1
|
Šilhavík M, Kumar P, Levinský P, Zafar ZA, Hejtmánek J, Červenka J. Anderson Localization of Phonons in Thermally Superinsulating Graphene Aerogels with Metal-Like Electrical Conductivity. SMALL METHODS 2024; 8:e2301536. [PMID: 38577909 DOI: 10.1002/smtd.202301536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/24/2024] [Indexed: 04/06/2024]
Abstract
In the quest to improve energy efficiency and design better thermal insulators, various engineering strategies have been extensively investigated to minimize heat transfer through a material. Yet, the suppression of thermal transport in a material remains elusive because heat can be transferred by multiple energy carriers. Here, the realization of Anderson localization of phonons in a random 3D elastic network of graphene is reported. It is shown that thermal conductivity in a cellular graphene aerogel can be drastically reduced to 0.9 mW m-1 K-1 by the application of compressive strain while keeping a high metal-like electrical conductivity of 120 S m-1 and ampacity of 0.9 A. The experiments reveal that the strain can cause phonon localization over a broad compression range. The remaining heat flow in the material is dominated by charge transport. Conversely, electrical conductivity exhibits a gradual increase with increasing compressive strain, opposite to the thermal conductivity. These results imply that strain engineering provides the ability to independently tune charge and heat transport, establishing a new paradigm for controlling phonon and charge conduction in solids. This approach will enable the development of a new type of high-performance insulation solutions and thermally superinsulating materials with metal-like electrical conductivity.
Collapse
Affiliation(s)
- Martin Šilhavík
- Department of Thin Films and Nanostructures, FZU - Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, Prague, 162 00, Czech Republic
| | - Prabhat Kumar
- Department of Thin Films and Nanostructures, FZU - Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, Prague, 162 00, Czech Republic
| | - Petr Levinský
- Department of Magnetics and Superconductors, FZU - Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, Prague, 162 00, Czech Republic
| | - Zahid Ali Zafar
- Department of Thin Films and Nanostructures, FZU - Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, Prague, 162 00, Czech Republic
| | - Jiří Hejtmánek
- Department of Magnetics and Superconductors, FZU - Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, Prague, 162 00, Czech Republic
| | - Jiří Červenka
- Department of Thin Films and Nanostructures, FZU - Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, Prague, 162 00, Czech Republic
| |
Collapse
|
2
|
Huang J, Guo Y, Lei X, Chen B, Hao H, Luo J, Sun T, Jian M, Gao E, Wu X, Ma W, Shao Y, Zhang J. Fabricating Ultrastrong Carbon Nanotube Fibers via a Microwave Welding Interface. ACS NANO 2024; 18:14377-14387. [PMID: 38781118 DOI: 10.1021/acsnano.4c00522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Liquid crystal wet-spun carbon nanotube fibers (CNTFs) offer notable advantages, such as precise alignment and scalability. However, these CNTFs usually suffer premature failure through intertube slippage due to the weak interfacial interactions between adjacent shells and bundles. Herein, we present a microwave (MW) welding strategy to enhance intertube interactions by partially carbonizing interstitial heterocyclic aramid polymers. The resulting CNTFs exhibit ultrahigh static tensile strength (6.74 ± 0.34 GPa) and dynamic tensile strength (9.52 ± 1.31 GPa), outperforming other traditional high-performance fibers. This work provides a straightforward yet effective approach to strengthening CNTFs for advanced engineering applications.
