1.5° after silane attachment; subsequently, it was reduced to 57.2 ± 1.5° after the enzyme immobilization. Finally, the contact angle of the bioconjugated membrane used in the enzymatic process rose to 92.9 ± 1.5°. By roughness (Sq) controlling, the following amendments were noticed: for the pristine 50 kDa membrane, Sq = 1.87 ± 0.21 µm; after silanization, Sq = 2.33 ± 0.30 µm; after enzyme immobilization, Sq = 2.74 ± 0.26 µm; and eventually, after the enzymatic process, Sq = 2.37 ± 0.27 µm. The adhesion work of the 50 kDa samples was equal to 136.41 ± 2.20 mN m−1 (pristine membrane), 94.93 ± 2.00 mN m−1 (with silane), 112.24 ± 1.90 mN m−1 (with silane and enzyme), and finally, 69.12 ± 1.40 mN m−1 (after the enzymatic process). The materials and physicochemical features changed substantially, particularly after the application of the membrane in the enzymatic process. Moreover, the impact of ceramic material morphology on the zeta potential value is here presented for the first time. With an increase in the ceramic support cut-off, the amount of immobilized lipase rose, but the specific productivity was higher for membranes possessing smaller pores, owing to the higher grafting density. For the enzymatic process, two modes of accomplishment were selected, i.e., stirred-tank and cross-flow. The latter method was characterized by a much higher effectiveness, with a resulting productivity equal to 99.7 and 60.3 µmol h−1 for the 300 and 15 kD membranes, respectively.
Collapse
|
16
|
Tai ZS, Othman MHD, Mustafa A, Ravi J, Wong KC, Koo KN, Hubadillah SK, Azali MA, Alias NH, Ng BC, Mohamed Dzahir MIH, Ismail AF, Rahman MA, Jaafar J. Development of hydrophobic polymethylhydrosiloxane/tetraethylorthosilicate (PMHS/TEOS) hybrid coating on ceramic membrane for desalination via membrane distillation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Liao X, Goh K, Liao Y, Wang R, Razaqpur AG. Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications. Adv Colloid Interface Sci 2021; 297:102547. [PMID: 34687984 DOI: 10.1016/j.cis.2021.102547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023]
Abstract
With the aggravation of the global water crisis, membrane distillation (MD) for seawater desalination and hypersaline wastewater treatment is highlighted due to its low operating temperature, low hydrostatic pressure, and theoretically 100% rejection. However, some issues still impede the large-scale applications of MD technology, such as membrane fouling, scaling and unsatisfactory wetting resistance. Bio-inspired super liquid-repellent membranes have progressed rapidly in the past decades and been considered as one of the most promising approaches to overcome the above problems. This review for the first time systematically summarizes and analyzes the mechanisms of different super liquid-repellent surfaces, their preparation and modification methods, and anti-wetting/fouling/scaling performances in the MD process. Firstly, the topology theories of in-air superhydrophobic, in-air omniphobic and underwater superoleophobic surfaces are illustrated using different models. Secondly, the fabrication methods of various super liquid-repellent membranes are classified. The merits and demerits of each method are illustrated. Thirdly, the anti-wetting/fouling/scaling mechanisms of super liquid-repellent membranes are summarized. Finally, the conclusions and perspectives of the bio-inspired super liquid-repellent membranes are elaborated. It is anticipated that the systematic review herein can provide readers with foundational knowledge and current progress of super liquid-repellent membranes, and inspire researchers to overcome the challenges up ahead.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|
18
|
Li R, Xia Z, Li B, Tian Y, Zhang G, Li M, Dong J. Advances in Supercritical Carbon Dioxide Extraction of Bioactive Substances from Different Parts of Ginkgo biloba L. Molecules 2021; 26:molecules26134011. [PMID: 34209219 PMCID: PMC8271647 DOI: 10.3390/molecules26134011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022] Open
Abstract
Ginkgo biloba L. has always been a popular area of research due to its various active ingredients and pharmacological effects. Ginkgo biloba is rich in ginkgo flavonoids, ginkgolides, and ginkgolic acid, with anti-inflammation, antioxidation, neuroprotection, anti-platelet agglutination, hypolipidemic effect, anti-cancer, and anti-radiation properties. There are many methods to extract and separate the active components of ginkgo. Among them, supercritical carbon dioxide fluid extraction (SFE-CO2) is known for its green, clean, and environment-friendly properties. In this paper, the pharmacological activities, the active components, and structures of different parts of ginkgo, the extraction methods of its effective ingredients, and the application of the SFE-CO2 method for the extraction and separation of active ingredients in Ginkgo biloba from leaves, seeds, pollen, and roots were reviewed, in order to make best use of ginkgo resources, and provide support and references for the development of SFE-CO2 of active components from Ginkgo biloba.
