1
|
Wang H, Liu H, Pan T, Zhang S, Liu W. Designing 3D SnS@Cu-Ni Nanoporous Column Array Electrode for High-Capacity and High-Rate Lithium-Ion Batteries. SMALL METHODS 2024; 8:e2400411. [PMID: 38850177 DOI: 10.1002/smtd.202400411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Indexed: 06/10/2024]
Abstract
Sn-based materials with high capacity showcase great potential for next-generation lithium-ion batteries (LIBs). Yet, the large volume change and limited ion/electron transfer efficiency of Sn-based materials upon operation significantly compromises the battery performance. In this study, a unique 3D copper-nickel nanoporous column array current collector is rationally developed via a facile template-free galvanostatic electrodeposition method, followed by electrodepositing SnS active material onto it (denoted as 3D SnS@CNCA). Excitingly, the morphology of the 3D SnS@CNCA electrode perfectly inherited the nanoporous column array structure of the 3D current collector, which not only endows the electrode with a large specific surface area to provide more active sites and sufficient ion/electron transport pathways, but also effectively alleviates the volume expansion of SnS upon repeated charge-discharge cycles. Therefore, the binder-free 3D SnS@CNCA electrode showcases a significantly enhanced Li storage performance, showing a high initial reversible capacity of 1019.7 mAh g-1 with noteworthy cycling stability (a capacity retention rate of 89.4% after 200 cycles). Moreover, the designed electrode also manifests high rate performance with a high capacity of 570.6 mAh g-1 at 4 A g-1. This work provides a novel design idea for the preparation of high-performance electrodes beyond LIBs.
Collapse
Affiliation(s)
- Haoyu Wang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Huanyan Liu
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Tao Pan
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Shichao Zhang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Wenbo Liu
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Bürger JC, Lee S, Büttner J, Gutsch S, Kolhep M, Fischer A, Ross FM, Zacharias M. High-Resolution Nanoanalytical Insights into Particle Formation in SnO 2/ZnO Core/Shell Nanowire Lithium-Ion Battery Anodes. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37269318 DOI: 10.1021/acsami.3c03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Tin oxide (SnO2)/zinc oxide (ZnO) core/shell nanowires as anode materials in lithium-ion batteries (LIBs) were investigated using a combination of classical electrochemical analysis and high-resolution electron microscopy to correlate structural changes and battery performance. The combination of the conversion materials SnO2 and ZnO is known to have higher storage capacities than the individual materials. We report the expected electrochemical signals of SnO2 and ZnO for SnO2/ZnO core/shell nanowires as well as unexpected structural changes in the heterostructure after cycling. Electrochemical measurements based on charge/discharge, rate capability, and electrochemical impedance spectroscopy showed electrochemical signals for SnO2 and ZnO and partial reversibility of lithiation and delithiation. We find an initially 30% higher capacity for the SnO2/ZnO core/shell NW heterostructure compared to the ZnO-coated substrate without the SnO2 NWs. However, electron microscopy characterization revealed pronounced structural changes upon cycling, including redistribution of Sn and Zn, formation of ∼30 nm particles composed of metallic Sn, and a loss of mechanical integrity. We discuss these changes in terms of the different reversibilities of the charge reactions of both SnO2 and ZnO. The results show stability limitations of SnO2/ZnO heterostructure LIB anodes and offer guidelines on material design for advanced next-generation anode materials for LIBs.
Collapse
Affiliation(s)
- Jasmin-Clara Bürger
- Laboratory for Nanotechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Serin Lee
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jan Büttner
- Cluster of Excellence livMatS, University of Freiburg, 79104 Freiburg, Germany
- Institute for Inorganic and Analytical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Sebastian Gutsch
- Laboratory for Nanotechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Maximilian Kolhep
- Laboratory for Nanotechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Anna Fischer
- Cluster of Excellence livMatS, University of Freiburg, 79104 Freiburg, Germany
- Institute for Inorganic and Analytical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- FMF─Freiburg Materials Research Center, University of Freiburg, Stefan-Meier Str. 21, 79104 Freiburg, Germany
| | - Frances M Ross
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Margit Zacharias
- Laboratory for Nanotechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
3
|
Shin N, Kim M, Ha J, Kim YT, Choi J. Flexible anodic SnO2 nanoporous structures uniformly coated with polyaniline as a binder-free anode for lithium ion batteries. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Pan X, Lv N, Cai G, Zhou M, Wang R, Li C, Ning J, Li J, Li Y, Ye Z, Zhu G. Carbon- and metal-based mediators modulate anaerobic methanogenesis and phenol removal: Focusing on stimulatory and inhibitory mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126615. [PMID: 34329085 DOI: 10.1016/j.jhazmat.2021.126615] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/05/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
In this study, anaerobic batch experiments were conducted to investigate the effect of carbon-based (biochar) and metal-based (nanoscale zero-valent iron, NZVI and zero valent iron, ZVI) mediators on the AD process treating phenolic wastewater. Fresh apricot shell- and wood-derived biochar (BiocharA, BiocharB) could remove the phenol efficiently (77.1% and 86.2%), suggesting that biodegradation cooperated with adsorption had advantage in phenol removal. BiocharB, NZVI and ZVI enhanced the methane production by 17.6%, 23.7% and 23.2%, respectively. Apart from serving as carrier for microbial growth, BiocharB might promote the direct interspecies electron transfer (DIET) since the Anaerolineaceae/Clostridium sensu stricto, which have potential for DIET, were enriched. NZVI and ZVI added systems mainly enhanced the abundance of Clostridium sensu stricto (24.5%, 37.6%) and Methanosaeta. Interestingly, BiocharA inhibited the methanogenesis completely. An inhibitory mechanism was proposed: the exposure of absorbed microbes on the BiocharA to the highly concentrated phenol in biochar' pores resulted in the inhibition of methanogens, especially for Methanosarcina. In conclusion, this study showed that suitable biochar (BiocharB) could serve as an alternative redox mediator for realizing simultaneously the efficient phenol removal and methane production.
