1
|
Tiwari A, Lee SJ, Thokchom AK. Surfactant-based interface capture towards the development of 2D-printed photonic structures. MATERIALS HORIZONS 2025; 12:2689-2700. [PMID: 39831825 DOI: 10.1039/d4mh01560f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
This study focuses on fabricating photonic crystals (PCs) by surfactant-based particle capture at the gas-liquid interface of evaporating sessile droplets. The captured particles form interfacial films, resulting in ordered monolayer depositions manifesting iridescent structural colors. The particle dynamics behind the ordered arrangement is delineated. This arrangement is influenced by the alteration in particles' hydrophobicity, charge, and internal flow introduced by the surfactant addition. The influence of surfactant and particle concentrations on the phenomenon is also investigated. The work demonstrates a drop-by-drop technique to scale up the formation of PCs. Furthermore, the work is extended towards demonstrating the utilization of this mechanism to fabricate arbitrary PCs efficiently by direct writing technique. The particle coverage in directly written patterns is influenced by printing speed and particle concentration, which are adjusted to achieve covert photonic patterns. Finally, the replication of colloidal PC onto a flexible polymer with minimal colloid transfer is demonstrated using soft lithography.
Collapse
Affiliation(s)
- Appurva Tiwari
- Soft Matter Lab, Department of Chemical Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, 201314, India.
| | - Seong Jae Lee
- Department of Polymer Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, South Korea
| | - Ashish Kumar Thokchom
- Soft Matter Lab, Department of Chemical Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, 201314, India.
| |
Collapse
|
2
|
Li C, Zheng W, Liu D, Hu X, Liu Z, Duan Z, Fang Y, Jiang X, Wang S, Du Z. Low-Temperature Cross-Linked Hole Transport Layer for High-Performance Blue Quantum-Dot Light-Emitting Diodes. NANO LETTERS 2024; 24:5729-5736. [PMID: 38708832 DOI: 10.1021/acs.nanolett.4c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Quantum-dot light-emitting diodes (QLEDs), a kind of promising optoelectronic device, demonstrate potential superiority in next-generation display technology. Thermal cross-linked hole transport materials (HTMs) have been employed in solution-processed QLEDs due to their excellent thermal stability and solvent resistance, whereas the unbalanced charge injection and high cross-linking temperature of cross-linked HTMs can inhibit the efficiency of QLEDs and limit their application. Herein, a low-temperature cross-linked HTM of 4,4'-bis(3-(((4-vinylbenzyl)oxy)methyl)-9H-carbazol-9-yl)-1,1'-biphenyl (DV-CBP) with a flexible styrene side chain is introduced, which reduces the cross-linking temperature to 150 °C and enhances the hole mobility up to 1.01 × 10-3 cm2 V-1 s-1. More importantly, the maximum external quantum efficiency of 21.35% is successfully obtained on the basis of the DV-CBP as a cross-linked hole transport layer (HTL) for blue QLEDs. The low-temperature cross-linked high-mobility HTL using flexible side chains could be an excellent alternative for future HTL development.