Collapse
Affiliation(s)
- Ruihong Li
- School of Pharmacy, Henan University, Kaifeng 475000, China;
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.X.); (B.L.); (Y.T.); (G.Z.)
| | - Ziming Xia
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.X.); (B.L.); (Y.T.); (G.Z.)
| | - Bin Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.X.); (B.L.); (Y.T.); (G.Z.)
| | - Ying Tian
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.X.); (B.L.); (Y.T.); (G.Z.)
| | - Guangjie Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.X.); (B.L.); (Y.T.); (G.Z.)
| | - Min Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.X.); (B.L.); (Y.T.); (G.Z.)
- Correspondence: (M.L.); (J.D.); Tel.: +86-010-6693-2294 (M.L.); +86-010-6693-1314 (J.D.)
| | - Junxing Dong
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (Z.X.); (B.L.); (Y.T.); (G.Z.)
- Correspondence: (M.L.); (J.D.); Tel.: +86-010-6693-2294 (M.L.); +86-010-6693-1314 (J.D.)
| |
Collapse
|
19
|
Droplet Dynamics and Freezing Delay on Nanoporous Microstructured Surfaces at Condensing Environment. COATINGS 2021. [DOI: 10.3390/coatings11060617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Superhydrophobic surfaces have aroused great interest for being promising candidates in applications such as self-cleaning, anti-icing, and corrosion resistance. However, most of the superhydrophobic surfaces lose their anti-wettability in low surface temperature and high humidity. The loss of superhydrophobicity by condensed liquid is a very common practical incident, yet to be understood properly. Here we report the wettability of the superhydrophobic nanoporous surfaces in condensation and freezing environments. Various structured surfaces fabricated with carbon nanotubes (CNT) and coated by an ultrathin, conformal, and low surface energy layer of poly (1H,1H,2H,2H-perfluorodecylacrylate) (pPFDA) are exploited in humid conditions. Droplet impact dynamics, condensate characteristics, and freezing time delays are investigated on the CNT micropillars with various geometries along with the CNT forest and two commercially available anti-wetting coatings, NeverWet and WX2100. Nanoporous microstructured CNT pillars with the favorable topological configuration demonstrated complete droplet bouncing, significant freezing delays, and considerable durability during several icing/de-icing cycles. This study provides an understanding on the preferable geometry of the highly porous CNT micropillars for retaining hydrophobicity and preventing ice formation, which is of practical importance for the rational development of anti-wetting surfaces and their applications in low temperatures and humid conditions.
Collapse
|
20
|
Al-Gharabli S, Kujawa J. Molecular activation of fluoropolymer membranes via base piranha treatment to enhance transport and mitigate fouling – new materials for water purification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Chang H, Liu B, Zhang Z, Pawar R, Yan Z, Crittenden JC, Vidic RD. A Critical Review of Membrane Wettability in Membrane Distillation from the Perspective of Interfacial Interactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1395-1418. [PMID: 33314911 DOI: 10.1021/acs.est.0c05454] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydrophobic membranes used in membrane distillation (MD) systems are often subject to wetting during long-term operation. Thus, it is of great importance to fully understand factors that influence the wettability of hydrophobic membranes and their impact on the overall separation efficiency that can be achieved in MD systems. This Critical Review summarizes both fundamental and applied aspects of membrane wetting with particular emphasis on interfacial interaction between the membrane and solutes in the feed solution. First, the theoretical background of surface wetting, including the relationship between wettability and interfacial interaction, definition and measurement of contact angle, surface tension, surface free energy, adhesion force, and liquid entry pressure, is described. Second, the nature of wettability, membrane wetting mechanisms, influence of membrane properties, feed characteristics and operating conditions on membrane wetting, and evolution of membrane wetting are reviewed in the context of an MD process. Third, specific membrane features that increase resistance to wetting (e.g., superhydrophobic, omniphobic, and Janus membranes) are discussed briefly followed by the comparison of various cleaning approaches to restore membrane hydrophobicity. Finally, challenges with the prevention of membrane wetting are summarized, and future work is proposed to improve the use of MD technology in a variety of applications.