Collapse
Affiliation(s)
- Jiankun Huang
- Beijing National Laboratory for Molecular Sciences, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Yongzhe Guo
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Xudong Lei
- Key Laboratory of Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Chen
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - He Hao
- Beijing National Laboratory for Molecular Sciences, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing 100871, China
| | - Jiajun Luo
- Beijing National Laboratory for Molecular Sciences, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Tongzhao Sun
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Muqiang Jian
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Enlai Gao
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Xianqian Wu
- Key Laboratory of Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weigang Ma
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yuanlong Shao
- Beijing National Laboratory for Molecular Sciences, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| | - Jin Zhang
- Beijing National Laboratory for Molecular Sciences, School of Materials Science and Engineering, College of Chemistry and Molecular Engineering, Academy for Advanced Interdisciplinary Studies, Beijing Science and Engineering Center for Nanocarbons, Peking University, Beijing 100871, China
- Beijing Graphene Institute (BGI), Beijing 100095, China
| |
Collapse
|
3
|
Li J, Hou Y, He Z, Wu H, Zhu Y. Strain Engineering of Ion-Coordinated Nanochannels in Nanocellulose. NANO LETTERS 2024; 24:6262-6268. [PMID: 38743501 DOI: 10.1021/acs.nanolett.4c00867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Expanding the interlayer spacing plays a significant role in improving the conductivity of a cellulose-based conductor. However, it remains a challenge to regulate the cellulose nanochannel expanded by ion coordination. Herein, starting from multiscale mechanics, we proposed a strain engineering method to regulate the interlayer spacing of the cellulose nanochannels. First-principles calculations were conducted to select the most suitable ions for coordination. Large-scale molecular dynamics simulations were performed to reveal the mechanism of interlayer spacing expansion by the ion cross-linking. Combining the shear-lag model, we established the relationship between interfacial cross-link density and interlayer spacing of an ion-coordinated cellulose nanochannel. Consequently, fast ion transport and current regulation were realized via the strain engineering of nanochannels, which provides a promising strategy for the current regulation of a cellulose-based conductor.
Collapse
Affiliation(s)
- JiaHao Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - YuanZhen Hou
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - ZeZhou He
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, People's Republic of China
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Science, 15 Beisihuan West Road, Beijing 100190, People's Republic of China
| | - YinBo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, People's Republic of China
| |
Collapse
|
4
|
Wen Y, Jian M, Huang J, Luo J, Qian L, Zhang J. Carbonene Fibers: Toward Next-Generation Fiber Materials. NANO LETTERS 2022; 22:6035-6047. [PMID: 35852935 DOI: 10.1021/acs.nanolett.1c04878] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of human society has set unprecedented demands for advanced fiber materials, such as lightweight and high-performance fibers for reinforcement of composite materials in frontier fields and functional and intelligent fibers in wearable electronics. Carbonene materials composed of sp2-hybridized carbon atoms have been demonstrated to be ideal building blocks for advanced fiber materials, which are referred to as carbonene fibers. Carbonene fibers that generally include pristine carbonene fibers, composite carbonene fibers, and carbonene-modified fibers hold great promise in transferring the extraordinary properties of nanoscale carbonene materials to macroscopic applications. Herein, we give a comprehensive discussion on the conception, classification, and design strategies of carbonene fibers and then summarize recent progress regarding the preparations and applications of carbonene fibers. Finally, we provide insights into developing lightweight, high-performance, functional, and intelligent carbonene fibers for next-generation fiber materials in the near future.
Collapse
Affiliation(s)
- Yeye Wen
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
- Beijing Graphene Institute (BGI), Beijing 100095, People's Republic of China
| | - Muqiang Jian
- Beijing Graphene Institute (BGI), Beijing 100095, People's Republic of China
| | - Jiankun Huang
- Beijing Graphene Institute (BGI), Beijing 100095, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jiajun Luo
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
- Beijing Graphene Institute (BGI), Beijing 100095, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Liu Qian
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jin Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
- Beijing Graphene Institute (BGI), Beijing 100095, People's Republic of China
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
5
|
Wei A, Ye H, Guo F. Structure-dependent mechanical properties of self-folded two-dimensional nanomaterials. Phys Chem Chem Phys 2022; 24:16774-16783. [PMID: 35775619 DOI: 10.1039/d2cp00508e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of self-folded two-dimensional nanomaterials (SF-2DNMs) has been proposed to greatly enhance the ductility of two-dimensional material assemblies. However, the dependences of the mechanical properties of SF-2DNMs on the folded geometries have not been fully clarified. In this paper, we develop a theoretical model to describe the mechanical properties of SF-2DNMs based on the shear-lag analysis. With this model, the load transfer behaviors in SF-2DNMs are demonstrated. The Young's modulus and tensile strength of SF-2DNMs are found to increase and then converge with the fold length, which agree well with the results of molecular dynamics simulations. Moreover, the phase diagrams of failure modes are obtained for SF-2DNMs and their stacked assemblies, providing design criteria for the geometries of SF-2DNMs. The structure-property relationship revealed in our study will provide useful guidelines for the structure design and property optimization of SF-2DNMs.