Collapse
Affiliation(s)
- Chenguang Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Wei Zheng
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Dan Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xinyue Hu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Zhenling Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhongfeng Duan
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yan Fang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xiaohong Jiang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Shujie Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Zuliang Du
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| |
Collapse
|
3
|
Sun N, Han Y, Huang W, Xu M, Wang J, An X, Lin J, Huang W. A Holistic Review of C = C Crosslinkable Conjugated Molecules in Solution-Processed Organic Electronics: Insights into Stability, Processibility, and Mechanical Properties. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309779. [PMID: 38237201 DOI: 10.1002/adma.202309779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/22/2023] [Indexed: 02/01/2024]
Abstract
Solution-processable organic conjugated molecules (OCMs) consist of a series of aromatic units linked by σ-bonds, which present a relatively freedom intramolecular motion and intermolecular re-arrangement under external stimulation. The cross-linked strategy provides an effective platform to obtain OCMs network, which allows for outstanding optoelectronic, excellent physicochemical properties, and substantial improvement in device fabrication. An unsaturated double carbon-carbon bond (C = C) is universal segment to construct crosslinkable OCMs. In this review, the authors will set C = C cross-linkable units as an example to summarize the development of cross-linkable OCMs for solution-processable optoelectronic applications. First, this review provides a comprehensive overview of the distinctive chemical, physical, and optoelectronic properties arising from the cross-linking strategies employed in OCMs. Second, the methods for probing the C = C cross-linking reaction are also emphasized based on the perturbations of chemical structure and physicochemical property. Third, a series of model C = C cross-linkable units, including styrene, trifluoroethylene, and unsaturated acid ester, are further discussed to design and prepare novel OCMs. Furthermore, a concise overview of the optoelectronic applications associated with this approach is presented, including light-emitting diodes (LEDs), solar cells (SCs), and field-effect transistors (FETs). Lastly, the authors offer a concluding perspective and outlook for the improvement of OCMs and their optoelectronic application via the cross-linking strategy.
Collapse
Affiliation(s)
- Ning Sun
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Yamin Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wenxin Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot, 010021, China
| | - Xiang An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, China
- State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|
4
|
Tiwari A, Lee SJ, Garg DK, Shin S, Thokchom AK. Characterizing the Microparticles Deposition Structure and its Photonic Nature in Surfactant-Laden Evaporating Colloidal Sessile Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8711-8720. [PMID: 38608175 DOI: 10.1021/acs.langmuir.4c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
This work presents a simple method to create photonic microstructures via the natural evaporation of surfactant-laden colloidal sessile droplets on a flat substrate. In the absence of dissolved surfactant, the evaporating colloidal droplet forms a well-known coffee ring deposition. In contrast, the presence of surfactant leads to the formation of multiple ring structures due to the repetitive pinning-depinning behavior of the droplet contact line (CL). It is found that the multiring structure shows vibrant iridescent structural colors while the coffee ring lacks a photonic nature. This difference in the structural color for the presence and absence of the surfactant is found to be dependent on the arrangement of the particles in the deposition structure. The particle arrangement in the multirings is monolayered and well-ordered. The ordering of the particles is strongly influenced by the particle dynamics, contact angle (CA), and CL dynamics of the evaporating colloidal solution droplet. Furthermore, the iridescent nature of the multiring deposition is demonstrated and explained. The dependence of the multiring deposition structure on the concentration of the dissolved surfactant and the suspended particles is also studied. The findings demonstrate that an intermediate surfactant concentration is desirable for the formation of a multiring structure. Further, the pinning-depinning CL dynamics that causes the formation of the multiring deposition structure is discussed. Finally, we demonstrate the applicability of the approach to smaller droplet volumes.
Collapse
Affiliation(s)
- Appurva Tiwari
- Soft Matter Lab, Department of Chemical Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida 201314, India
| | - Seong Jae Lee
- Department of Polymer Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, South Korea
| | - Dhiraj Kumar Garg
- Intencity Lab, Department of Chemical Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida 201314, India
| | - Sehyun Shin
- Department of Mechanical Engineering, Korea University, Anam Dong, Seoul 02841, South Korea
| | - Ashish Kumar Thokchom
- Soft Matter Lab, Department of Chemical Engineering, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida 201314, India
| |
Collapse
|
5
|
Li C, Wang S, Liu D, Zheng W, Jiang X, Fang Y, Duan Z, Wang A, Wang S, Du Z. Photothermal Synergic Cross-Linking Hole Transport Layer for Highly Efficient RGB QLEDs. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38652888 DOI: 10.1021/acsami.4c02073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Developing an insoluble cross-linkable hole transport layer (HTL) plays an important role for solution-processed quantum dots light-emitting diodes (QLEDs) to fabricate a multilayer device with separated quantum dots layers and HTLs. In this work, a facile photothermal synergic cross-linking strategy is simultaneous annealing and UV irradiation to form the high-quality cross-linked film as the HTL without any photoinitiator, which efficiently reduces the cross-linking temperature to the low temperature of 130 °C and enhances the hole mobility of the 3-vinyl-9-{4-[4-(3-vinylcarbazol-9-yl)phenyl]phenyl}carbazole (CBP-V) thin films. The obtained high-quality cross-linked CBP-V films exhibited smooth morphology, excellent solvent resistance, and high mobility. Moreover, the high-performance red, green, and blue (RGB) QLEDs are successfully fabricated by using the photothermal synergic cross-linked HTLs, which achieved the maximum external quantum efficiency of 25.69, 24.42, and 16.51%, respectively. This work presents a strategy of using the photothermal synergic cross-linked HTLs for fabrication of high-performance QLEDs and advancing their related device applications.