Collapse
Affiliation(s)
- Haiqing Chang
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Baicang Liu
- Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Zhewei Zhang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Ritesh Pawar
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fujian, 350116, China
| | - John C Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Radisav D Vidic
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
22
|
Gravity-Driven Separation of Oil/Water Mixture by Porous Ceramic Membranes with Desired Surface Wettability. MATERIALS 2021; 14:ma14020457. [PMID: 33477835 PMCID: PMC7832897 DOI: 10.3390/ma14020457] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 11/26/2022]
Abstract
Porous Al2O3 membranes were prepared through a phase-inversion tape casting/sintering method. The alumina membranes were embedded with finger-like pores perpendicular to the membrane surface. Bare alumina membranes are naturally hydrophilic and underwater oleophobic, while fluoroalkylsilane (FAS)-grafted membranes are hydrophobic and oleophilic. The coupling of FAS molecules on alumina surfaces was confirmed by Thermogravimetric Analysis and X-ray Photoelectron Spectroscopy measurements. The hydrophobic membranes exhibited desired thermal stability and were super durable when exposed to air. Both membranes can be used for gravity-driven oil/water separation, which is highly cost-effective. The as-calculated separation efficiency (R) was above 99% for the FAS-grafted alumina membrane. Due to the excellent oil/water separation performance and good chemical stability, the porous ceramic membranes display potential for practical applications.
Collapse
|
23
|
Molecular Decoration of Ceramic Supports for Highly Effective Enzyme Immobilization-Material Approach. MATERIALS 2021; 14:ma14010201. [PMID: 33401646 PMCID: PMC7794798 DOI: 10.3390/ma14010201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/29/2020] [Accepted: 12/29/2020] [Indexed: 01/16/2023]
Abstract
A highly effective method was developed to functionalize ceramic supports (Al2O3 powders and membranes) using newly synthesized spacer molecules. The functionalized materials were subsequently utilized for Candida antarctica lipase B enzyme immobilization. The objective is to systematically evaluate the impact of various spacer molecules grafted onto the alumina materials will affect both the immobilization of the enzymes and specific material surface properties, critical to enzymatic reactors performance. The enzyme loading was significantly improved for the supports modified with shorter spacer molecules, which possessed higher grafting effectiveness on the order of 90%. The specific enzyme activity was found to be much higher for samples functionalized with longer modifiers yielding excellent enantioselectivity >97%. However, the enantiomeric ratio of the immobilized lipase was slightly lower in the case of shorter spacer molecules.
Collapse
|
24
|
Cho YH, Jeong S, Kim SJ, Kim Y, Lee HJ, Lee TH, Park HB, Park H, Nam SE, Park YI. Sacrificial graphene oxide interlayer for highly permeable ceramic thin film composite membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Mesoporous Silica Membranes Silylated by Fluorinated and Non-Fluorinated Alkylsilanes for the Separation of Methyl Tert-Butyl Ether from Water. MEMBRANES 2020; 10:membranes10040070. [PMID: 32326643 PMCID: PMC7231391 DOI: 10.3390/membranes10040070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 11/17/2022]
Abstract
It is of great significance to separate hazardous methyl tert-butyl ether (MTBE) from water in terms of environmental protection and human health. In the present work, α-Al2O3-suppotred silica membranes were prepared by the sol-gel and dip-coating technique. Two fluorinated alkylsilanes (1H,1H,2H,2H-perfluorooctyltriethoxysilane (PFOTES) and trifluoropropyltriethoxysilane (TFPTES)) and two non-fluorinated alkylsilanes (octyltriethoxysilane (OTES) and propyltriethoxysilane (PTES)) were adopted to silylate the silica membrane by the post-grafting method which is used for the separation of MTBE from water by pervaporation. The results show that silylation enhances the hydrophobicity of silica membranes. The silylated silica membranes are selective towards MTBE, and the MTBE/water separation factor varies with grafting agents in the order: PFOTES > TFPTES > OTES > PTES. Membranes silylated with fluorinated carbon chains seem to be more selective towards MTBE than those with non-fluorinated carbon chains. The total flux is proportional to the pore volume of silica membranes, which depends on grafting agents in the order: PTES > PFOTES > OTES > TFPTES. Considering both total flux and selectivity, the PFOTES-SiO2 membrane is most effective in separation, with a MTBE/water separation factor of 24.6 and a total flux of 0.35 kg m-2 h-1 under a MTBE concentration of 3.0% and a feed temperature of 30 °C.