Collapse
Affiliation(s)
- Anran Wei
- School of Naval Architecture, Ocean and Civil Engineering (State Key Laboratory of Ocean Engineering), Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Han Ye
- State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Fenglin Guo
- School of Naval Architecture, Ocean and Civil Engineering (State Key Laboratory of Ocean Engineering), Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Insights on Shear Transfer Efficiency in "Brick-and-Mortar" Composites Made of 2D Carbon Nanoparticles. NANOMATERIALS 2022; 12:nano12081359. [PMID: 35458067 PMCID: PMC9027589 DOI: 10.3390/nano12081359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023]
Abstract
Achieving high mechanical performances in nanocomposites reinforced with lamellar fillers has been a great challenge in the last decade. Many efforts have been made to fabricate synthetic materials whose properties resemble those of the reinforcement. To achieve this, special architectures have been considered mimicking existing materials, such as nacre. However, achieving the desired performances is challenging since the mechanical response of the material is influenced by many factors, such as the filler content, the matrix molecular mobility and the compatibility between the two phases. Most importantly, the properties of a macroscopic bulk material strongly depend on the interaction at atomic levels and on their synergetic effect. In particular, the formation of highly-ordered brick-and-mortar structures depends on the interaction forces between the two phases. Consequently, poor mechanical performances of the material are associated with interface issues and low stress transfer from the matrix to the nanoparticles. Therefore, improvement of the interface at the chemical level enhances the mechanical response of the material. The purpose of this review is to give insight into the stress transfer mechanism in high filler content composites reinforced with 2D carbon nanoparticles and to describe the parameters that influence the efficiency of stress transfer and the strategies to improve it.
Collapse
|
7
|
Liu J, Qin H, Liu Y. Multi-Scale Structure-Mechanical Property Relations of Graphene-Based Layer Materials. MATERIALS 2021; 14:ma14164757. [PMID: 34443279 PMCID: PMC8399220 DOI: 10.3390/ma14164757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 11/16/2022]
Abstract
Pristine graphene is one of the strongest materials known in the world, and may play important roles in structural and functional materials. In order to utilize the extraordinary mechanical properties in practical engineering structures, graphene should be assembled into macroscopic structures such as graphene-based papers, fibers, foams, etc. However, the mechanical properties of graphene-based materials such as Young’s modulus and strength are 1–2 orders lower than those of pristine monolayer graphene. Many efforts have been made to unveil the multi-scale structure–property relations of graphene-based materials with hierarchical structures spanning the nanoscale to macroscale, and significant achievements have been obtained to improve the mechanical performance of graphene-based materials through composition and structure optimization across multi-scale. This review aims at summarizing the currently theoretical, simulation, and experimental efforts devoted to the multi-scale structure–property relation of graphene-based layer materials including defective monolayer graphene, nacre-like and laminar nanostructures of multilayer graphene, graphene-based papers, fibers, aerogels, and graphene/polymer composites. The mechanisms of mechanical property degradation across the multi-scale are discussed, based on which some multi-scale optimization strategies are presented to further improve the mechanical properties of graphene-based layer materials. We expect that this review can provide useful insights into the continuous improvement of mechanical properties of graphene-based layer materials.
Collapse
Affiliation(s)
- Jingran Liu
- Laboratory for Multi-Scale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China;
| | - Huasong Qin
- Laboratory for Multi-Scale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China;
- Correspondence: (H.Q.); (Y.L.)
| | - Yilun Liu
- Laboratory for Multi-Scale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi’an Jiaotong University, Xi’an 710049, China;
- Key Laboratory for Intelligent Nano Materials and Devices of the Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Correspondence: (H.Q.); (Y.L.)
| |
Collapse
|
8
|
Xie W, Wei Y. Roughening for Strengthening and Toughening in Monolayer Carbon Based Composites. NANO LETTERS 2021; 21:4823-4829. [PMID: 34029077 DOI: 10.1021/acs.nanolett.1c01462] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D) aggregation of graphene is dramatically weak and brittle due primarily to the prevailing interlayer van der Waals interaction. In this report, motivated by the recent success in synthesis of monolayer amorphous carbon (MAC) sheets, we demonstrate that outstanding strength and large plastic-like strain can be achieved in layered 3D MAC composites. Both surface roughening and the ultracompliant nature of MACs count for the high strength and gradual failure in 3D MAC. Such properties are not seen when intact graphene or multiple stacked MACs are used as building blocks for 3D composites. This work demonstrates a counterintuitive mechanism that surface roughening due to initial defects and low rigidity may help to realize superb mechanical properties in 3D aggregation of monolayer carbon.