Collapse
Affiliation(s)
- Chenguang Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Shuaibing Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing 100044, China
| | - Dan Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Zheng
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Xiaohong Jiang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Yan Fang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Zhongfeng Duan
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Aqiang Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Shujie Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Zuliang Du
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Centre for High-Efficiency Display and Lighting Technology, School of Materials and Engineering, Collaborative Innovation Centre of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| |
Collapse
|
6
|
Maheshwaran A, Bae H, Park J, Jung H, Hwang Y, Kim J, Park C, Kang B, Song M, Lee Y. Low-Temperature Cross-Linkable Hole Transport Materials for Solution-Processed Quantum Dot and Organic Light-Emitting Diodes with High Efficiency and Color Purity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45167-45176. [PMID: 37699415 DOI: 10.1021/acsami.3c09106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Cross-linkable hole transport materials (HTMs) are ideal for improving the performance of solution-processed quantum dot light-emitting diodes (QLEDs) and phosphorescent light-emitting diodes (OLEDs). However, previously developed cross-linkable HTMs possessed poor hole transport properties, high cross-linking temperatures, and long curing times. To achieve efficient cross-linkable HTMs with high mobility, low cross-linking temperature, and short curing time, we designed and synthesized a series of low-temperature cross-linkable HTMs comprising dibenzofuran (DBF) and 4-divinyltriphenylamine (TPA) segments for highly efficient solution-processed QLEDs and OLEDs. The introduction of divinyl-functionalized TPA in various positions of the DBF core remarkably affected their chemical, physical, and electrochemical properties. In particular, cross-linked 4-(dibenzo[b,d]furan-3-yl)-N,N-bis(4-vinylphenyl)aniline (3-CDTPA) exhibited a deep highest occupied molecular orbital energy level (5.50 eV), high hole mobility (2.44 × 10-4 cm2 V-1 s-1), low cross-linking temperature (150 °C), and short curing time (30 min). Furthermore, a green QLED with 3-CDTPA as the hole transport layer (HTL) exhibited a notable maximum external quantum efficiency (EQEmax) of 18.59% with a remarkable maximum current efficiency (CEmax) of 78.48 cd A-1. In addition, solution-processed green OLEDs with 3-CDTPA showed excellent device performance with an EQEmax of 15.61%, a CEmax of 52.51 cd A-1, and outstanding CIE(x, y) color coordinates of (0.29, 0.61). This is one of the highest reported EQEs and CEs with high color purity for green solution-processed QLEDs and OLEDs using a divinyl-functionalized cross-linked HTM as the HTL. We believe that this study provides a new strategy for designing and synthesizing practical cross-linakable HTMs with enhanced performance for highly efficient solution-processed QLEDs and OLEDs.