Collapse
Affiliation(s)
- Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China; Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture and Rural Affairs, China
| | - Nan Lv
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture and Rural Affairs, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Mingdian Zhou
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Ruming Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Jing Ning
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Junjie Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yanlin Li
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhilong Ye
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gefu Zhu
- School of Environment and Nature Resources, Renmin University of China, Beijing 100872, China; Key Laboratory of Energy Resource Utilization from Agriculture Residue, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
5
|
Reactive self-assembled hybrid SnO2-Co3O4 nanotubes with enhanced lithium storage capacity and stability for highly scalable Li-Ion batteries. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
6
|
Zong L, Zhang Z, Yan L, Li P, Yu Z, Qiao Z, Zhang S, Kang J. Multilayered interlaced SnO2 nanosheets @ porous copper tube textile as thin and flexible electrode for lithium-ion batteries. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Zhang Y, Yan D, Liu Z, Ye Y, Cheng F, Li H, Lu AH. A SnO x Quantum Dots Embedded Carbon Nanocage Network with Ultrahigh Li Storage Capacity. ACS NANO 2021; 15:7021-7031. [PMID: 33851824 DOI: 10.1021/acsnano.1c00088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tin-based materials with high specific capacity have been studied as high-performance anodes for energy storage devices. Herein, a SnOx (x = 0, 1, 2) quantum dots@carbon hybrid is designed and prepared by a binary oxide-induced surface-targeted coating of ZIF-8 followed by pyrolysis approach, in which SnOx quantum dots (under 5 nm) are dispersed uniformly throughout the nitrogen-containing carbon nanocage. Each nanocage is cross-linked to form a highly conductive framework. The resulting SnOx@C hybrid exhibits a large BET surface area of 598 m2 g-1, high electrical conductivity, and excellent ion diffusion rate. When applied to LIBs, the SnOx@C reveals an ultrahigh reversible capacity of 1824 mAh g-1 at a current density of 0.2 A g-1, and superior capacities of 1408 and 850 mAh g-1 even at high rates of 2 and 5 A g-1, respectively. The full cell assembled using LiFePO4 as cathode exhibits the high energy density and power density of 335 Wh kg-1 and 575 W kg-1 at 1 C based on the total active mass of cathode and anode. Combined with in situ XRD analysis, the superior electrochemical performance can be attributed to the SnOx-ZnO-C asynchronous and united lithium storage mechanism, which is formed by the well-designed multifeatured construction composed of SnOx quantum dots, interconnected carbon network, and uniformly dispersed ZnO nanoparticles. Importantly, this designed synthesis can be extended for the fabrication of other electrode materials by simply changing the binary oxide precursor to obtain the desired active component or modulating the type of MOFs coating to achieve high-performance LIBs.
Collapse
Affiliation(s)
- Yanan Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Road 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Dong Yan
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi District, Dalian 116024, P. R. China
| | - Zefei Liu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Road 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Youwen Ye
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Road 8, Hongqiao District, Tianjin 300130, P. R. China
| | - Fei Cheng
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Road 8, Hongqiao District, Tianjin 300130, P. R. China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi District, Dalian 116024, P. R. China
| | - Huanrong Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Road 8, Hongqiao District, Tianjin 300130, P. R. China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Linggong Road 2, Ganjingzi District, Dalian 116024, P. R. China
| |
Collapse
|
8
|
Yang Y, Liu Q, Wang H, Wen H, Peng Z, Xiang K, Gao C, Wu X, Li B, Liu Z. Phosphorus-Doped 3D RuCo Nanowire Arrays on Nickel Foam with Enhanced Electrocatalytic Activity for Overall Water Splitting. ACS OMEGA 2021; 6:10234-10241. [PMID: 34056177 PMCID: PMC8153743 DOI: 10.1021/acsomega.1c00579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/25/2021] [Indexed: 05/15/2023]
Abstract
It is especially significant to design and construct high-performance and stable three-dimensional (3D) bifunctional nanoarchitecture electrocatalysts toward overall water splitting. Herein, we have constructed 3D self-supported phosphorus-doped ruthenium-cobalt nanowires on nickel foams (RuCoP/NF) via a simple hydrothermal reaction followed by a low-temperature phosphating reaction. Doping P can not merely enhance the intrinsic activity of electrocatalysts for overall water splitting but at the same time increase electrochemical surface areas (ECSAs) to expose more accessible active sites. As a 3D bifunctional catalyst, RuCoP/NF demonstrates superior performance for HER (44 mV@10 mA cm-2) and OER (379 mV@50 mA cm-2) in 1.0 M KOH electrolyte solution. The overall water-splitting system was assembled using RuCoP/NF as both anode and cathode. Besides, it exhibits a voltage of 1.533 V at a current density of 10 mA cm-2 and long-term durability within 24 h. P-dopant changes the electron structure of Ru and Co, which is conducive to the formation of Ruδ- and Coδ+, resulting in the adjustment of binding H*/OH* and the improvement of the overall water-splitting reaction kinetics. This work provides a facile method to produce heteroatom-doped and high-performance catalysts for efficient overall water splitting.