Collapse
Affiliation(s)
- Wenhui Xie
- LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yujie Wei
- LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
9
|
Shahbabaei M, Kim D. Exploring fast water permeation through aquaporin-mimicking membranes. Phys Chem Chem Phys 2020; 22:1333-1348. [DOI: 10.1039/c9cp05496k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Using molecular dynamics simulations, herein, we illustrate that a bending structure shows different behaviors for fast water transport through aquaporin-mimicking membranes in multilayer graphene and tubular structures.
Collapse
Affiliation(s)
- Majid Shahbabaei
- Department of Mechanical Engineering
- Sogang University
- Seoul 121-742
- Republic of Korea
| | - Daejoong Kim
- Department of Mechanical Engineering
- Sogang University
- Seoul 121-742
- Republic of Korea
| |
Collapse
|
10
|
Mao L, Park H, Soler-Crespo RA, Espinosa HD, Han TH, Nguyen ST, Huang J. Stiffening of graphene oxide films by soft porous sheets. Nat Commun 2019; 10:3677. [PMID: 31417093 PMCID: PMC6695419 DOI: 10.1038/s41467-019-11609-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 07/16/2019] [Indexed: 11/13/2022] Open
Abstract
Graphene oxide (GO) sheets have been used as a model system to study how the mechanical properties of two-dimensional building blocks scale to their bulk form, such as paper-like, lamellar-structured thin films. Here, we report that the modulus of multilayer GO films can be significantly enhanced if some of the sheets are drastically weakened by introducing in-plane porosity. Nanometer-sized pores are introduced in GO sheets by chemical etching. Membrane-deflection measurements at the single-layer level show that the sheets are drastically weakened as the in-plane porosity increases. However, the mechanical properties of the corresponding multilayer films are much less sensitive to porosity. Surprisingly, the co-assembly of pristine and etched GO sheets yields even stiffer films than those made from pristine sheets alone. This is attributed to the more compliant nature of the soft porous sheets, which act as a binder to improve interlayer packing and load transfer in the multilayer films.
Collapse
Affiliation(s)
- Lily Mao
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Hun Park
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208, USA
| | - Rafael A Soler-Crespo
- Theoretical and Applied Mechanics Program, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA
| | - Horacio D Espinosa
- Theoretical and Applied Mechanics Program, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA.
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA.
| | - Tae Hee Han
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| | - SonBinh T Nguyen
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd., Evanston, IL, 60208, USA.
| | - Jiaxing Huang
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, IL, 60208, USA.
| |
Collapse
|
11
|
Xia J, Zhu Y, He Z, Wang F, Wu H. Superstrong Noncovalent Interface between Melamine and Graphene Oxide. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17068-17078. [PMID: 30998319 DOI: 10.1021/acsami.9b02971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
There have been growing academic interests in the study of strong organic molecule-graphene [or graphene oxide (GO)] systems, owing to their essential noncovalent nature and the consequent chemomechanical behavior within the interface. A more recent experimental measurement [ Chem 2018, 4, 896-910] reported that the melamine-GO interface exhibits a remarkable noncovalent binding strength up to ∼1 nN, even comparable with typical covalent bonds. But the poor understanding on the complex noncovalent nature in particular makes it challenging to unveil the mystery of this high-performance interface. Herein, we carry out first-principles calculations to investigate the atomistic origin of ultrastrong noncovalent interaction between the melamine molecule and the GO sheet, as well as the chemomechanical synergy in interfacial behavior. The anomalous O-H···N hydrogen bonding, formed between the triazine moiety of melamine and the -OH in GO, is found cooperatively enhanced by the pin-like NH2-π interaction, which is responsible for the strong interface. Following static pulling simulations validates the 1 nN level rupture strength and the contribution of each noncovalent interaction within the interface. Moreover, our results show that the -OH hydrogen bonding will mainly augment the interfacial adhesion strength, whereas the -NH2 group cooperating with the -OH hydrogen bonding and conjugating with the GO surface will greatly improve the interfacial shear performance. Our work deepens the understanding on the chemomechanical behaviors within the noncovalent interface, which is expected to provide new potential strategies in designing high-performance graphene-based artificial nacreous materials.