Collapse
Affiliation(s)
- Athithan Maheshwaran
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Hyejeong Bae
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Jaehyoung Park
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Hyeonwoo Jung
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Youngjun Hwang
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Jongyoun Kim
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Chaehyun Park
- Department of Energy & Electronic Materials, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Sungsan-gu, Changwon-si, Gyeongsangnam-do 51508, Republic of Korea
| | - Byeongjae Kang
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| | - Myungkwan Song
- Department of Energy & Electronic Materials, Korea Institute of Materials Science (KIMS), 797 Changwon-daero, Sungsan-gu, Changwon-si, Gyeongsangnam-do 51508, Republic of Korea
| | - Youngu Lee
- Department of Energy Science & Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333, Techno Jungang Daero, Hyeonpung-Eup, Dalseong-Gun, Daegu 42988, Republic of Korea
| |
Collapse
|
7
|
Srivastava S, Lee KE, Fitzgerald EA, Pennycook SJ, Gradečak S. Freestanding High-Resolution Quantum Dot Color Converters with Small Pixel Sizes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48995-49002. [PMID: 36274221 DOI: 10.1021/acsami.2c14212] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing the next generation of high-resolution displays requires high pixel density per area and small pixel sizes without compromising the optical quality. Quantum dots (QDs) have been demonstrated as a promising material system for down-conversion of blue emission as they provide pure colors on the wide color gamut. However, for high color-conversion efficiency, the required QD film thickness has not been compatible with small pixel sizes. In this work, we develop a new type of freestanding QD-based color converter for efficient optical down-conversion from inorganic blue light-emitting diodes (LEDs) in a color-by-blue configuration. CdSe/ZnS core-shell QDs in a UV-curable polymer matrix are encapsulated within cavities formed by patterning and bonding a pair of patterned quartz substrates. By controlling the required QD thickness and the pixel size independently, we demonstrate freestanding monochrome red and green converters with small pixel sizes down to 5 × 5 μm2 and a high resolution of >3600 ppi. The optical studies show that the QD film thickness required for efficient color conversion can be successfully realized even for the small pixel sizes. We further combine green and red pixels in a single converter to achieve white emission when combined with blue LED emission. The QD color converter design and processing are decoupled from the LED fabrication and can be easily scaled to wafer-size integration with arbitrary pixel sizes for QD-based RGB displays with ultrahigh resolution.
Collapse
Affiliation(s)
- Saurabh Srivastava
- Low Energy Electronic Systems (LEES), Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, 138602 Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, 138634 Singapore
| | - Kenneth E Lee
- Low Energy Electronic Systems (LEES), Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, 138602 Singapore
| | - Eugene A Fitzgerald
- Low Energy Electronic Systems (LEES), Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, 138602 Singapore
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02141, United States
| | - Stephen J Pennycook
- Low Energy Electronic Systems (LEES), Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, 138602 Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575 Singapore
| | - Silvija Gradečak
- Low Energy Electronic Systems (LEES), Singapore-MIT Alliance for Research and Technology (SMART), 1 Create Way, 138602 Singapore
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02141, United States
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117575 Singapore
| |
Collapse
|
8
|
Liu X, Wu S, Wang Y, Li Y, Wang R, Yu T, Su W, Zhao Y, Zhang D. Synthesis and luminescence properties of two cross-linkable Ir( iii) complexes. NEW J CHEM 2021. [DOI: 10.1039/d1nj03970a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The EL performances of the vacuum- and solution-processed devices of two cross-linkable iridium(iii) complexes were investigated.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education), Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Shaoguang Wu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education), Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Youjia Wang
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education), Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Yanmei Li
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education), Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ruidong Wang
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education), Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Tianzhi Yu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education), Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Wenming Su
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Yuling Zhao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Di Zhang
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education), Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
9
|
Sun W, Xie L, Guo X, Su W, Zhang Q. Photocross-Linkable Hole Transport Materials for Inkjet-Printed High-Efficient Quantum Dot Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:58369-58377. [PMID: 33331766 DOI: 10.1021/acsami.0c17336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Efficient approach based on the photochemistry of benzophenone has been developed for the cross-linking of the polymer hole-transporting layer (HTL). The cross-linked poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-(4,4'-(N-(4-butylphenyl) (TFB) thin films showed high solvent stability, smooth surface morphology, and improved charge-carrier mobility. The solution-processed red, green, and blue (RGB) quantum dot light-emitting diodes (QLEDs) based on the cross-linked HTLs showed much better performances than the corresponding devices based on the pristine TFB HTLs. The spin-coated red QLEDs based on the cross-linked HTLs showed the maximum current efficiency (CE), the maximum power efficiency (PE), and the peak external quantum efficiency (EQE) of 32.3 cd A-1, 42.3 lm W-1, and 21.4%, respectively. The inkjet-printed red QLEDs with the cross-linked HTLs exhibited the CE, PE, and EQE of 26.5 cd A-1, 37.8 lm W-1, and 18.1%, respectively. The high-performance HTLs were obtained by significantly reducing the amount of cross-linking agents.