Collapse
|
26
|
Naidu G, Tijing L, Johir M, Shon H, Vigneswaran S. Hybrid membrane distillation: Resource, nutrient and energy recovery. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117832] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
27
|
Knozowska K, Li G, Kujawski W, Kujawa J. Novel heterogeneous membranes for enhanced separation in organic-organic pervaporation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117814] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Pagliero M, Bottino A, Comite A, Costa C. Silanization of tubular ceramic membranes for application in membrane distillation. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117911] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Liu Y, Hu T, Zhao J, Lu L, Muhammad Y, Lan P, He R, Zou Y, Tong Z. Synthesis and application of PDMS/OP-POSS membrane for the pervaporative recovery of n-butyl acetate and ethyl acetate from aqueous media. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117324] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Amirilargani M, Merlet RB, Chu L, Nijmeijer A, Winnubst L, de Smet LC, Sudhölter EJ. Molecular separation using poly (styrene-co-maleic anhydride) grafted to γ-alumina: Surface versus pore modification. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
31
|
Kujawa J. From nanoscale modification to separation - The role of substrate and modifiers in the transport properties of ceramic membranes in membrane distillation. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.03.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
The Influence of Talc Addition on the Performance of Polypropylene Membranes Formed by TIPS Method. MEMBRANES 2019; 9:membranes9050063. [PMID: 31091714 PMCID: PMC6572567 DOI: 10.3390/membranes9050063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/17/2022]
Abstract
The effect of talc addition on the morphology of capillary membranes formed by a thermally induced phase separation (TIPS) method was investigated in the presented work. The usability of such formed membranes for membrane distillation was evaluated. Two types of commercial capillary polypropylene membranes, fabricated for microfiltration process, were applied in the studies. A linear arrangement of polymer chains was obtained in the walls of membranes formed without a talc addition. In the case of membranes blended with talc, the linear structure was disordered, and a more porous structure was obtained. The changes in morphology enhanced the mechanical properties of blended membranes, and their lower thermal degradation was observed during 350 h of membrane distillation studies. Long-term studies confirmed the stability of talc dispersion in the membrane matrix. A leaching of talc from polypropylene (PP) membranes was not found during the membrane distillation (MD) process.
