1
|
Pan S, Li W, Liu D, Mamba BB, Gui J. Towards effective Pd nanoparticles immobilization on NH 2-MIL-53(Al) coated cellulose fiber: A stable and efficient catalyst for Suzuki reaction. Int J Biol Macromol 2025; 306:141750. [PMID: 40054809 DOI: 10.1016/j.ijbiomac.2025.141750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 05/11/2025]
Abstract
The modification of cotton fibers with sodium chloroacetate, followed by the incorporation of NH2-MIL-53(Al) through covalent bonding, has been successfully developed as a support for the immobilization of palladium nanoparticles. The integration of NH2-MIL-53(Al) into cellulose enhanced the specific surface area and introduced a significant number of amino groups and pore structures, which physically isolated the metal sites. Additionally, the introduction of nitrogen heteroatoms offers numerous anchoring points, effectively preventing the loss and aggregation of the metal species. Transmission electron microscopy (TEM) analysis demonstrated that palladium nanoparticles were uniformly distributed throughout the matrix, with an average particle size of 1.29 nm. The catalytic performance of this catalyst was evaluated in the Suzuki-Miyaura reaction, which facilitates the coupling of aryl halides with arylboronic acids in the presence of 0.006 mol% palladium species. Notably, the catalyst exhibited good reusability, maintaining its catalytic performance over four cycles without a significant loss of activity.
Collapse
Affiliation(s)
- Shiguang Pan
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, PR China
| | - Wenjing Li
- School of Chemical Engineering & Technology, Tiangong University, Tianjin 300387, PR China
| | - Dan Liu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry, Tiangong University, Tianjin 300387, PR China; Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa.
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida 1709, Johannesburg, South Africa
| | - Jianzhou Gui
- School of Chemical Engineering & Technology, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
2
|
Xiang S, Chen M, Luo X, Zhang S, Shen Y, Chen X, Zhang X, Wang J, Tang H, Huang J, Sun X. Harnessing CNC-Carrier Nanomaterials for Enhanced Zn 2+-Mediated Inhibition of Oomycete Asexual Reproduction. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:8214-8224. [PMID: 40160003 DOI: 10.1021/acs.jafc.5c00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Oomycetes are devastating plant pathogens causing major crop losses, with spores as key infection sources. Inhibiting asexual reproduction, especially sporangium formation and spore release, is crucial for disease prevention. Zn2+ has shown potential in inhibiting oomycete reproduction, but excessive concentrations can cause cytotoxicity and environmental risks. To address this, we used polydopamine (PDA) to complex Zn2+ and form a PDA@Zn2+ coating on cellulose nanocrystals (CNCs) through hydrogen bonding. This ionic nanopesticide (CNC@PDA@Zn2+) enhances effectiveness against oomycetes while reducing dosage and improving biosafety. Bioexperimental results indicate that CNC@PDA@Zn2+ significantly inhibits sporangium formation and spore release from Phytophthora capsici (P. capsici) by suppressing the expression of key sporulation genes (PcATP4, cdc, and G-protein), disrupting spore cell membranes, and altering organelle structures. In vivo, it reduces P. capsici infection on pepper leaves, even in the presence of mycelium. This study highlights CNC@PDA@Zn2+ as a promising biobased nanomaterial for sustainable crop protection.
Collapse
Affiliation(s)
- Shunyu Xiang
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Meijun Chen
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Scientific Research Base of Pest and Mold Control of Heritage Collection (Chongqing China Three Gorges Museum), State Administration of Cultural Heritage, Chongqing 400015, China
| | - Xingyi Luo
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Shicai Zhang
- The Institute of Vegetable and Flower Research, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Yang Shen
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xingya Chen
- Center of Educational Information Technology, South China Normal University, Guangzhou 510631, China
| | - Xiaofeng Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jing Wang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Huan Tang
- Key Scientific Research Base of Pest and Mold Control of Heritage Collection (Chongqing China Three Gorges Museum), State Administration of Cultural Heritage, Chongqing 400015, China
| | - Jin Huang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xianchao Sun
- College of Plant Protection, Southwest University, Chongqing 400715, China
- Key Scientific Research Base of Pest and Mold Control of Heritage Collection (Chongqing China Three Gorges Museum), State Administration of Cultural Heritage, Chongqing 400015, China
| |
Collapse
|
3
|
Yang W, Li W, Lei Y, He P, Wei G, Guo L. Functionalization of cellulose-based sponges: Design, modification, environmental applications, and sustainability analysis. Carbohydr Polym 2025; 348:122772. [PMID: 39562056 DOI: 10.1016/j.carbpol.2024.122772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024]
Abstract
The trend of economic globalization is accelerating, and as competition for resources intensifies within the international community, there is an urgent need to seek environmentally friendly renewable resources. Sponges, due to their excellent inherent properties, have significant potential for applications in various fields. While considerable attention has been given to the synthesis of inorganic and plastic/rubber-based sponges in recent years, research on cellulose-based sponges (CBSs) has been on the rise. This review provides an overview of recent advances related to CBSs, detailing their structure and properties, including structural design, functional modification, and applications. An extensive sustainability analysis comparing CBSs with inorganic and plastic/rubber sponges shows that CBSs offer superior sustainability. The review also explores the latest applications of CBSs in environmental science, such as catalysts, dye removal, oil-water separation, ion removal, and seawater evaporation. Overall, this review highlights the inherent advantages of CBSs and encourages the exploration of their broader application areas.
Collapse
Affiliation(s)
- Weiwei Yang
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Wanying Li
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Yu Lei
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Lei Guo
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
4
|
Thiel TA, Parapat RY, Schroeter M, Schwarze M. Catalytic Activity of Cellulose-Supported Platinum and Palladium Nanoparticles for Allylbenzene Hydrogenation. Chemistry 2025; 31:e202402952. [PMID: 39587834 PMCID: PMC11724257 DOI: 10.1002/chem.202402952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Platinum and palladium nanoparticles were successfully deposited on tunicate cellulose via the photodeposition or microemulsion deposition method. Evenly distributed, small and narrow-sized particles in the range of 2-3 nm were obtained for microemulsion-prepared cellulose catalysts. The photodeposition method led to larger particle sizes, broader size distribution, and occasional agglomerations. The catalysts were tested in the allylbenzene hydrogenation reaction at room temperature and the results were compared to commercially available catalysts. Because of smaller particles, both microemulsion-prepared catalysts and photodeposited ones show better activity than commercial catalysts. Even platinum and palladium nanoparticles were active for the hydrogenation, only cellulose-supported platinum nanoparticles showed good stability. For palladium nanoparticles, stronger leaching from the surface of cellulose was observed. Cellulose-supported catalysts were recycled, and reusability is comparable to commercial catalysts. Therefore, cellulose could be used as an alternative catalyst support.