Collapse
Affiliation(s)
- Wenjian Sun
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Liming Xie
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Xiaojun Guo
- National Engineering Laboratory of TFT-LCD Materials and Technologies, Department of Electronic Engineering, Shanghai JiaoTong University, Shanghai 200240, China
| | - Wenming Su
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Qing Zhang
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
10
|
Tang P, Xie L, Xiong X, Wei C, Zhao W, Chen M, Zhuang J, Su W, Cui Z. Realizing 22.3% EQE and 7-Fold Lifetime Enhancement in QLEDs via Blending Polymer TFB and Cross-Linkable Small Molecules for a Solvent-Resistant Hole Transport Layer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:13087-13095. [PMID: 32090556 DOI: 10.1021/acsami.0c01001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt(4,4'-(N-(4-butylphenyl)))] (TFB) has been widely used as a hole transport layer (HTL) material in cadmium-based quantum dot light-emitting diodes (QLEDs) because of its high hole mobility. However, as the highest occupied molecular orbital (HOMO) energy level of TFB is -5.4 eV, the hole injection from TFB to the quantum dot (QD) layer is higher than 1.5 eV. Such a high oxidation potential at the QD/HTL interface may seriously degrade the device lifetime. In addition, TFB is not resistant to most solvents, which limits its application in inkjet-printed QLED display. In this study, the blended HTL consisting of TFB and cross-linkable small molecular 4,4'-bis(3-vinyl-9H-carbazol-9-yl)1,1'-biphenyl (CBP-V) was introduced into red QLEDs because of the deep HOMO energy level of CBP-V (-6.2 eV). Compared with the TFB-only devices, the external quantum efficiency (EQE) of devices with the blended HTL improved from 15.9 to 22.3% without the increase of turn-on voltage for spin-coating-fabricated devices. Furthermore, the blended HTL prolonged the T90 and T70 lifetime from 5.4 and 31.1 to 39.4 and 148.9 h, respectively. These enhancements in lifetime are attributed to the low hole-injection barrier at the HTL/QD interface and high thermal stability of the blended HTL after cross-linking. Moreover, the cross-linked blended HTL showed excellent solvent resistance after cross-linking, and the EQE of the inkjet-printed red QLEDs reached 16.9%.
Collapse
Affiliation(s)
- Pengyu Tang
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People's Republic of China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Liming Xie
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People's Republic of China
| | - Xueying Xiong
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People's Republic of China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Changting Wei
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People's Republic of China
| | - Wenchao Zhao
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People's Republic of China
| | - Ming Chen
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People's Republic of China
| | - Jinyong Zhuang
- Guangdong Juhua Printed Display Technol Company Ltd, Guangzhou, Guangdong 510700, People's Republic of China
| | - Wenming Su
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People's Republic of China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zheng Cui
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People's Republic of China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
11
|
Gupta SK, Prodanov MF, Zhang W, Vashchenko VV, Dudka T, Rogach AL, Srivastava AK. Inkjet-printed aligned quantum rod enhancement films for their application in liquid crystal displays. NANOSCALE 2019; 11:20837-20846. [PMID: 31657423 DOI: 10.1039/c9nr06881c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Semiconductor quantum rods (QRs) show a polarized emission, which opens up the possibility of the enhancement of both brightness and color for liquid crystal displays (LCD) in the form of quantum rod enhancement films (QREFs) for LCD backlights. However, the QR alignment over a large area, suitable for displays, is a challenge. Inkjet printing of QREFs, introduced here, allows fabrication of well-aligned, uniform QREFs on photoaligned substrates using optimized QR inks. We observed that the ink composition and printing conditions affect the QR alignment quality significantly. A relative humidity of 50% with an exposure energy of 1 J cm-2 for the photoalignment process provided optimal conditions for QREFs. We have successfully shown a good QR alignment for 2.5-inch films and were able to align QRs in multiple layers. Thus, fabricated QREFs show a polarization ratio of 7.2 : 1 for the emitted light. These QREFs were combined with a blue LED and deployed as a backlight unit for an LCD which shows a brightness of ∼250 nits with an optical efficiency of ∼8%, reaching an NTSC of 109% in a CIE1976 color space. Thus, these printed QREFs, over a large area, provide an unprecedented increase of 77% in the optical efficiency of the LCDs and simultaneously offer better color performance.