Collapse
|
33
|
Tai ZS, Abd Aziz MH, Othman MHD, Mohamed Dzahir MIH, Hashim NA, Koo KN, Hubadillah SK, Ismail AF, A Rahman M, Jaafar J. Ceramic Membrane Distillation for Desalination. SEPARATION AND PURIFICATION REVIEWS 2019. [DOI: 10.1080/15422119.2019.1610975] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Zhong Sheng Tai
- Advanced Membrane Technology Research Center (AMTEC), School of Chemical and Energy Engineering (FCEE), Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Mohd Haiqal Abd Aziz
- Advanced Membrane Technology Research Center (AMTEC), School of Chemical and Energy Engineering (FCEE), Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Center (AMTEC), School of Chemical and Energy Engineering (FCEE), Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | | | - Nur Awanis Hashim
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
| | - Khong Nee Koo
- Advanced Membrane Technology Research Center (AMTEC), School of Chemical and Energy Engineering (FCEE), Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Siti Khadijah Hubadillah
- Advanced Membrane Technology Research Center (AMTEC), School of Chemical and Energy Engineering (FCEE), Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), School of Chemical and Energy Engineering (FCEE), Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Mukhlis A Rahman
- Advanced Membrane Technology Research Center (AMTEC), School of Chemical and Energy Engineering (FCEE), Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Juhana Jaafar
- Advanced Membrane Technology Research Center (AMTEC), School of Chemical and Energy Engineering (FCEE), Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| |
Collapse
|
34
|
Transport properties and fouling issues of membranes utilized for the concentration of dairy products by air-gap membrane distillation and microfiltration. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-018-0615-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Knozowska K, Kujawski W, Zatorska P, Kujawa J. Pervaporative efficiency of organic solvents separation employing hydrophilic and hydrophobic commercial polymeric membranes. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.07.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Rezaei M, Warsinger DM, Lienhard V JH, Duke MC, Matsuura T, Samhaber WM. Wetting phenomena in membrane distillation: Mechanisms, reversal, and prevention. WATER RESEARCH 2018; 139:329-352. [PMID: 29660622 DOI: 10.1016/j.watres.2018.03.058] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/01/2018] [Accepted: 03/25/2018] [Indexed: 06/08/2023]
Abstract
Membrane distillation (MD) is a rapidly emerging water treatment technology; however, membrane pore wetting is a primary barrier to widespread industrial use of MD. The primary causes of membrane wetting are exceedance of liquid entry pressure and membrane fouling. Developments in membrane design and the use of pretreatment have provided significant advancement toward wetting prevention in membrane distillation, but further progress is needed. In this study, a broad review is carried out on wetting incidence in membrane distillation processes. Based on this perspective, the study describes the wetting mechanisms, wetting causes, and wetting detection methods, as well as hydrophobicity measurements of MD membranes. This review discusses current understanding and areas for future investigation on the influence of operating conditions, MD configuration, and membrane non-wettability characteristics on wetting phenomena. Additionally, the review highlights mathematical wetting models and several approaches to wetting control, such as membrane fabrication and modification, as well as techniques for membrane restoration in MD. The literature shows that inorganic scaling and organic fouling are the main causes of membrane wetting. The regeneration of wetting MD membranes is found to be challenging and the obtained results are usually not favorable. Several pretreatment processes are found to inhibit membrane wetting by removing the wetting agents from the feed solution. Various advanced membrane designs are considered to bring membrane surface non-wettability to the states of superhydrophobicity and superomniphobicity; however, these methods commonly demand complex fabrication processes or high-specialized equipment. Recharging air in the feed to maintain protective air layers on the membrane surface has proven to be very effective to prevent wetting, but such techniques are immature and in need of significant research on design, optimization, and pilot-scale studies.
Collapse
Affiliation(s)
- Mohammad Rezaei
- Institute of Process Engineering, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria.
| | - David M Warsinger
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520-8286, USA; Rohsenow Kendall Heat Transfer Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139-4307, USA
| | - John H Lienhard V
- Rohsenow Kendall Heat Transfer Laboratory, Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge MA 02139-4307, USA
| | - Mikel C Duke
- Institute for Sustainability and Innovation, College of Engineering and Science, Victoria University, Melbourne, Victoria 8001, Australia
| | - Takeshi Matsuura
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Wolfgang M Samhaber
- Institute of Process Engineering, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| |
Collapse
|
37
|
Enhancement on the Surface Hydrophobicity and Oleophobicity of an Organosilicon Film by Conformity Deposition and Surface Fluorination Etching. MATERIALS 2018; 11:ma11071089. [PMID: 29949898 PMCID: PMC6073231 DOI: 10.3390/ma11071089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 11/17/2022]
Abstract
In this work, the surface morphology of a hydrophobic organosilicon film was modified as it was deposited onto a silver seed layer with nanoparticles. The surface hydrophobicity evaluated by the water contact angle was significantly increased from 100° to 128° originating from the surface of the organosilicon film becoming roughened, and was deeply relevant to the Ag seed layer conform deposition. In addition, the organosilicon film became surface oleophobic and the surface hydrophobicity was improved due to the formation of the inactive C-F chemical on the surface after the carbon tetrafluoride glow discharge etching. The surface hydrophobicity and oleophobicity of the organosilicon film could be further optimized with water and oleic contact angles of about 138° and 61°, respectively, after an adequate fluorination etching.