Collapse
Affiliation(s)
- Yaqi Yang
- Research
Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Qiaoyun Liu
- Research
Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Haiyang Wang
- Research
Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Hao Wen
- Research
Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Zhikun Peng
- Henan
Institute of Advance Technology, Zhengzhou
University, Zhengzhou 450003, P.R. China
| | - Kun Xiang
- College
of Materials, Shenzhen University, Shenzhen 518000, P.R. China
| | - Caiyan Gao
- School
of Environmental Science and Engineering, Wuhan University of Technology, Wuhan 430070, P.R. China
| | - Xianli Wu
- Research
Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Baojun Li
- Research
Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Zhongyi Liu
- Research
Center of Green Catalysis, College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China
| |
Collapse
|
9
|
Li Z, Li M, Fan Q, Qi X, Qu L, Tian M. Smart-Fabric-Based Supercapacitor with Long-Term Durability and Waterproof Properties toward Wearable Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14778-14785. [PMID: 33754690 DOI: 10.1021/acsami.1c02615] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The rapid development of wearable electronics and smart textiles has dramatically motivated the generation of flexible textile-based supercapacitors (SCs). However, the rapid evaporation of water moisture in gel electrolyte substantially limits the working durability and performance enhancements of the flexible devices. Therefore, a high-performance multifunctional textile-based SC with long-term durability is highly desired. Herein, a poly(vinyl alcohol) (PVA)/polyacrylamide (PAM) composite gel electrolyte was developed to fabricate multifunctional device with water-retaining and water-proofing properties based on multidimensional hierarchical fabric. And the assembled SC based on composite gel exhibited a superior water-retaining property and long-term working durability (93.29% retention rate after operation for 15 days), whereas the performance of SC based on pure PVA gel declined sharply and only 43.2% capacitance remained. In addition, the assembled SC exhibited enhanced specific capacitance of 707.9 mF/cm2 and high energy density of 62.92 μWh/cm2 and maintained a good stability of 80.8% even after 10 000 cyclic tests. After water repellency treatment, the integrated device immersed in water could still work normally. What's more, the assembled devices could be charged by a portable hand generator, which could be potentially applied for field rescue and military applications. We foresee that this strategy would be a potential route to prepare high-performance multifunctional textile-based SCs for wearable electronic systems and smart textile applications.
Collapse
Affiliation(s)
- Zengqing Li
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P.R. China
| | - Ming Li
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P.R. China
| | - Qiang Fan
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P.R. China
| | - Xiangjun Qi
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P.R. China
| | - Lijun Qu
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P.R. China
- Jiangsu College of Engineering and Technology, Nantong, Jiangsu 226007, P.R. China
| | - Mingwei Tian
- Research Center for Intelligent and Wearable Technology, College of Textiles and Clothing, State Key Laboratory of Bio-Fibers and Eco-Textiles, Intelligent Wearable Engineering Research Center of Qingdao, Qingdao University, Qingdao 266071, P.R. China
| |
Collapse
|
10
|
Iftikhar M, Ali B, Nisar T, Wagner V, Haider A, Hussain S, Bahadar A, Saleem M, Abbas SM. Improving Lithium-Ion Half-/Full-Cell Performance of WO 3 -Protected SnO 2 Core-Shell Nanoarchitectures. CHEMSUSCHEM 2021; 14:917-928. [PMID: 33241652 DOI: 10.1002/cssc.202002408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Anodes derived from SnO2 offer a greater specific capacity comparative to graphitic carbon in lithium-ion batteries (LIBs); hence, it is imperative to find a simple but effective approach for the fabrication of SnO2 . The intelligent surfacing of transition metal oxides is one of the favorite strategies to dramatically boost cycling efficiency, and currently most work is primarily aimed at coating and/or compositing with carbon-based materials. Such coating materials, however, face major challenges, including tedious processing and low capacity. This study successfully reports a new and simple WO3 coating to produce a core-shell structure on the surface of SnO2 . The empty space permitted natural expansion for the SnO2 nanostructures, retaining a higher specific capacity for over 100 cycles that did not appear in the pristine SnO2 without WO3 shell. Using WO3 -protected SnO2 nanoparticles as anode, a coin half-cell battery was designed with Li-foil as counter-electrode. Furthermore, the anode was paired with commercial LiFePO4 as cathode for a coin-type full cell and tested for lithium storage performance. The WO3 shell proved to be an effective and strong enhancer for both current rate and specific capacity of SnO2 nanoarchitectures; additionally, an enhancement of cyclic stability was achieved. The findings demonstrate that the WO3 can be used for the improvement of cyclic characteristics of other metal oxide materials as a new coating material.