Collapse
Affiliation(s)
- Swadesh K Gupta
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, Department of Electronics and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong S.A.R..
| | - Maksym F Prodanov
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, Department of Electronics and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong S.A.R..
| | - Wanlong Zhang
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, Department of Electronics and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong S.A.R..
| | - Valerii V Vashchenko
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, Department of Electronics and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong S.A.R..
| | - Tetiana Dudka
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R..
| | - Andrey L Rogach
- Department of Materials Science and Engineering, and Centre for Functional Photonics (CFP), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong S.A.R..
| | - Abhishek K Srivastava
- State Key Laboratory of Advanced Displays and Optoelectronics Technologies, Department of Electronics and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong S.A.R..
| |
Collapse
|
12
|
Liu X, Yu Z, Yu M, Zhang X, Xu Y, Lv P, Chu S, Liu C, Lai WY, Huang W. Iridium(III)-Complexed Polydendrimers for Inkjet-Printing OLEDs: The Influence of Solubilizing Steric Hindrance Groups. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26174-26184. [PMID: 31283176 DOI: 10.1021/acsami.9b07238] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
With the great success of organic light-emitting diodes (OLEDs) based on thermal evaporation techniques, the development of printable materials for inkjet-printing high-performance OLEDs is particularly attractive yet challenging. In this paper, a set of printable Ir(III)-complexed polydendrimers, poly[bis[2-(2,4-difluorophenyl)-4-(4-((2-ethylhexyl)oxy)phenyl)pyridine][1-ethyl-5-phenyl-3-propyl-1H-1,2,4-triazole] iridium(III)] (PIr-D1) and poly[bis[2-(2,4-difluorophenyl)-4-(4-((2-ethylhexyl)oxy)-2,6-dimethylphenyl)pyridine][1-methyl-5-phenyl-3-propyl-1H-1,2,4-triazole] iridium(III)] (PIr-D2), were designed and synthesized via ring-opening metathesis polymerization (ROMP). As a comparison, the iridium precursor complexes bis[2-(2,4-difluorophenyl)-4-(4-((2-ethylhexyl)oxy)phenyl)pyridine][1-methyl-5-phenyl-3-propyl-1H-1,2,4-triazole]iridium(III) (Ir-D1) and bis[2-(2,4-difluorophenyl)-4-(4-((2-ethylhexyl)oxy)-2,6-dimethylphenyl)pyridine][1-methyl-5-phenyl-3-propyl-1H-1,2,4-triazole] iridium(III) (Ir-D2) and the core structure bis[2-(2,4-difluorophenyl)pyridine] [1-methyl-5-phenyl-3-propyl-1H-1,2,4-triazole] iridium(III) (Ir-D0) were also synthesized and the corresponding OLEDs were fabricated. Compared with the dendritic iridium complexes Ir-D1 and Ir-D2, the resulting polydendrimers PIr-D2 and PIr-D2 showed enhanced film-forming properties, good thermal stability, and attractive ink rheological characteristics with a suitable viscosity for inkjet-printing. Promising device performance has been achieved for the resulting polydendrimers by both spin-coating and inkjet-printing, showing low driving voltages and relatively high current efficiencies and brightnesses. The results suggest that the construction of polydendritic Ir(III) complexes is an attractive design strategy for exploring efficient printable light-emitting materials for inkjet-printing high-performance OLEDs.