Collapse
Affiliation(s)
- Tabea Angela Thiel
- Department of ChemistryTechnische Universität BerlinTC8, Straße des 17. Juni 12410623BerlinGermany
- Leibniz Institute for CatalysisAlbert-Einstein-Straße 29a18059RostockGermany
| | - Riny Yolandha Parapat
- Department of Chemical EngineeringInstitut Teknologi Nasional Bandung (ITENAS)PHH Mustopha 2340124BandungIndonesia
| | - Michael Schroeter
- Institute of Functional Materials for SustainabilityHelmholtz-Zentrum Hereon, Kantstrasse 5514513TeltowGermany
| | - Michael Schwarze
- Department of ChemistryTechnische Universität BerlinTC8, Straße des 17. Juni 12410623BerlinGermany
| |
Collapse
|
5
|
Liu D, Zhu W, Qiu B, Zhang S. An NIR-driven biosensor based on the metal-enhanced fluorescence effect and a signal amplification strategy for miRNA detection. RSC Adv 2024; 14:39908-39920. [PMID: 39703731 PMCID: PMC11656304 DOI: 10.1039/d4ra07080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
Research has shown that the expression level of microRNA-155 (miRNA-155) is positively correlated with clinical stage and depth of invasion in patients with cervical cancer and cervical intraepithelial neoplasia and tends to be highly expressed. Therefore, it is very important to develop sensitive miRNA-155 analysis methods for the early diagnosis, treatment, and prognostic evaluation of cervical cancer. In this study, a near-infrared light-driven fluorescent biosensor based on the metal-enhanced fluorescence effect of polydopamine-coated upconversion nanoparticle (UP/Au) and two toehold-mediated strand displacement (TMSD) steps was constructed for the detection of miRNA-155. The target miRNA-155 can undergo a TMSD1 reaction with single-stranded DNA1 (ssDNA1) modified on wrinkled silica (WSNs) to form the ssDNA1/miRNA-155 complex and expose toehold 2. Through the TMSD2 reaction, ssDNA2 adsorbed on the UP/Au surface reacts with ssDNA1 to form the ssDNA1/ssDNA2 complex, which replaces miRNA-155 and enables the recovery of the UP/Au fluorescence signal. The target miRNA-155 was reacted with the new ssDNA1 to amplify the detection signal, with a detection range of 0.5-20 pM and a detection limit of 19.76 fM for miRNA-155. In addition, the fluorescent biosensor has been applied for the analysis of miRNA-155 in serum samples, indicating its good practicality.
Collapse
Affiliation(s)
- Dabin Liu
- The First Clinical College of Shandong University Jinan 250014 China
- Department of Gynecology, Fujian Maternity and Child Health Hospital, College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University Fuzhou 350001 China
- Department of Gynecology, Fujian Provincial Governmental Hospital Fuzhou 350001 China
| | - Wenzhang Zhu
- College of Materials Science and Engineering, Fuzhou University Fuzhou 350108 China
| | - Bin Qiu
- College of Chemistry, Fuzhou University Fuzhou 350108 China
| | - Shiqian Zhang
- Department of Gynecology, Qilu Hospital of Shandong University Jinan 250014 China
| |
Collapse
|
6
|
Li Z, Zhou G, Sun Y, Mao Y, Zeng F, Wang Z, Zhang Y, Li B. Eco-Friendly Cellulose-Supported Nickel Complex as an Efficient and Recyclable Heterogeneous Catalyst for Suzuki Cross-Coupling Reaction. Molecules 2024; 29:4525. [PMID: 39407457 PMCID: PMC11477910 DOI: 10.3390/molecules29194525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
In this work, we applied commercially available 2-pyridinecarboxylic acid to modify cellulose by simple manipulations, and then anchored low-toxicity metal nickel onto the modified cellulose to prepare the heterogeneous catalyst (CL-AcPy-Ni). The obtained catalyst was characterized by FT-IR, TG-DSC, BET, XRD, SEM-EDS, ICP-OES, XPS, and GPC. The catalytic performance of CL-AcPy-Ni in the Suzuki cross-coupling reaction was investigated using 4-methyl iodobenzene and phenylboronic acid as the model substrates reacting in THF under 120 °C for 24 h. The catalytic ability of CL-AcPy-Ni for various halobenzenes and phenylboronic acid derivatives was also further investigated under optimal conditions and demonstrated good catalytic activity, and a series of diaryls were successfully synthesized. Finally, this green nickel-based catalyst could be reused for five successive cycles by simple centrifugation.
Collapse
Affiliation(s)
- Zhanyu Li
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Z.L.); (G.Z.); (Y.M.); (F.Z.); (Z.W.); (Y.Z.)
- Post-Doctoral Mobile Research Station of Forestry Engineering, Northeast Forestry University, Harbin 150040, China
| | - Guohao Zhou
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Z.L.); (G.Z.); (Y.M.); (F.Z.); (Z.W.); (Y.Z.)
| | - Yu Sun
- Heilongjiang Ecological Engineering College, Harbin 150025, China;
| | - Yingning Mao
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Z.L.); (G.Z.); (Y.M.); (F.Z.); (Z.W.); (Y.Z.)
| | - Fanxiang Zeng
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Z.L.); (G.Z.); (Y.M.); (F.Z.); (Z.W.); (Y.Z.)
| | - Zhihui Wang
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Z.L.); (G.Z.); (Y.M.); (F.Z.); (Z.W.); (Y.Z.)
| | - Yuanyuan Zhang
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Z.L.); (G.Z.); (Y.M.); (F.Z.); (Z.W.); (Y.Z.)
| | - Bin Li
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Z.L.); (G.Z.); (Y.M.); (F.Z.); (Z.W.); (Y.Z.)
- Post-Doctoral Mobile Research Station of Forestry Engineering, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
7
|
Wang Y, Yang X, Yang Z, Xia H, Si X, Hao J, Yan D, Li H, Peng K, Sun J, Shi C, Li H, Li W. Additive-free Absorbable Keratin Sponge With Procoagulant Activity for Noncompressible Hemostasis. Biomacromolecules 2024; 25:3930-3945. [PMID: 38820501 DOI: 10.1021/acs.biomac.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The development of a natural, additive-free, absorbable sponge with procoagulant activity for noncompressible hemostasis remains a challenging task. In this study, we extracted high molecular weight keratin (HK) from human hair and transformed it into a hemostatic sponge with a well-interconnected pore structure using a foaming technique, freeze-drying, and oxidation cross-linking. By controlling the cross-linking degree, the resulting sponge demonstrated excellent liquid absorption ability, shape recovery characteristics, and robust mechanical properties. The HK10 sponge exhibited rapid liquid absorption, expanding up to 600% within 5 s. Moreover, the HK sponge showed superior platelet activation and blood cell adhesion capabilities. In SD rat liver defect models, the sponges demonstrated excellent hemostatic performance by sealing the wound and expediting coagulation, reducing the hemostatic time from 825 to 297 s. Furthermore, HK sponges have excellent biosafety, positioning them as a promising absorbable sponge with the potential for the treatment of noncompressible hemostasis.