Collapse
Affiliation(s)
- Muhammad Iftikhar
- Department of Chemistry, Quaid-e-Azam University, 45320-, Islamabad, Pakistan
- Nanoscience and Technology Department, National Centre for Physics, Quaid-e-Azam University Campus, 45320-, Islamabad, Pakistan
| | - Basit Ali
- Department of Energy and Materials Engineering, Dongguk University, 30, Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Talha Nisar
- Department of Physics and Earth Sciences, Jacobs University, Campus Ring 1, 28759, Bremen, Germany
| | - Veit Wagner
- Department of Physics and Earth Sciences, Jacobs University, Campus Ring 1, 28759, Bremen, Germany
| | - Ali Haider
- Department of Chemistry, Quaid-e-Azam University, 45320-, Islamabad, Pakistan
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, Republic of Korea
| | - Ali Bahadar
- Department of Chemical and Materials Engineering, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - Muhammad Saleem
- Department of Industrial Engineering, King Abdulaziz University, Rabigh, 21911, Saudi Arabia
| | - Syed Mustansar Abbas
- Nanoscience and Technology Department, National Centre for Physics, Quaid-e-Azam University Campus, 45320-, Islamabad, Pakistan
| |
Collapse
|
11
|
Pu J, Shen Z, Zhong C, Zhou Q, Liu J, Zhu J, Zhang H. Electrodeposition Technologies for Li-Based Batteries: New Frontiers of Energy Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903808. [PMID: 31566257 DOI: 10.1002/adma.201903808] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 08/04/2019] [Indexed: 05/27/2023]
Abstract
Electrodeposition induces material syntheses on conductive surfaces, distinguishing it from the widely used solid-state technologies in Li-based batteries. Electrodeposition drives uphill reactions by applying electric energy instead of heating. These features may enable electrodeposition to meet some needs for battery fabrication that conventional technologies can rarely achieve. The latest progress of electrodeposition technologies in Li-based batteries is summarized. Each component of Li-based batteries can be electrodeposited or synthesized with multiple methods. The advantages of electrodeposition are the main focus, and they are discussed in comparison with traditional technologies with the expectation to inspire innovations to build better Li-based batteries. Electrodeposition coats conformal films on surfaces and can control the film thickness, providing an effective approach to enhancing battery performance. Engineering interfaces by electrodeposition can stabilize the solid electrolyte interphase (SEI) and strengthen the adhesion of active materials to substrates, thereby prolonging the battery longevity. Lastly, a perspective of future studies on electrodepositing batteries is provided. The significant merits of electrodeposition should greatly advance the development of Li-based batteries.
Collapse
Affiliation(s)
- Jun Pu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Institute of Materials Engineering, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Zihan Shen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Institute of Materials Engineering, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Chenglin Zhong
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Institute of Materials Engineering, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Qingwen Zhou
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Institute of Materials Engineering, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jinyun Liu
- Key Laboratory of Functional Molecular Solids (Ministry of Education), College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Institute of Materials Engineering, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Huigang Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Institute of Materials Engineering, Nanjing University, Nanjing, 210093, Jiangsu, China
| |
Collapse
|
12
|
Ju W, Jin B, Dong C, Wen Z, Jiang Q. Rice-shaped Fe2O3@C@Mn3O4 with three-layer core-shell structure as a high-performance anode for lithium-ion batteries. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Huang P, Xu F, Zhu G, Dong C, Jin B, Li H, Jiang Q. Facile Synthesis of Flower-Like MnCo 2 O 4 @PANi-rGO: A High-Performance Anode Material for Lithium-Ion Batteries. Chempluschem 2020; 84:1596-1603. [PMID: 31943928 DOI: 10.1002/cplu.201900563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/01/2019] [Indexed: 01/24/2023]
Abstract
Flower-like MnCo2 O4 was prepared in a self-assembly process and used in the formation of MnCo2 O4 @polyaniline (MnCo2 O4 @PANi) that proceeds by a simple in situ polymerization. The MnCo2 O4 @PANi-reduced graphite oxide (MnCo2 O4 @PANi-rGO) composite was then synthesized by introducing rGO into MnCo2 O4 @PANi. This modification improves the overall electronic conductivity of the MnCo2 O4 @PANi-rGO because of the dual conductive functions of rGO and PANi; it also provides a buffer for the changes in electrode volume during cycling, thus improving the lithium-storage performance of MnCo2 O4 @PANi-rGO. The electrochemical performance of the samples was evaluated by charge/discharge cycling testing, cyclic voltammetry, and electrochemical impedance spectroscopy. MnCo2 O4 @PANi-rGO delivers a discharge capacity of 745 mAh g-1 and a Coulombic efficiency of 100 % after 1050 cycles at a current density of 500 mA g-1 , and is a promising anode material for lithium-ion batteries.