Collapse
Affiliation(s)
- Xu Liu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Zhou Yu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Mengjie Yu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Xinwen Zhang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Yanan Xu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Peng Lv
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Shuangquan Chu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Changjian Liu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
| | - Wen-Yong Lai
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , Shaanxi , China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM) , Nanjing University of Posts & Telecommunications , 9 Wenyuan Road , Nanjing 210023 , China
- Shaanxi Institute of Flexible Electronics (SIFE) , Northwestern Polytechnical University (NPU) , 127 West Youyi Road , Xi'an 710072 , Shaanxi , China
| |
Collapse
|
13
|
Xie L, Xiong X, Chang Q, Chen X, Wei C, Li X, Zhang M, Su W, Cui Z. Inkjet-Printed High-Efficiency Multilayer QLEDs Based on a Novel Crosslinkable Small-Molecule Hole Transport Material. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900111. [PMID: 30883038 DOI: 10.1002/smll.201900111] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Quantum dots light-emitting diodes (QLEDs) have attracted much interest owing to their compatibility with low-cost inkjet printing technology and potential for use in large-area full-color pixelated display. However, it is challenging to fabricate high efficiency inkjet-printed QLEDs because of the coffee ring effects and inferior resistance to solvents from the underlying polymer film during the inkjet printing process. In this study, a novel crosslinkable hole transport material, 4,4'-bis(3-vinyl-9H-carbazol-9-yl)-1,1'-biphenyl (CBP-V) which is small-molecule based, is synthesized and investigated for inkjet printing of QLEDs. The resulting CBP-V film after thermal curing exhibits excellent solvent resistance properties without any initiators. An added advantage is that the crosslinked CBP-V film has a sufficiently low highest occupied molecular orbital energy level (≈-6.2 eV), high film compactness, and high hole mobility, which can thus promote the hole injection into quantum dots (QDs) and improve the charge carrier balance within the QD emitting layers. A red QLED is successfully fabricated by inkjet printing a CBP-V and QDs bilayer. Maximum external quantum efficiency of 11.6% is achieved, which is 92% of a reference spin-coated QLED (12.6%). This is the first report of such high-efficiency inkjet-printed multilayer QLEDs and demonstrates a unique and effective approach to inkjet printing fabrication of high-performance QLEDs.
Collapse
Affiliation(s)
- Liming Xie
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Xueying Xiong
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qiaowen Chang
- Kunming Institute of Precious Metals, Kunming, 650106, P. R. China
| | - Xiaolian Chen
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Changting Wei
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Xia Li
- Jiaxing Nato Optoelectronic Technology Co., Ltd., Jiaxing, 314400, P. R. China
| | - Meng Zhang
- Jiaxing Nato Optoelectronic Technology Co., Ltd., Jiaxing, 314400, P. R. China
| | - Wenming Su
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Zheng Cui
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| |
Collapse
|
14
|
Lee YJ, Lee C, Lee HM. Synthesis of oxide-free aluminum nanoparticles for application to conductive film. NANOTECHNOLOGY 2018; 29:055602. [PMID: 29160771 DOI: 10.1088/1361-6528/aa9c1b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Aluminum nanoparticles are considered promising as alternatives to conventional ink materials, replacing silver and copper nanoparticles, due to their extremely low cost and low melting temperature. However, a serious obstacle to realizing their use as conductive ink materials is the oxidation of aluminum. In this research, we synthesized the oxide-free aluminum nanoparticles using catalytic decomposition and an oleic acid coating method, and these materials were applied to conductive ink for the first time. The injection time of oleic acid determines the size of the aluminum nanoparticles by forming a self-assembled monolayer on the nanoparticles instead of allowing the formation of an oxide phase. Fabricated nanoparticles were analyzed by transmission electron microscopy and x-ray photoelectron spectroscopy to verify their structural and chemical composition. In addition, conductive inks made of these nanoparticles exhibit electrical properties when they are sintered at over 300 °C in a reducing atmosphere. This result shows that aluminum nanoparticles can be used as an alternative conductive material in printed electronics and can solve the cost issues associated with noble metals.