Collapse
Affiliation(s)
- Yuzhen Wang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Xiao Yang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Ziwei Yang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Hangbin Xia
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Xiaoqin Si
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Jiahui Hao
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Dongxue Yan
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Huili Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Ke Peng
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Jie Sun
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Changcan Shi
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Huaqiong Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Wenzhong Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
8
|
Abdeta AB, Wedajo F, Wu Q, Kuo DH, Li P, Zhang H, Huang T, Lin J, Chen X. B and N Codoped Cellulose-Supported Ag-/Bi-Doped Mo(S,O) 3 Trimetallic Sulfo-Oxide Catalyst for Photocatalytic H 2 Evolution Reaction and 4-Nitrophenol Reduction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12987-13000. [PMID: 38869190 DOI: 10.1021/acs.langmuir.4c00658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Cellulose plays a significant role in designing efficient and stable cellulose-based metallic catalysts, owing to its surface functionalities. Its hydroxyl groups are used as anchor sites for the nucleation and growth of metallic nanoparticles and, as a result, improve the stability and catalytic activity. Meanwhile, cellulose is also amenable to surface modifications to be more suitable for incorporating and stabilizing metallic nanoparticles. Herein, the Ag-/Bi-doped Mo(S,O)3 trimetallic sulfo-oxide anchored on B and N codoped cellulose (B-N-C) synthesized by a facile approach showed excellent stability and catalytic activity for PHER at 573.28 μmol/h H2 with 25 mg of catalyst under visible light, and 92.3% of the 4-nitrophenol (4-NP) reduction was achieved within 135 min by in situ-generated protons. In addition to B and N codoping, our use of the calcination method for B-N-C preparation further increases the structural disorders and defects, which act as anchoring sites for Ag-/Bi-doped Mo(S,O)3 nanoparticles. The Ag-/Bi-doped Mo(S,O)3@B-N-C surface active site also stimulates H2O molecule adsorption and activation kinetics and reduces the photogenerated charge carrier's recombination rate. The Mo4+ → Mo6+ electron hopping transport and the O 2p and Bi 6s orbital overlap facilitate the fast electron transfer by enhancing the electron's lifetime and photoinduced charge carrier mobility, respectively. In addition to acting as a support, B-N-C provides a highly conductive network that enhances charge transport, and the relocated electron in B-N-C activates the H2O molecule, which enables Ag-/Bi-doped Mo(S,O)3@B-N-C to have appreciable PHER performance.
Collapse
Affiliation(s)
- Adugna Boke Abdeta
- Department of Chemistry, College of Natural Science, Jimma University, 378 Jimma, Ethiopia
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feyisa Wedajo
- Department of Chemistry, College of Natural Science, Jimma University, 378 Jimma, Ethiopia
| | - Qinhan Wu
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dong-Hau Kuo
- Departments of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Ping Li
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanya Zhang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ting Huang
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinguo Lin
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaoyun Chen
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
9
|
Chai H, Luo J, Li J, Zhong Y, Zhang L, Feng X, Xu H, Mao Z. Lightweight and robust cellulose/MXene/polyurethane composite aerogels as personal protective wearable devices for electromagnetic interference shielding. Int J Biol Macromol 2024; 271:132435. [PMID: 38759856 DOI: 10.1016/j.ijbiomac.2024.132435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/15/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
The increasing electromagnetic pollution is urgently needed as an electromagnetic interference shielding protection device for wearable devices. Two-dimensional transition metal carbides and nitrides (MXene), due to their interesting layered structure and high electrical conductivity, are ideal candidates for constructing efficient conductive networks in electromagnetic interference shielding materials. In this work, lightweight and robust cellulose/MXene/polyurethane composite aerogels were prepared by mixing cellulose nanofiber (CNF) suspensions with MXene, followed by freeze-drying and coating with polyurethane. In this process, CNF effectively assembled MXene nanosheets into a conductive network by enhancing the interactions between MXene nanosheets. The prepared aerogel exhibited the shielding effectiveness of 48.59 dB in the X-band and an electrical conductivity of 0.34 S·cm-1. Meanwhile, the composite aerogel also possessed excellent thermal insulation, infrared stealth, mechanical and hydrophobic properties, and can be used as a wearable protective device to protect the human body from injuries in different scenarios while providing electromagnetic interference shielding protection.
Collapse
Affiliation(s)
- Hongbin Chai
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jiawei Luo
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Jun Li
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Yi Zhong
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China
| | - Linping Zhang
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China
| | - Xueling Feng
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China
| | - Hong Xu
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China; National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
10
|
Tang Z, Lin X, Yu M, Yang J, Li S, Mondal AK, Wu H. A review of cellulose-based catechol-containing functional materials for advanced applications. Int J Biol Macromol 2024; 266:131243. [PMID: 38554917 DOI: 10.1016/j.ijbiomac.2024.131243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
With the increment in global energy consumption and severe environmental pollution, it is urgently needed to explore green and sustainable materials. Inspired by nature, catechol groups in mussel adhesion proteins have been successively understood and utilized as novel biomimetic materials. In parallel, cellulose presents a wide class of functional materials rating from macro-scale to nano-scale components. The cross-over among both research fields alters the introduction of impressive materials with potential engineering properties, where catechol-containing materials supply a general stage for the functionalization of cellulose or cellulose derivatives. In this review, the role of catechol groups in the modification of cellulose and cellulose derivatives is discussed. A broad variety of advanced applications of cellulose-based catechol-containing materials, including adhesives, hydrogels, aerogels, membranes, textiles, pulp and papermaking, composites, are presented. Furthermore, some critical remaining challenges and opportunities are studied to mount the way toward the rational purpose and applications of cellulose-based catechol-containing materials.
Collapse
Affiliation(s)
- Zuwu Tang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Xinxing Lin
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Meiqiong Yu
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China; College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China
| | - Jinbei Yang
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Shiqian Li
- School of Materials and Packaging Engineering, Fujian Polytechnic Normal University, Fuzhou, Fujian 350300, PR China
| | - Ajoy Kanti Mondal
- Institute of National Analytical Research and Service, Bangladesh Council of Scientific and Industrial Research, Dhanmondi, Dhaka 1205, Bangladesh.
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, PR China; National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, Fuzhou, Fujian 350108, PR China.
| |
Collapse
|
11
|
Miao Z, Mu M, Yu HY, Dong Y. "Green" electrostatic droplet-assisted forming cellulose microspheres with excellent structural controllability and stability for efficient Cr(VI) removal. Carbohydr Polym 2024; 328:121749. [PMID: 38220317 DOI: 10.1016/j.carbpol.2023.121749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
This study presents a novel and environmentally friendly method for producing cellulose microspheres (CM) with controllable morphology and size using electrostatic droplets. The traditional droplet method for CM production requires complex equipment and harmful reagents. In contrast, the proposed method offers a simple electrostatic droplet approach to fabricate CM10 at 10 kV, which exhibited a smaller volume, linear microscopic morphology, and a larger specific surface area, with a 36.60 % improvement compared to CM0 (prepared at 0 kV). CM10 also demonstrated excellent underwater structural stability, recovering in just 0.5 s, and exhibited the highest adsorption capacity for Cr(VI) at 190.16 mg/g, a 72.15 % improvement over CM0. This enhanced adsorption capacity can be attributed to the unique structure of CM10 and the introduction of more amino groups. Moreover, CM10 displayed good cyclic adsorption capacity and high dynamic adsorption efficiency, making it highly suitable for practical applications. CM10 exhibited remarkable adsorption capacity, stability, and practical value in treating Cr(VI) wastewater. This work proposes a simple and eco-friendly method for producing CM with excellent structural controllability and stability, providing an effective route for wastewater treatment.