Collapse
|
38
|
Al-Gharabli S, Kujawski W, El-Rub ZA, Hamad EM, Kujawa J. Enhancing membrane performance in removal of hazardous VOCs from water by modified fluorinated PVDF porous material. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2018.04.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
39
|
Advanced Material-Ordered Nanotubular Ceramic Membranes Covalently Capped with Single-Wall Carbon Nanotubes. MATERIALS 2018; 11:ma11050739. [PMID: 29735904 PMCID: PMC5978116 DOI: 10.3390/ma11050739] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 11/25/2022]
Abstract
Advanced ceramic materials with a well-defined nano-architecture of their surfaces were formed by applying a two-step procedure. Firstly, a primary amine was docked on the ordered nanotubular ceramic surface via a silanization process. Subsequently, single-wall carbon nanotubes (SWCNTs) were covalently grafted onto the surface via an amide building block. Physicochemical (e.g., hydrophobicity, and surface free energy (SFE)), mechanical, and tribological properties of the developed membranes were improved significantly. The design, preparation, and extended characterization of the developed membranes are presented. Tools such as high-resolution transmission electron microscopy (HR-TEM), single-area electron diffraction (SAED) analysis, microscopy, tribology, nano-indentation, and Raman spectroscopy, among other techniques, were utilized in the characterization of the developed membranes. As an effect of hydrophobization, the contact angles (CAs) changed from 38° to 110° and from 51° to 95° for the silanization of ceramic membranes 20 (CM20) and CM100, respectively. SWCNT functionalization reduced the CAs to 72° and 66° for ceramic membranes carbon nanotubes 20 (CM-CNT-20) and CM-CNT-100, respectively. The mechanical properties of the developed membranes improved significantly. From the nanotribological study, Young’s modulus increased from 3 to 39 GPa for CM-CNT-20 and from 43 to 48 GPa for pristine CM-CNT-100. Furthermore, the nanohardness increased by about 80% after the attachment of CNTs for both types of ceramics. The proposed protocol within this work for the development of functionalized ceramic membranes is both simple and efficient.
Collapse
|
40
|
Modification of polyacrylonitrile membranes via plasma treatment followed by polydimethylsiloxane coating for recovery of ethyl acetate from aqueous solution through vacuum membrane distillation. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
|
42
|
Al-Gharabli S, Kujawski W, Arafat HA, Kujawa J. Tunable separation via chemical functionalization of polyvinylidenefluoride membranes using piranha reagent. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.07.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
43
|
Szczerbińska J, Kujawski W, Arszyńska JM, Kujawa J. Assessment of air-gap membrane distillation with hydrophobic porous membranes utilized for damaged paintings humidification. J Memb Sci 2017. [DOI: 10.1016/j.memsci.2017.05.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Coordination-Driven Controlled Assembly of Polyphenol-Metal Green Coating on Wood Micro-Grooved Surfaces: A Novel Approach to Stable Superhydrophobicity. Polymers (Basel) 2017; 9:polym9080347. [PMID: 30971024 PMCID: PMC6418690 DOI: 10.3390/polym9080347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 11/28/2022] Open
Abstract
A versatile, fast, and nature-inspired polyphenol chemistry surface modification was applied to prepare superhydrophobic surfaces with micro-grooved structures in this study. Tannic acid and iron ion (TA–FeIII) complexes were employed as a molecular building block for anchoring biomimetic coating onto the wood substrate with catalytically reducing formative Ag ions as the rough surface to ensure well-developed micro/nanostructure hierarchical roughness. TA–FeIII complexes also acted as stable bridges between the substrate and hydrophobic groups. The thickness and architecture of TA–FeIII complex coatings can be tailored by coordination-driven multistep assembly. The results indicated that the micro/nano hierarchical roughness structure was well-developed with increased coating times and increased deposition of reduced Ag nanoparticles, resulting in excellent superhydrophobic properties (e.g., water CA (contact angle) of about 156° and a rolling angle of about 4°). The superhydrophobic material exhibited outstanding stability and durability in harsh conditions, including strong acid/base or organic solvent, high-temperature water boiling, ultrasonic cleaning, and ultraviolet aging. A series of superhydrophobic models are proposed to clarify the effect of the micro/nano hierarchical structure on these superhydrophobic properties.
Collapse
|