Collapse
Affiliation(s)
- Yung Jong Lee
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea, 34141
| | | | | |
Collapse
|
15
|
Liu X, Liu Y, Yu T, Su W, Niu Y, Li Y, Zhao Y, Zhang H. Efficient green phosphorescent Ir(iii) complexes with β-diketonate ancillary ligands. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00489g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Three new iridium complexes with β-diketonate ancillary ligands were synthesized as emissive materials for organic light-emitting devices.
Collapse
Affiliation(s)
- Xiaoxiao Liu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
- School of Mechatronic Engineering
| | - Ying Liu
- Printable electronics research center
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| | - Tianzhi Yu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Wenming Su
- Printable electronics research center
- Suzhou Institute of Nano-Tech and Nano-Bionics
- Chinese Academy of Sciences
- Suzhou 215123
- China
| | - Yuying Niu
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Yanmei Li
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Yuling Zhao
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| | - Hui Zhang
- Key Laboratory of Opto-Electronic Technology and Intelligent Control (Ministry of Education)
- Lanzhou Jiaotong University
- Lanzhou 730070
- China
| |
Collapse
|
16
|
Wei C, Zhuang J, Zhang D, Guo W, Yang D, Xie Z, Tang J, Su W, Zeng H, Cui Z. Pyridine-Based Electron-Transport Materials with High Solubility, Excellent Film-Forming Ability, and Wettability for Inkjet-Printed OLEDs. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38716-38727. [PMID: 28994279 DOI: 10.1021/acsami.7b12190] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Film morphology has predominant influence on the performance of multilayered organic light-emitting diodes (OLEDs), whereas there is little reported literature from the angle of the molecular level to investigate the impact on film-forming ability and device performance. In this work, four isomeric cross-linkable electron-transport materials constructed with pyridine, 1,2,4-triazole, and vinylbenzyl ether groups were developed for inkjet-printed OLEDs. Their lowest unoccupied molecular orbital (∼3.20 eV) and highest occupied molecular orbital (∼6.50 eV) levels are similar, which are mainly determined by the 1,2,4-triazole groups. The triplet energies of these compounds can be tuned from 2.51 to 2.82 eV by different coupling modes with the core of pyridine, where the 2,6-pyridine-based compound has the highest value of 2.82 eV. Film formation and solubility of the compounds were investigated. It was found that the 2,6-pyridine-based compound outperformed the 2,4-pyridine, 2,5-pyridine, and 3,5-pyridine-based compounds. The spin-coated blue OLEDs based on the four compounds have achieved over 14.0% external quantum efficiencies (EQEs) at the luminance of 100 cd m-2, and a maximum EQE of 12.1% was obtained for the inkjet-printed device with 2,6-pyridine-based compound.
Collapse
Affiliation(s)
- Changting Wei
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People's Republic of China
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology , Nanjing, Jiangsu 210094, People's Republic of China
| | - Jinyong Zhuang
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People's Republic of China
| | - Dongyu Zhang
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People's Republic of China
| | - Wenrui Guo
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People's Republic of China
| | - Dongfang Yang
- Market & Product Planning Department, VOSBU , No. 9 Dize Road, BDA, Beijing 100176, People's Republic of China
| | - Zhongzhi Xie
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University , 199 Ren-ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People's Republic of China
| | - Jianxin Tang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University , 199 Ren-ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People's Republic of China
| | - Wenming Su
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People's Republic of China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, School of Materials Science and Engineering, Nanjing University of Science and Technology , Nanjing, Jiangsu 210094, People's Republic of China
| | - Zheng Cui
- Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences , 398 Ruoshui Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|