Collapse
Affiliation(s)
- Zhouyu Miao
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Mengya Mu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hou-Yong Yu
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| | - Yanjuan Dong
- Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
12
|
Zhang FW, Trackey PD, Verma V, Mandes GT, Calabro RL, Presot AW, Tsay CK, Lawton TJ, Zammit AS, Tang EM, Nguyen AQ, Munz KV, Nagelli EA, Bartolucci SF, Maurer JA, Burpo FJ. Cellulose Nanofiber-Alginate Biotemplated Cobalt Composite Multifunctional Aerogels for Energy Storage Electrodes. Gels 2023; 9:893. [PMID: 37998983 PMCID: PMC10671317 DOI: 10.3390/gels9110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Tunable porous composite materials to control metal and metal oxide functionalization, conductivity, pore structure, electrolyte mass transport, mechanical strength, specific surface area, and magneto-responsiveness are critical for a broad range of energy storage, catalysis, and sensing applications. Biotemplated transition metal composite aerogels present a materials approach to address this need. To demonstrate a solution-based synthesis method to develop cobalt and cobalt oxide aerogels for high surface area multifunctional energy storage electrodes, carboxymethyl cellulose nanofibers (CNF) and alginate biopolymers were mixed to form hydrogels to serve as biotemplates for cobalt nanoparticle formation via the chemical reduction of cobalt salt solutions. The CNF-alginate mixture forms a physically entangled, interpenetrating hydrogel, combining the properties of both biopolymers for monolith shape and pore size control and abundant carboxyl groups that bind metal ions to facilitate biotemplating. The CNF-alginate hydrogels were equilibrated in CaCl2 and CoCl2 salt solutions for hydrogel ionic crosslinking and the prepositioning of transition metal ions, respectively. The salt equilibrated hydrogels were chemically reduced with NaBH4, rinsed, solvent exchanged in ethanol, and supercritically dried with CO2 to form aerogels with a specific surface area of 228 m2/g. The resulting aerogels were pyrolyzed in N2 gas and thermally annealed in air to form Co and Co3O4 porous composite electrodes, respectively. The multifunctional composite aerogel's mechanical, magnetic, and electrochemical functionality was characterized. The coercivity and specific magnetic saturation of the pyrolyzed aerogels were 312 Oe and 114 emu/gCo, respectively. The elastic moduli of the supercritically dried, pyrolyzed, and thermally oxidized aerogels were 0.58, 1.1, and 14.3 MPa, respectively. The electrochemical testing of the pyrolyzed and thermally oxidized aerogels in 1 M KOH resulted in specific capacitances of 650 F/g and 349 F/g, respectively. The rapidly synthesized, low-cost, hydrogel-based synthesis for tunable transition metal multifunctional composite aerogels is envisioned for a wide range of porous metal electrodes to address energy storage, catalysis, and sensing applications.
Collapse
Affiliation(s)
- Felita W. Zhang
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Paul D. Trackey
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Vani Verma
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Galen T. Mandes
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Rosemary L. Calabro
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
- U.S. Army Combat Capabilities Development Command-Armaments Center, Watervliet Arsenal, NY 12189, USA; (S.F.B.); (J.A.M.)
| | - Anthony W. Presot
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Claire K. Tsay
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Timothy J. Lawton
- U.S. Army Combat Capabilities Development Command-Soldier Center, Natick, MA 01760, USA;
| | - Alexa S. Zammit
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Edward M. Tang
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Andrew Q. Nguyen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Kennedy V. Munz
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
| | - Enoch A. Nagelli
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
- Photonics Research Center, United States Military Academy, West Point, NY 10996, USA
| | - Stephen F. Bartolucci
- U.S. Army Combat Capabilities Development Command-Armaments Center, Watervliet Arsenal, NY 12189, USA; (S.F.B.); (J.A.M.)
| | - Joshua A. Maurer
- U.S. Army Combat Capabilities Development Command-Armaments Center, Watervliet Arsenal, NY 12189, USA; (S.F.B.); (J.A.M.)
| | - F. John Burpo
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA; (F.W.Z.); (P.D.T.); (V.V.); (G.T.M.); (R.L.C.); (A.W.P.); (C.K.T.); (A.S.Z.); (E.M.T.); (A.Q.N.); (K.V.M.); (E.A.N.)
- Photonics Research Center, United States Military Academy, West Point, NY 10996, USA
| |
Collapse
|
13
|
Palladium Supported on Bioinspired Materials as Catalysts for C–C Coupling Reactions. Catalysts 2023. [DOI: 10.3390/catal13010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In recent years, the immobilization of palladium nanoparticles on solid supports to prepare active and stable catalytic systems has been deeply investigated. Compared to inorganic materials, naturally occurring organic solids are inexpensive, available and abundant. Moreover, the surface of these solids is fully covered by chelating groups which can stabilize the metal nanoparticles. In the present review, we have focused our attention on natural biomaterials-supported metal catalysts applied to the formation of C–C bonds by Mizoroki–Heck, Suzuki–Miyaura and Sonogashira reactions. A systematic approach based on the nature of the organic matrix will be followed: (i) metal catalysts supported on cellulose; (ii) metal catalysts supported on starch; (iii) metal catalysts supported on pectin; (iv) metal catalysts supported on agarose; (v) metal catalysts supported on chitosan; (vi) metal catalysts supported on proteins and enzymes. We will emphasize the effective heterogeneity and recyclability of each catalyst, specifying which studies were carried out to evaluate these aspects.
Collapse
|
14
|
Shen Y, Li X, Huang H, Lan Y, Gan L, Huang J. Embedding Mn2+ in polymer coating on rod-like cellulose nanocrystal to integrate MRI and photothermal function. Carbohydr Polym 2022; 297:120061. [DOI: 10.1016/j.carbpol.2022.120061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/24/2022] [Accepted: 08/28/2022] [Indexed: 11/02/2022]
|
15
|
Xu Z, Xu J, Zhou Y, Huang Y, Li Y. Pd immobilized on EDTA-modified cellulose: synthesis, characterization, and catalytic application in inter- and intramolecular Heck reactions and Larock reactions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Gómez-Graña S, Pita M, Humada-Iglesias P, Pérez-Juste J, Hervés P. Polydimethylsiloxane Sponge-Supported Metal Nanoparticles as Reusable Catalyst for Continuous Flow Reactions. NANOMATERIALS 2022; 12:nano12122081. [PMID: 35745418 PMCID: PMC9227176 DOI: 10.3390/nano12122081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023]
Abstract
In this manuscript, polydimethylsiloxane (PDMS) sponges supporting metal nanoparticles (gold and palladium) were developed and their catalytic properties were studied through a model reaction such as the hydrogenation of p-nitrophenol. Different synthetic conditions for gold and palladium were studied to obtain the best catalyst in terms of nanoparticle loading. The as-prepared catalysts were characterized by different techniques such as scanning electron microscopy (SEM) and inductively coupled plasma optical emission spectroscopy (ICP-OES). The catalytic efficiency and recyclability of the supported catalyst were tested in static conditions. In addition, thanks to the porous structure of the material where the catalytic centers (metal nanoparticles) are located, the model reaction for continuous flow systems was tested, passing the reaction components through the catalyst, observing a high efficiency and recyclability for these systems.
Collapse
Affiliation(s)
- Sergio Gómez-Graña
- CINBIO, Departamento de Química Física, Universidade de Vigo, 36310 Vigo, Spain; (M.P.); (P.H.-I.); (J.P.-J.)
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
- Correspondence: (S.G.-G.); (P.H.)
| | - Marta Pita
- CINBIO, Departamento de Química Física, Universidade de Vigo, 36310 Vigo, Spain; (M.P.); (P.H.-I.); (J.P.-J.)
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
| | - Paula Humada-Iglesias
- CINBIO, Departamento de Química Física, Universidade de Vigo, 36310 Vigo, Spain; (M.P.); (P.H.-I.); (J.P.-J.)