Collapse
Affiliation(s)
- Peng Huang
- Key Laboratory of Automobile Materials Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Fengchao Xu
- Key Laboratory of Automobile Materials Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Guoren Zhu
- China Transmission Institute, Jilin University, Changchun, 130022, P. R. China
| | - Chunwei Dong
- Key Laboratory of Automobile Materials Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Bo Jin
- Key Laboratory of Automobile Materials Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Huan Li
- Key Laboratory of Automobile Materials Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| | - Qing Jiang
- Key Laboratory of Automobile Materials Ministry of Education and College of Materials Science and Engineering, Jilin University, Changchun, 130022, P. R. China
| |
Collapse
|
14
|
Li K, Jian X, Li S, Wang W, Lei Y, Zhang P, Liu J, Zhou C, Chen L. In situ growth of urchin-like cobalt–chromium phosphide on 3D graphene foam for efficient overall water splitting. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00908c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The CoCr-P@3DGF composite shows excellent activity and durability for overall water splitting due to Cr-doping and the 3DGF substrate.
Collapse
Affiliation(s)
- Kuang Li
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xue Jian
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Shuo Li
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Weiwei Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Yuchen Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Peilin Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Jinzhe Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Chencheng Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Luyang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
15
|
Wang G, Xu Y, Yue H, Jin R, Gao S. NiMoS 4 nanocrystals anchored on N-doped carbon nanosheets as anode for high performance lithium ion batteries. J Colloid Interface Sci 2019; 561:854-860. [PMID: 31771868 DOI: 10.1016/j.jcis.2019.11.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/15/2019] [Accepted: 11/16/2019] [Indexed: 12/31/2022]
Abstract
Owing to the excellent electrical conductivity and high theoretical capacity, binary transition metal sulfides have attracted extensive attention as promising anodes for lithium ion batteries (LIBs). However, the relatively poor electrical conductivity and serious capacity fading originated from large volume change still hinder their practical applications. Herein, binary NiMoS4 nanoparticles are deposited on N doped carbon nanosheets (NC@NiMoS4) through a facile hydrothermal method. The N doped carbon nanosheets and the strong chemical bonding between NC and NiMoS4 can accommodate the volume change, keep the structural integrity and promote the ion/electron transfer during electrochemical reaction. The extra voids between NiMoS4 nanoparticles enlarge the contact area and reduce the lithium migration barriers. As anode for LIBs, the NC@NiMoS4 exhibits the excellent cycle stability with 834 mAh g-1 after 100 cycles at the current density of 100 mA g-1. Even at high rate of 2000 mA g-1, the specific capacity of 544 mAh g-1 can be achieved after 500 cycles.
Collapse
Affiliation(s)
- Guangming Wang
- School of Chemistry & Materials Science, Ludong University, Yantai 264025, PR China
| | - Yakun Xu
- School of Chemistry & Materials Science, Ludong University, Yantai 264025, PR China
| | - Hailong Yue
- School of Chemistry & Materials Science, Ludong University, Yantai 264025, PR China
| | - Rencheng Jin
- School of Chemistry & Materials Science, Ludong University, Yantai 264025, PR China.
| | - Shanmin Gao
- School of Chemistry & Materials Science, Ludong University, Yantai 264025, PR China.
| |
Collapse
|
16
|
Jian X, Li S, Liu J, Zhou C, Guo S, Zhang P, Yang Y, Chen L. Three‐Dimensional Graphene‐Foam‐Supported Hierarchical Nickel Iron Phosphide Nanosheet Arrays as Efficient and Stable Bifunctional Electrocatalysts for Overall Water Splitting. ChemElectroChem 2019. [DOI: 10.1002/celc.201901420] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Xue Jian
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Shuo Li
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Jinzhe Liu
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Chencheng Zhou
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Shouzhi Guo
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Peilin Zhang
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Yun Yang
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Luyang Chen
- Key Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
17
|
Synthesis and Electrochemical Energy Storage Applications of Micro/Nanostructured Spherical Materials. NANOMATERIALS 2019; 9:nano9091207. [PMID: 31461975 PMCID: PMC6780827 DOI: 10.3390/nano9091207] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 12/28/2022]
Abstract
Micro/nanostructured spherical materials have been widely explored for electrochemical energy storage due to their exceptional properties, which have also been summarized based on electrode type and material composition. The increased complexity of spherical structures has increased the feasibility of modulating their properties, thereby improving their performance compared with simple spherical structures. This paper comprehensively reviews the synthesis and electrochemical energy storage applications of micro/nanostructured spherical materials. After a brief classification, the concepts and syntheses of micro/nanostructured spherical materials are described in detail, which include hollow, core-shelled, yolk-shelled, double-shelled, and multi-shelled spheres. We then introduce strategies classified into hard-, soft-, and self-templating methods for synthesis of these spherical structures, and also include the concepts of synthetic methodologies. Thereafter, we discuss their applications as electrode materials for lithium-ion batteries and supercapacitors, and sulfur hosts for lithium–sulfur batteries. The superiority of multi-shelled hollow micro/nanospheres for electrochemical energy storage applications is particularly summarized. Subsequently, we conclude this review by presenting the challenges, development, highlights, and future directions of the micro/nanostructured spherical materials for electrochemical energy storage.
Collapse
|
18
|
Luo Y, Guo R, Li T, Li F, Liu Z, Zheng M, Wang B, Yang Z, Luo H, Wan Y. Application of Polyaniline for Li-Ion Batteries, Lithium-Sulfur Batteries, and Supercapacitors. CHEMSUSCHEM 2019; 12:1591-1611. [PMID: 30376216 DOI: 10.1002/cssc.201802186] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Conducting polyaniline (PANI) exhibits interesting properties, such as high conductivity, reversible convertibility between redox states, and advantageous structural feature. It therefore receives ever-increasing attention for various applications. This Minireview evaluates recent studies on application of PANI for Li-ion batteries (LIBs), Li-S batteries (LSBs) and supercapacitors (SCPs). The flexible PANI is crucial for cyclability, especially for buffering the volumetric changes of electrode materials, in addition to enhancing the electron/ion transport. Furthermore, PANI can be directly used as an electroactive component in electrode materials for LIBs or SCPs and can be widely applied in LSBs due to its physically and chemically strong affinity for S and polysulfides. The evaluation of studies herein reveals significant improvements of electrochemical performance by physical/chemical modification and incorporation of PANI.
Collapse
Affiliation(s)
- Yani Luo
- Key Laboratory of Advanced Ceramics and Machining Technology of, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P.R. China
| | - Ruisong Guo
- Key Laboratory of Advanced Ceramics and Machining Technology of, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P.R. China
| | - Tingting Li
- Key Laboratory of Advanced Ceramics and Machining Technology of, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P.R. China
| | - Fuyun Li
- Key Laboratory of Advanced Ceramics and Machining Technology of, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P.R. China
| | - Zhichao Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P.R. China
| | - Mei Zheng
- Key Laboratory of Advanced Ceramics and Machining Technology of, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P.R. China
| | - Baoyu Wang
- Key Laboratory of Advanced Ceramics and Machining Technology of, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P.R. China
| | - Zhiwei Yang
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, P.R. China
| | - Honglin Luo
- Key Laboratory of Advanced Ceramics and Machining Technology of, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P.R. China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, P.R. China
| | - Yizao Wan
- Key Laboratory of Advanced Ceramics and Machining Technology of, Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300354, P.R. China
- School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, P.R. China
| |
Collapse
|
19
|
Zhang Y, Zhao G, Ge P, Wu T, Li L, Cai P, Liu C, Zou G, Hou H, Ji X. Bi 2MoO 6 Microsphere with Double-Polyaniline Layers toward Ultrastable Lithium Energy Storage by Reinforced Structure. Inorg Chem 2019; 58:6410-6421. [PMID: 31009210 DOI: 10.1021/acs.inorgchem.9b00627] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Given its competitive theoretical capacity, Bi2MoO6 is deemed as a promising anode material for the realization of efficient Li storage. Considering the severe capacity attenuation caused by the lithiation-induced expansion, it is essential to introduce effective modification. Remarkably, in this work, Bi2MoO6 microsphere with double-layered spherical shells are successfully prepared, and the polyaniline are coated on both inner and outer surfaces of double-layered spherical shells, working as buffer layers to strain the volume expansion during electrochemical cycling. Inspiringly, when utilized as anode in LIBs, the specific capacity of Bi2MoO6@PANI is maintained at 656.3 mAh g-1 after 200 cycles at 100 mA g-1, corresponding to a high capacity of 82%. However, the counterpart of individual Bi2MoO6 is only 36%. This result confirms that the polyaniline layer can dramatically promote stable cycling performances. Supported by in situ EIS and ex situ technologies followed by detailed analysis, the enhanced pseudocapacitance-dominated contributions and electron/ion transfer rate, benefiting from the combination with polyaniline, are further proved. This work confirms the significant effect of polyaniline on the ultrastable energy storage, further providing an in-depth sight on the impacts of polyaniline coating to the electrical conductivity as well as the resistances of electron/ion transport.