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
| | - Jorge Pérez-Juste
- CINBIO, Departamento de Química Física, Universidade de Vigo, 36310 Vigo, Spain; (M.P.); (P.H.-I.); (J.P.-J.)
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
| | - Pablo Hervés
- CINBIO, Departamento de Química Física, Universidade de Vigo, 36310 Vigo, Spain; (M.P.); (P.H.-I.); (J.P.-J.)
- Instituto de Investigación Sanitaria Galicia Sur, Hospital Álvaro Cunqueiro, 36213 Vigo, Spain
- Correspondence: (S.G.-G.); (P.H.)
| |
Collapse
|
17
|
Anžlovar A, Žagar E. Cellulose Structures as a Support or Template for Inorganic Nanostructures and Their Assemblies. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1837. [PMID: 35683693 PMCID: PMC9182054 DOI: 10.3390/nano12111837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
Cellulose is the most abundant natural polymer and deserves the special attention of the scientific community because it represents a sustainable source of carbon and plays an important role as a sustainable energent for replacing crude oil, coal, and natural gas in the future. Intense research and studies over the past few decades on cellulose structures have mainly focused on cellulose as a biomass for exploitation as an alternative energent or as a reinforcing material in polymer matrices. However, studies on cellulose structures have revealed more diverse potential applications by exploiting the functionalities of cellulose such as biomedical materials, biomimetic optical materials, bio-inspired mechanically adaptive materials, selective nanostructured membranes, and as a growth template for inorganic nanostructures. This article comprehensively reviews the potential of cellulose structures as a support, biotemplate, and growing vector in the formation of various complex hybrid hierarchical inorganic nanostructures with a wide scope of applications. We focus on the preparation of inorganic nanostructures by exploiting the unique properties and performances of cellulose structures. The advantages, physicochemical properties, and chemical modifications of the cellulose structures are comparatively discussed from the aspect of materials development and processing. Finally, the perspective and potential applications of cellulose-based bioinspired hierarchical functional nanomaterials in the future are outlined.
Collapse
Affiliation(s)
- Alojz Anžlovar
- National Institute of Chemistry, Hajdrihova 19, SI-1000 Ljubljana, Slovenia;
| | | |
Collapse
|
18
|
Abstract
Despite providing interesting solutions to reduce the number of synthetic steps, to decrease energy consumption or to generate less waste, therefore contributing to a more sustainable way of producing important chemicals, the expansion of the use of homogeneous catalysis in industrial processes is hampered by several drawbacks. One of the most important is the difficulty to recycle the noble metals generating potential high costs and pollution of the synthesized products by metal traces detrimental to their applications. Supporting the metals on abundant and cheap biosourced polymers has recently appeared as an almost ideal solution: They are much easier to recover from the reaction medium and usually maintain high catalytic activity. The present bibliographical review focuses on the development of catalysts based on group 10 transition metals (nickel, palladium, platinum) supported on biopolymers obtained from wood, such as cellulose, hemicellulose, lignin, and their derivatives. The applications of these catalysts in organic synthesis or depollution are also addressed in this review with examples of C-C couplings, oxidation, or hydrogenation reactions.
Collapse
|
19
|
Cellulose Amphiphilic Materials: Chemistry, Process and Applications. Pharmaceutics 2022; 14:pharmaceutics14020386. [PMID: 35214120 PMCID: PMC8878053 DOI: 10.3390/pharmaceutics14020386] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 02/06/2023] Open
Abstract
In the last decade, amphiphilic cellulose (AC) is emerging as attractive biomaterial for different therapeutic use, due to its unique chemical and physical properties. Using it as alternative to synthetic polymers, AC opens up new avenues to prepare new bio-sustainable materials with low impact in the cellular environment. Herein, most recent methods to synthesize and processing AC materials from different sources—i.e., cellulose nanofibers, bacterial cellulose, cellulose derivatives—will be discussed. By an accurate optimization of morphology and surface chemistry, it is possible to develop innovative amphiphilic platforms, promising for a wide range of biomedical applications, from drug delivery to molecular/particle adsorption.
Collapse
|
20
|
Palem RR, Shimoga G, Kim SY, Bathula C, Ghodake GS, Lee SH. Biogenic palladium nanoparticles: An effectual environmental benign catalyst for organic coupling reactions. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Synthesis and characterization of nano-cellulose immobilized phenanthroline-copper (I) complex as a recyclable and efficient catalyst for preparation of diaryl ethers, N-aryl amides and N-aryl heterocycles. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Deka JR, Saikia D, Chen PH, Chen KT, Kao HM, Yang YC. N-functionalized mesoporous carbon supported Pd nanoparticles as highly active nanocatalyst for Suzuki-Miyaura reaction, reduction of 4-nitrophenol and hydrodechlorination of chlorobenzene. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Dohendou M, Pakzad K, Nezafat Z, Nasrollahzadeh M, Dekamin MG. Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review. Int J Biol Macromol 2021; 192:771-819. [PMID: 34634337 DOI: 10.1016/j.ijbiomac.2021.09.162] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 12/15/2022]
Abstract
Heck cross-coupling reaction (HCR) is one of the few transition metal catalyzed CC bond-forming reactions, which has been considered as the most effective, direct, and atom economical synthetic method using various catalytic systems. Heck reaction is widely employed in numerous syntheses including preparation of pharmaceutical and biologically active compounds, agrochemicals, natural products, fine chemicals, etc. Commonly, Pd-based catalysts have been used in HCR. In recent decades, the application of biopolymers as natural and effective supports has received attention due to their being cost effective, abundance, and non-toxicity. In fact, recent studies demonstrated that biopolymer-based catalysts had high sorption capacities, chelating activities, versatility, and stability, which make them potentially applicable as green materials (supports) in HCR. These catalytic systems present high stability and recyclability after several cycles of reaction. This review aims at providing an overview of the current progresses made towards the application of various polysaccharide and gelatin-supported metal catalysts in HCR in recent years. Natural polymers such as starch, gum, pectin, chitin, chitosan, cellulose, alginate and gelatin have been used as natural supports for metal-based catalysts in HCR. Diverse aspects of the reactions, different methods of preparation and application of polysaccharide and gelatin-based catalysts and their reusability have been reviewed.
Collapse
Affiliation(s)
- Mohammad Dohendou
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Khatereh Pakzad
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran
| | - Zahra Nezafat
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran
| | - Mahmoud Nasrollahzadeh
- Department of Chemistry, Faculty of Science, University of Qom, PO Box 37185-359, Qom, Iran.
| | - Mohammad G Dekamin
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| |
Collapse
|
24
|
|
25
|
Cellulose Schiff base-supported Pd(II): An efficient heterogeneous catalyst for Suzuki Miyaura cross-coupling. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04528-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Samyn P. Polydopamine and Cellulose: Two Biomaterials with Excellent Compatibility and Applicability. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1896545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Pieter Samyn
- Institute for Materials Research, Applied and Analytical Chemistry, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
27
|
Goikuria U, Larrañaga A, Lizundia E, Vilas JL. Effect of metal‐oxide nanoparticle presence and alginate cross‐linking on cellulose nanocrystal‐based aerogels. J Appl Polym Sci 2021. [DOI: 10.1002/app.50639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Uribarri Goikuria
- Macromolecular Chemistry Research Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Leioa Spain
| | - Aitor Larrañaga
- SGIker, General Research Services University of the Basque Country (UPV/EHU) Leioa Spain
| | - Erlantz Lizundia
- Department of Graphic Design and Engineering Projects, Bilbao Faculty of Engineering University of the Basque Country (UPV/EHU) Bilbao Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures UPV/EHU Science Park Leioa Spain
| | - José Luis Vilas
- Macromolecular Chemistry Research Group (LABQUIMAC), Department of Physical Chemistry, Faculty of Science and Technology University of the Basque Country (UPV/EHU) Leioa Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures UPV/EHU Science Park Leioa Spain
| |
Collapse
|
28
|
Sahoo L, Mondal S, Beena NC, Gloskovskii A, Manju U, Topwal D, Gautam UK. 3D Porous Polymeric-Foam-Supported Pd Nanocrystal as a Highly Efficient and Recyclable Catalyst for Organic Transformations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10120-10130. [PMID: 33617231 DOI: 10.1021/acsami.1c00497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The efficient recovery of noble metal nanocrystals used in heterogeneous organic transformations has remained a significant challenge, hindering their use in industry. Herein, highly catalytic Pd nanoparticles (NPs) were first prepared having a yield of >98% by a novel hydrothermal method using PVP as the reducing cum stabilizing agent that exhibited excellent turnover frequencies of ∼38,000 h-1 for Suzuki-Miyaura cross-coupling and ∼1200 h-1 for catalytic reduction of nitroarene compounds in a benign aqueous reaction medium. The Pd NPs were more efficient for cross-coupling of aryl compounds with electron-donating substituents than with electron-donating ones. Further, to improve their recyclability, a strategy was developed to embed these Pd NPs on mechanically robust polyurethane foam (PUF) for the first time and a "dip-catalyst" (Pd-PUF) containing 3D interconnected 100-500 μm pores was constructed. The PUF was chosen as the support with an expectation to reduce the fabrication cost of the "dip-catalyst" as the production of PUF is already commercialized. Pd-PUF could be easily separated from the reaction aliquot and reused without any loss of activity because the leaching of Pd NPs was found to be negligible in the various reaction mixtures. We show that the Pd-PUF could be reused for over 50 catalytic cycles maintaining a similar activity. We further demonstrate a scale-up reaction with a single-reaction 1.5 g yield for the Suzuki-Miyaura cross-coupling reaction.
Collapse
Affiliation(s)
- Lipipuspa Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS, Nagar, Punjab 140306, India
| | - Sanjit Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS, Nagar, Punjab 140306, India
| | - Nayana Christudas Beena
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS, Nagar, Punjab 140306, India
| | - A Gloskovskii
- DESY Photon Science, Deutsches Elektronen-Synchrotron, 22603 Hamburg, Germany
| | - Unnikrishnan Manju
- CSIR -Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | - D Topwal
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS, Nagar, Punjab 140306, India
| |
Collapse
|
29
|
Liu K, Zhang W, Cheng H, Luo L, Wang B, Mao Z, Sui X, Feng X. A Nature-Inspired Monolithic Integrated Cellulose Aerogel-Based Evaporator for Efficient Solar Desalination. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10612-10622. [PMID: 33591710 DOI: 10.1021/acsami.0c22245] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solar-driven seawater desalination is a prospective approach to tackle the problem of freshwater shortage. Establishing a robust, efficient solar-thermal water evaporator with great salt-resistance through a facile and scalable fabrication technique is still a challenge. In this study, a floatable and robust monolithic integrated cellulose aerogel-based evaporator (MiCAE) with high performance is fabricated by carefully designing and integrating three functional components, namely, a hydrophilic cellulose-PVA aerogel (CPA), hydrophobic silylated cellulose aerogel (SCA), and multiwalled carbon nanotube (MCNT) coating layer (CPA@CNT), through the heterogeneous mixing and freeze-drying aerogel fabrication step in situ. Inspired by woods and mushrooms, the incorporation of SCA with mushroom-shaped CPA possessing wood-like structures in MiCAE can realize heat localization and effectively suppress irreversible heat dissipation. Meanwhile, CPA endows the evaporator with the rapid water transportation and great salt excretion capability because of its low-tortuosity porous structure. Thanks to the synergistic effect of the integrated functional structures, in the highly concentrated brine (17.5 wt %), the MiCAE can still realize the combination of high efficiency and obvious salt-resistance behavior. This work offers a facile, efficient salt-resistance solution for seawater desalination.
Collapse
Affiliation(s)
- Kuankuan Liu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Wenya Zhang
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Huan Cheng
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Liushan Luo
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Bijia Wang
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, China
| | - Zhiping Mao
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| | - Xiaofeng Sui
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, China
| | - Xueling Feng
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
- National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, China
- National Manufacturing Innovation Center of Advanced Dyeing and Finishing Technology, Tai'an, Shandong 271000, China
| |
Collapse
|
30
|
Lamm ME, Li K, Qian J, Wang L, Lavoine N, Newman R, Gardner DJ, Li T, Hu L, Ragauskas AJ, Tekinalp H, Kunc V, Ozcan S. Recent Advances in Functional Materials through Cellulose Nanofiber Templating. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005538. [PMID: 33565173 DOI: 10.1002/adma.202005538] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Advanced templating techniques have enabled delicate control of both nano- and microscale structures and have helped thrust functional materials into the forefront of society. Cellulose nanomaterials are derived from natural polymers and show promise as a templating source for advanced materials. Use of cellulose nanomaterials in templating combines nanoscale property control with sustainability, an attribute often lacking in other templating techniques. Use of cellulose nanofibers for templating has shown great promise in recent years, but previous reviews on cellulose nanomaterial templating techniques have not provided extensive analysis of cellulose nanofiber templating. Cellulose nanofibers display several unique properties, including mechanical strength, porosity, high water retention, high surface functionality, and an entangled fibrous network, all of which can dictate distinctive aspects in the final templated materials. Many applications exploit the unique aspects of templating with cellulose nanofibers that help control the final properties of the material, including, but not limited to, applications in catalysis, batteries, supercapacitors, electrodes, building materials, biomaterials, and membranes. A detailed analysis on the use of cellulose nanofibers templating is provided, addressing specifically how careful selection of templating mechanisms and methodologies, combined toward goal applications, can be used to directly benefit chosen applications in advanced functional materials.