Collapse
Affiliation(s)
- Yang Zhang
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Ganggang Zhao
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Peng Ge
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Tianjing Wu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Lin Li
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Peng Cai
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Cheng Liu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Guoqiang Zou
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| |
Collapse
|
20
|
Guo R, Li D, Lv C, Wang Y, Zhang H, Xia Y, Yang D, Zhao X. Porous Ni3S4/C aerogels derived from carrageenan-Ni hydrogels for high-performance sodium-ion batteries anode. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.01.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Large-scale carbon framework microbelts anchoring ultrafine SnO2 nanoparticles with enhanced lithium storage properties. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.175] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Zhang X, Huang L, Zeng P, Wu L, Zhang R, Chen Y. Highly Porous Si Nanoframeworks Stabilized in TiO
2
Shells and Enlaced by Graphene Nanoribbons for Superior Lithium‐Ion Storage. ChemElectroChem 2018. [DOI: 10.1002/celc.201800635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xinlin Zhang
- Department of Advanced Energy Materials, School of Materials Science and EngineeringSichuan University, Chengdu Sichuan 610065 P. R. China
| | - Liwu Huang
- Department of Advanced Energy Materials, School of Materials Science and EngineeringSichuan University, Chengdu Sichuan 610065 P. R. China
| | - Pan Zeng
- Department of Advanced Energy Materials, School of Materials Science and EngineeringSichuan University, Chengdu Sichuan 610065 P. R. China
| | - Lin Wu
- Department of Advanced Energy Materials, School of Materials Science and EngineeringSichuan University, Chengdu Sichuan 610065 P. R. China
| | - Ruixue Zhang
- Department of Advanced Energy Materials, School of Materials Science and EngineeringSichuan University, Chengdu Sichuan 610065 P. R. China
| | - Yungui Chen
- Department of Advanced Energy Materials, School of Materials Science and EngineeringSichuan University, Chengdu Sichuan 610065 P. R. China
| |
Collapse
|
23
|
Wu K, Zhan J, Xu G, Zhang C, Pan D, Wu M. MoO 3 nanosheet arrays as superior anode materials for Li- and Na-ion batteries. NANOSCALE 2018; 10:16040-16049. [PMID: 30106073 DOI: 10.1039/c8nr03372b] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
MoO3 is a promising anode material for energy storage, but its electrochemical performance is still unsatisfactory. Herein, α-MoO3 nanosheets vertically grown on activated carbon fiber cloth as superior anode materials for Li- and Na-ion batteries were achieved by the method of controlled preparation. For Li-ion batteries, the resulting MoO3 array electrodes exhibit a high discharge capacity of 4.48 mA h cm-2 (1780 mA h g-1) at 0.1 mA cm-2 and outstanding cycling stability at 0.5 mA cm-2 (94% capacity retention after 200 cycles). Moreover, for Na-ion batteries, they also show an excellent electrochemical performance with a discharge capacity of 2.5 mA h cm-2 (1621 mA h g-1) at 0.1 mA cm-2 and capacity retention of 90% after 200 cycles at 0.2 mA cm-2. This study suggests that MoO3 array electrodes can be hopefully used as promising anode materials for energy storage applications.
Collapse
Affiliation(s)
- Kuan Wu
- Shanghai Applied Radiation Institute, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, PR China.
| | | | | | | | | | | |
Collapse
|
24
|
Chen Q, Ren M, Xu H, Liu W, Hei J, Su L, Wang L. Cu2
S@ N, S Dual-Doped Carbon Matrix Hybrid as Superior Anode Materials for Lithium/Sodium ion Batteries. ChemElectroChem 2018. [DOI: 10.1002/celc.201800401] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Qianwu Chen
- School of Materials Science and Engineering Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics of Shandong Province; Qilu University of Technology (Shandong Academy of Sciences); Jinan 250353 P.R. China
| | - Manman Ren
- School of Materials Science and Engineering Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics of Shandong Province; Qilu University of Technology (Shandong Academy of Sciences); Jinan 250353 P.R. China
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; QLD 4072 Australia
| | - Hong Xu
- School of Materials Science and Engineering Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics of Shandong Province; Qilu University of Technology (Shandong Academy of Sciences); Jinan 250353 P.R. China
| | - Weiliang Liu
- School of Materials Science and Engineering Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics of Shandong Province; Qilu University of Technology (Shandong Academy of Sciences); Jinan 250353 P.R. China
| | - Jinpei Hei
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310014 P.R. China
| | - Liwei Su
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310014 P.R. China
| | - Lianzhou Wang
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology; The University of Queensland; QLD 4072 Australia
| |
Collapse
|
25
|
Qiao H, Li R, Yu Y, Xia Z, Wang L, Wei Q, Chen K, Qiao Q. Fabrication of PANI-coated ZnFe2O4 nanofibers with enhanced electrochemical performance for energy storage. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.04.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Liang K, Zhao ZW, Zhou X, Xu AW. A novel route to prepare N-graphene/SnO2 composite as a high-performance anode for lithium batteries. Dalton Trans 2018; 47:10206-10212. [DOI: 10.1039/c8dt01944d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we report a simple method to prepare nitrogen-doped graphene, with which a nitrogen-doped graphene/SnO2 composite was successfully fabricated and employed as a lithium battery anode.