Collapse
Affiliation(s)
- Meghan E Lamm
- Manufacturing Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, TN, 37932, USA
| | - Kai Li
- Chemical Sciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| | - Ji Qian
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Lu Wang
- Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, ME, 04469, USA
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME, 04469, USA
| | - Nathalie Lavoine
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Reagan Newman
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Douglas J Gardner
- Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, ME, 04469, USA
- School of Forest Resources, University of Maine, 5755 Nutting Hall, Orono, ME, 04469, USA
| | - Teng Li
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Liangbing Hu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Arthur J Ragauskas
- Center for BioEnergy Innovation (CBI), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, USA
- Department of Forestry, Wildlife and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
- Department of Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee, Estabrook Road, Knoxville, TN, 37916, USA
| | - Halil Tekinalp
- Manufacturing Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, TN, 37932, USA
| | - Vlastimil Kunc
- Manufacturing Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, TN, 37932, USA
| | - Soydan Ozcan
- Manufacturing Demonstration Facility, Energy and Transportation Science Division, Oak Ridge National Laboratory, 2350 Cherahala Boulevard, Knoxville, TN, 37932, USA
| |
Collapse
|
31
|
Ahmad H. Celluloses as Green Support of Palladium Nanoparticles for Application in Heterogeneous Catalysis: A Brief Review. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02000-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Shape recoverable, Au nanoparticles loaded nanocellulose foams as a recyclable catalyst for the dynamic and batch discoloration of dyes. Carbohydr Polym 2021; 258:117693. [PMID: 33593566 DOI: 10.1016/j.carbpol.2021.117693] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/07/2021] [Accepted: 01/20/2021] [Indexed: 01/12/2023]
Abstract
An environmental benign in-situ formation and growth of gold nanoparticles (AuNPs) on TEMPO-oxidized cellulose nanofibrils (TOCNF) is reported here. With the active functional groups (aldehyde and carboxyl), TOCNF served as a synchronized reducing and supporting agent for the formation of AuNPs. The entire synthesis process was completed within 30 s under microwave irradiation and regarded as ultra-fast. As obtained AuNPs@TOCNF nanohybrid suspension was freeze-dried to form strong water-activated shape recovery 3D foam. Internal morphology and porosity of the foam were studied by SEM and BET. AuNPs@TOCNF foams exhibited excellent catalytic activity for the discoloration of cationic and anionic dyes in batch and dynamic column processes. The spent foams can be easily recovered and reused up to five cycles with more than 98 % efficiency. During the catalytic processes, no obvious deterioration of the foam structure was observed. Practical applicability of the nanocatalyst was evaluated by treating spiked sea water sample.
Collapse
|
33
|
Sun Y, Chu Y, Wu W, Xiao H. Nanocellulose-based lightweight porous materials: A review. Carbohydr Polym 2020; 255:117489. [PMID: 33436249 DOI: 10.1016/j.carbpol.2020.117489] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 12/23/2022]
Abstract
Nanocellulose has been widely concerned and applied in recent years. Because of its high aspect ratio, large specific surface area, good modifiability, high mechanical strength, renewability and biodegradability, nanocellulose is particularly suitable as a base for constructing lightweight porous materials. This review summarizes the preparation methods and applications of nanocellulose-based lightweight porous materials including aerogels, cryogels, xerogels, foams and sponges. The preparation of nanocellulose-based lightweight porous materials usually involves gelation and drying processes. The characteristics and influencing factors of three main drying methods including freeze, supercritical and evaporation drying are reviewed. In addition, the mechanism of physical and chemical crosslinking during gelation and the effect on the structure and properties of the porous materials in different drying methods are especially focused on. This contribution also introduces the application of nanocellulose-based lightweight porous materials in the fields of adsorption, biomedicine, energy storage, thermal insulation and sound absorption, flame retardancy and catalysis.
Collapse
Affiliation(s)
- Yan Sun
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Youlu Chu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Weibing Wu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp & Paper Science & Technology, Nanjing Forestry University, Nanjing 210037, China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
34
|
Xie ZT, Asoh TA, Uyama H. Superfast flow reactor derived from the used cigarette filter for the degradation of pollutants in water. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123303. [PMID: 32947707 DOI: 10.1016/j.jhazmat.2020.123303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Developing high value-added products from the waste materials is highly promising from the perspective of environmental protection and resource recovery. Herein, the used cigarette filter was recycled to prepare the flow reactor via a clean and facile strategy. A continuous-flow reduction method was adopted to produce the gold nanoparticles on deacetylated cigarette filter without any extra chemical modifier, reductant or surfactant. The obtained filter was applied as a continuous-flow reactor and showed a high permeability and ultrafast flow catalytic ability. The permeability coefficient of the reactor was about 1.4 × 10-10 m2. This work provided a clean method to covert the waste cigarette filter to useful flow reactor with the relatively simple steps, and the product had a potential for the fast reduction of 4-nitrophenol and dyes including methyl blue and methylene orange.
Collapse
Affiliation(s)
- Zheng-Tian Xie
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Taka-Aki Asoh
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
35
|
Recent advances in analytical, bioanalytical and miscellaneous applications of green nanomaterial. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116109] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Xie ZT, Asoh TA, Uetake Y, Sakurai H, Uyama H. Dual roles of cellulose monolith in the continuous-flow generation and support of gold nanoparticles for green catalyst. Carbohydr Polym 2020; 247:116723. [DOI: 10.1016/j.carbpol.2020.116723] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 11/26/2022]
|
37
|
Kalantari E, Khalilzadeh MA, Zareyee D, Shokouhimehr M. Catalytic degradation of organic dyes using green synthesized Fe3O4-cellulose-copper nanocomposites. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128488] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Research Progress and Development Demand of Nanocellulose Reinforced Polymer Composites. Polymers (Basel) 2020; 12:polym12092113. [PMID: 32957464 PMCID: PMC7570232 DOI: 10.3390/polym12092113] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022] Open
Abstract
Nanocellulose is a type of nanomaterial with high strength, high specific surface area and high surface energy. Additionally, it is nontoxic, harmless, biocompatible and environmentally friendly and can be extracted from biomass resources. The surface groups of cellulose show high surface energy and binding activity on the nanoscale and can be modified by using various methods. Because nanocellulose has a high elastic modulus, rigidity and a low thermal expansion coefficient, it is an excellent material for polymer reinforcement. This paper summarizes the reinforcement mechanisms of nanocellulose polymer composites with a focus on the role of theoretical models in elucidating these mechanisms. Furthermore, the influence of various factors on the properties of nanocellulose reinforced polymer composites are discussed in combination with analyses and comparisons of specific research results in related fields. Finally, research focus and development directions for the design of high-performance nanocellulose reinforced polymer composites are proposed.
Collapse
|
39
|
Wolfson A, Levy-Ontman O. Development and application of palladium nanoparticles on renewable polysaccharides as catalysts for the Suzuki cross-coupling of halobenzenes and phenylboronic acids. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Chopra J, Goswami AK, Baroliya PK. An Overview of Solid Supported Palladium and Nickel Catalysts for C-C Cross Coupling Reactions. MINI-REV ORG CHEM 2020. [DOI: 10.2174/1570193x16666190617160339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Solid supported catalysts have been of considerable interest in organic synthesis for the
last few years. Solid support provides an efficient heterogeneous catalytic system owing to facile
recovery and extensive recycling by simple filtration because of possessing 3-R approach (Recoverable,
Robust and Recyclable) and makes solid supported catalyst more appealing nowadays. In view
of the high cost and shortage of furthermost used palladium catalyst, its recovery and recycling are
vital issues for any large-scale application which are being overcome by using solid supported
catalytic systems. Therefore, a variety of inorganic and organic solid-supported catalytic systems
have been developed so far in order to address these challenges. This review attempts highlight a
number of solid supported catalytic systems in the pro-active area of widely used C-C cross coupling
reactions.
Collapse
Affiliation(s)
- Jaishri Chopra
- Coordination Chemistry Lab, Department of Chemistry, Mohanlal Sukhadia University, Udaipur (Rajasthan) - 313001, India
| | - Ajay K. Goswami
- Coordination Chemistry Lab, Department of Chemistry, Mohanlal Sukhadia University, Udaipur (Rajasthan) - 313001, India
| | - Prabhat K. Baroliya
- Coordination Chemistry Lab, Department of Chemistry, Mohanlal Sukhadia University, Udaipur (Rajasthan) - 313001, India
| |
Collapse
|
41
|
|
42
|
Zhong S. Incorporation of Palladium Catalyst Inside Cross-Linked Chitosan Hybrid Nanofibers for the Sonogashira Reaction. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420030210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Swain S, M B B, Kandathil V, Bhol P, Samal AK, Patil SA. Controlled Synthesis of Palladium Nanocubes as an Efficient Nanocatalyst for Suzuki-Miyaura Cross-Coupling and Reduction of p-Nitrophenol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5208-5218. [PMID: 32320250 DOI: 10.1021/acs.langmuir.0c00526] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anisotropic nanocatalysts have attracted considerable attention in comparison to bulk/nanocatalysts for their enhanced activity and reactivity. The demand toward anisotropic palladium (Pd) nanostructures has increased rapidly in the field of catalysis. Pd is a well-known active catalyst for several carbon-carbon (C-C) cross-coupling reactions; among them, the Suzuki-Miyaura cross-coupling reaction is one of the most versatile and dominant methods for constructing the extraordinarily useful unsymmetrical biaryls and also for hydrogenation of organic contaminants like p-nitrophenol (p-NP). This paper provides a brief explanation about the controlled synthesis, characterization, and catalytic activity of well-defined palladium nanocubes (Pd NCs) prepared by a seed-mediated method. The synthesized monodispersed Pd NCs were characterized by spectroscopic and microscopic tools such as UV-visible, XRD, FESEM, HRTEM, and EDS analyses. Pd NCs proved as an efficient catalyst for Suzuki-Miyaura cross-coupling reactions and p-NP reduction. The catalyst shows enhanced activity, greater stability, and higher selectivity with remarkable recyclability up to 92% for five consecutive cycles. The catalytic performance of the synthesized Pd NCs was also studied in the reduction of the organic contaminant p-NP, which showed an excellent performance screening of 99% conversion in 6 min.
Collapse
Affiliation(s)
- Swarnalata Swain
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore 562112, India
| | - Bhavya M B
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore 562112, India
| | - Vishal Kandathil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore 562112, India
| | - Prangya Bhol
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore 562112, India
| | - Akshaya K Samal
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore 562112, India
| | - Siddappa A Patil
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Kanakapura, Ramanagara, Bangalore 562112, India
| |
Collapse
|
44
|
Ellebracht NC, Jones CW. Functionalized cellulose nanofibril aerogels as cooperative acid-base organocatalysts for liquid flow reactions. Carbohydr Polym 2020; 233:115825. [PMID: 32059881 DOI: 10.1016/j.carbpol.2019.115825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/13/2019] [Accepted: 12/31/2019] [Indexed: 10/25/2022]
Abstract
Cellulose nanomaterial aerogels are macroscopic porous solids with relatively high surface areas and are thus an interesting basis for renewable catalyst materials. Cross-linked acid-base bifunctional catalyst aerogels are produced here from TEMPO-oxidized cellulose nanofibrils (TOCNF) and demonstrated in both batch and flow catalysis. Recently established acid-base modification for catalysis is expanded upon for chemical or physical cross-linking with small molecules and polymers. Low density and relatively high surface area (up to 74 m2 g-1) aerogel catalysts are produced with a variety of processing approaches and then freeze-dried from water or tert-butyl alcohol/water mixtures. Finer pore structure and increased surface area are achieved with tert-butyl alcohol as co-solvent. Chemical cross-linking improved aerogel stability to solvents. Homogeneous and aerogel TOCNF catalysts are shown to be effective acid-base cooperative catalysts for aldol condensation reactions in batch reactions. Continuous flow reactions are performed with glass column reactors packed with aerogel catalysts that showed improved rates relative to batch experiments, while also demonstrating physical stability. Catalyst deactivation in flow reactions is observed and observations of deactivation support previously reported mechanisms of site poisoning by competitive chemisorption of reactants in analogous acid-base catalysts. This report is a key demonstration of cellulose nanofibril aerogels for catalysis in continuous liquid flow reactions.
Collapse
Affiliation(s)
- Nathan C Ellebracht
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA, 30332-0100, United States.
| | - Christopher W Jones
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Dr., Atlanta, GA, 30332-0100, United States.
| |
Collapse
|
45
|
Hibiscus Rosasinensis L. aqueous extract-assisted valorization of lignin: Preparation of magnetically reusable Pd NPs@Fe3O4-lignin for Cr(VI) reduction and Suzuki-Miyaura reaction in eco-friendly media. Int J Biol Macromol 2020; 148:265-275. [DOI: 10.1016/j.ijbiomac.2020.01.107] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/29/2019] [Accepted: 01/10/2020] [Indexed: 11/24/2022]
|
46
|
Cyanation of aryl halides and Suzuki-Miyaura coupling reaction using palladium nanoparticles anchored on developed biodegradable microbeads. Int J Biol Macromol 2020; 148:565-573. [DOI: 10.1016/j.ijbiomac.2020.01.157] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 11/19/2022]
|
47
|
Wang Y, Liao J, Xie Z, Zhang K, Wu Y, Zuo P, Zhang W, Li J, Gao Z. Zeolite-Enhanced Sustainable Pd-Catalyzed C-C Cross-Coupling Reaction: Controlled Release and Capture of Palladium. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11419-11427. [PMID: 32053339 DOI: 10.1021/acsami.9b18110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supported palladium catalysts have attracted significant attention for use in cross-coupling reactions due to their recyclability. However, the inevitable progressive loss of Pd that occurs in the catalytic process deactivates the catalysts, which hinders their sustainable application. Herein, we report a zeolite-enhanced sustainable Pd catalyst for C-C cross-coupling reactions. Zeolite does a good job of acting as a sink for Pd2+ ions. This catalyst exhibits an excellent homogeneous catalytic performance by releasing Pd species from zeolite. In addition, the Pd2+ ions were successfully recaptured in a controlled catalytic system by combining the uniform microporous structure and good adsorption features of zeolite. The release/capture mechanism of the Pd species guaranteed the high loading and high dispersion of Pd on the recycled catalyst. The 0.84%Pd@USY catalysts were reused at least 10 times in water without an appreciable reduction in activity. This study presents a new perspective toward the design of a highly efficient and sustainable supported metal catalyst.
Collapse
Affiliation(s)
- Yanyan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Jiaping Liao
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Zunyuan Xie
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Kan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Ya Wu
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
- College of Chemistry & Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, P. R. China
| | - Ping Zuo
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Weiqiang Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| | - Jiyang Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry MOE, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
| |
Collapse
|
48
|
Saneinezhad S, Bamoharram FF, Mozhdehi AM, Sharifi AH, Ayati A, Pordel M, Baharara J, Sillanpää M. Functionalized cellulose-preyssler heteropolyacid bio-composite: An engineered and green matrix for selective, fast and in–situ preparation of Pd nanostructures: synthesis, characterization and application. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
49
|
Affiliation(s)
- Árpád Molnár
- Department of Organic Chemistry University of Szeged Dóm tér 8 Szeged 6720 Hungary
| |
Collapse
|
50
|
Kapoor S, Sheoran A, Riyaz M, Agarwal J, Goel N, Singhal S. Enhanced catalytic performance of Cu/Cu2O nanoparticles via introduction of graphene as support for reduction of nitrophenols and ring opening of epoxides with amines established by experimental and theoretical investigations. J Catal 2020. [DOI: 10.1016/j.jcat.2019.11.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|