Collapse
Affiliation(s)
- Kuang Liang
- Division of Nanomaterials and Chemistry
- Hefei National Laboratory for Physical Sciences at Microscale Department
- University of Science and Technology of China
- Hefei 230026
- P.R. China
| | - Zhi-Wei Zhao
- Division of Nanomaterials and Chemistry
- Hefei National Laboratory for Physical Sciences at Microscale Department
- University of Science and Technology of China
- Hefei 230026
- P.R. China
| | - Xiao Zhou
- Division of Nanomaterials and Chemistry
- Hefei National Laboratory for Physical Sciences at Microscale Department
- University of Science and Technology of China
- Hefei 230026
- P.R. China
| | - An-Wu Xu
- Division of Nanomaterials and Chemistry
- Hefei National Laboratory for Physical Sciences at Microscale Department
- University of Science and Technology of China
- Hefei 230026
- P.R. China
| |
Collapse
|
27
|
Tian Q, Li L, Yang L, Chen J, Hirano SI. A robust strategy for stabilizing SnO2: TiO2-supported and carbon-immobilized TiO2/SnO2/C composite towards improved lithium storage. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.10.144] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Zhang P, Wu X, Zhao Y, Wang L, Su L, Wang Y, Ren M. Ultrahigh Reversibility of SnO2
in SnO2
@C Quantum Dots/Graphene Oxide Nanosheets for Lithium Storage. ChemistrySelect 2017. [DOI: 10.1002/slct.201702734] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Pinjie Zhang
- ZheJiang JuHua Novel Materials Research Institute Co., Ltd.; Linan 311305 China
| | - Xianbin Wu
- Research and Development Department; Shanghai Shanshan Tech Co., Ltd; Shanghai 201209 China
| | - Yiming Zhao
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310014 China, Tel.: +86 571 88320611; Fax: +86 571 88320832
| | - Lianbang Wang
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310014 China, Tel.: +86 571 88320611; Fax: +86 571 88320832
| | - Liwei Su
- College of Chemical Engineering; Zhejiang University of Technology; Hangzhou 310014 China, Tel.: +86 571 88320611; Fax: +86 571 88320832
| | - Yuanhao Wang
- Faculty of Science and Technology; Technological and Higher Education Institute of Hong Kong; Hong Kong
| | - Manman Ren
- Institute of Materials Science and Engineering; Qilu University of Technology; Jinan 250353 China
| |
Collapse
|
29
|
Cheng Y, Huang J, Qi H, Cao L, Luo X, Li J, Xu Z, Yang J. Controlling the Sn-C bonds content in SnO 2@CNTs composite to form in situ pulverized structure for enhanced electrochemical kinetics. NANOSCALE 2017; 9:18681-18689. [PMID: 29165492 DOI: 10.1039/c7nr05556k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The Sn-C bonding content between the SnO2 and CNTs interface was controlled by the hydrothermal method and subsequent heat treatment. Electrochemical analysis found that the SnO2@CNTs with high Sn-C bonding content exhibited much higher capacity contribution from alloying and conversion reaction compared with the low content of Sn-C bonding even after 200 cycles. The high Sn-C bonding content enabled the SnO2 nanoparticles to stabilize on the CNTs surface, realizing an in situ pulverization process of SnO2. The in situ pulverized structure was beneficial to maintain the close electrochemical contact of the working electrode during the long-term cycling and provide ultrafast transfer paths for lithium ions and electrons, which promoted the alloying and conversion reaction kinetics greatly. Therefore, the SnO2@CNTs composite with high Sn-C bonding content displayed highly reversible alloying and conversion reaction. It is believed that the composite could be used as a reference for design chemically bonded metal oxide/carbon composite anode materials in lithium-ion batteries.
Collapse
Affiliation(s)
- Yayi Cheng
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Facile mass production of nanoporous SnO 2 nanosheets as anode materials for high performance lithium-ion batteries. J Colloid Interface Sci 2017; 503:205-213. [DOI: 10.1016/j.jcis.2017.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 11/23/2022]
|
31
|
Park JS, Jo JH, Yashiro H, Kim SS, Kim SJ, Sun YK, Myung ST. Synthesis and Electrochemical Reaction of Tin Oxalate-Reduced Graphene Oxide Composite Anode for Rechargeable Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25941-25951. [PMID: 28718628 DOI: 10.1021/acsami.7b03325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Unlike for SnO2, few studies have reported on the use of SnC2O4 as an anode material for rechargeable lithium batteries. Here, we first introduce a SnC2O4-reduced graphene oxide composite produced via hydrothermal reactions followed by a layer-by-layer self-assembly process. The addition of rGO increased the electric conductivity up to ∼10-3 S cm-1. As a result, the SnC2O4-reduced graphene oxide electrode exhibited a high charge (oxidation) capacity of ∼1166 mAh g-1 at a current of 100 mA g-1 (0.1 C-rate) with a good retention delivering approximately 620 mAh g-1 at the 200th cycle. Even at a rate of 10 C (10 A g-1), the composite electrode was able to obtain a charge capacity of 467 mAh g-1. In contrast, the bare SnC2O4 had inferior electrochemical properties relative to those of the SnC2O4-reduced graphene oxide composite: ∼643 mAh g-1 at the first charge, retaining 192 mAh g-1 at the 200th cycle and 289 mAh g-1 at 10 C. This improvement in electrochemical properties is most likely due to the improvement in electric conductivity, which enables facile electron transfer via simultaneous conversion above 0.75 V and de/alloy reactions below 0.75 V: SnC2O4 + 2Li+ + 2e- → Sn + Li2C2O4 + xLi+ + xe- → LixSn on discharge (reduction) and vice versa on charge. This was confirmed by systematic studies of ex situ X-ray diffraction, transmission electron microscopy, and time-of-flight secondary-ion mass spectroscopy.
Collapse
Affiliation(s)
- Jae-Sang Park
- Department of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University , Seoul 05006, South Korea
| | - Jae-Hyeon Jo
- Department of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University , Seoul 05006, South Korea
| | - Hitoshi Yashiro
- Department of Chemistry and Bioengineering, Iwate University , 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan
| | - Sung-Soo Kim
- Graduate School of Green Energy Technology, Chungnam National University , Daejon 34134, South Korea
| | - Sun-Jae Kim
- Department of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University , Seoul 05006, South Korea
| | - Yang-Kook Sun
- Department of Energy Engineering, Hanyang University , Seoul 04763, South Korea
| | - Seung-Taek Myung
- Department of Nanotechnology and Advanced Materials Engineering & Sejong Battery Institute, Sejong University , Seoul 05006, South Korea
| |
Collapse
|