Collapse
Affiliation(s)
- Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics , University of Science and Technology of China , Hefei 230027 , China
| | - YinBo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics , University of Science and Technology of China , Hefei 230027 , China
| | - ZeZhou He
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics , University of Science and Technology of China , Hefei 230027 , China
| | - FengChao Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics , University of Science and Technology of China , Hefei 230027 , China
| | - HengAn Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics , University of Science and Technology of China , Hefei 230027 , China
| |
Collapse
|
12
|
Harito C, Bavykin DV, Yuliarto B, Dipojono HK, Walsh FC. Polymer nanocomposites having a high filler content: synthesis, structures, properties, and applications. NANOSCALE 2019; 11:4653-4682. [PMID: 30840003 DOI: 10.1039/c9nr00117d] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The recent development of nanoscale fillers, such as carbon nanotubes, graphene, and nanocellulose, allows the functionality of polymer nanocomposites to be controlled and enhanced. However, conventional synthesis methods of polymer nanocomposites cannot maximise the reinforcement of these nanofillers at high filler content. Approaches for the synthesis of high content filler polymer nanocomposites are suggested to facilitate future applications. The fabrication methods address the design of the polymer nanocomposite architecture, which encompasses one, two, and three dimensional morphologies. Factors that hamper the reinforcement of nanostructures, such as alignment, dispersion of the filler and interfacial bonding between the filler and polymer, are outlined. Using suitable approaches, maximum potential reinforcement of nanoscale fillers can be anticipated without limitations in orientation, dispersion, and the integrity of the filler particle-matrix interface. High filler content polymer composites containing emerging materials such as 2D transition metal carbides, nitrides, and carbonitrides (MXenes) are expected in the future.
Collapse
Affiliation(s)
- Christian Harito
- Energy Technology Research Group, Faculty of Engineering and Physical Sciences, University of Southampton, SO17 1BJ, Southampton, UK.
| | | | | | | | | |
Collapse
|
13
|
Gao E, Xu Z. Bio-inspired graphene-derived membranes with strain-controlled interlayer spacing. NANOSCALE 2018; 10:8585-8590. [PMID: 29696272 DOI: 10.1039/c8nr00013a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The precisely controlled size of nanoscale fluidic channels plays a critical role in resolving the permeation-selectivity trade-off in separation and filtration applications, where highly efficient gas separation and water desalination are targeted. Inspired by natural nacre where the spacing between mineral platelets changes upon applying tension as fractured mineral bridges climb over each other, bio-inspired graphene-derived membranes with sheets cross-linked by aligned covalent bonds are proposed in design, to ensure a controlled interlayer spacing ranging from 4 Å to 14 Å while preserving structural and mechanical stabilities by prohibiting swelling. The underlying mechanism is that the tension applied to the membrane is transferred between finite-sized graphene sheets through interlayer shear of the cross-links, which expands the interlayer gallery. First-principles calculations and continuum mechanics based model analysis are combined to explore the feasibility of this protocol, by considering the microstructures of graphene-derived membranes that have recently been demonstrated to offer exceptional performance in selective mass transport. The results show that the critical size range in molecular sieving is covered by this synergetic interface- and strain-engineering approach.
Collapse
Affiliation(s)
- Enlai Gao
- Applied Mechanics Laboratory, Department of Engineering Mechanics and Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China.
| | | |
Collapse
|
14
|
Wu K, Song Z, He L, Ni Y. Analysis of optimal crosslink density and platelet size insensitivity in graphene-based artificial nacres. NANOSCALE 2018; 10:556-565. [PMID: 29165497 DOI: 10.1039/c7nr06748h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exploration of graphene-based artificial nacres with excellent mechanical properties demonstrates the potential to surpass natural nacre. Recent experimental studies report that optimal crosslink density defined as concentration of the surface functional groups is usually observed in these artificial nacres towards superb mechanical performance. A hybrid model integrating a nonlinear shear-lag model and atomistic simulations reveals the emergence of an optimal crosslink density at which the maximum strength and toughness are achieved. The origin is due to the balance among the reduction of in-plane tensile properties of the graphene sheets, the enhancement of the shear strength of the interlayer and the reduction of interface plasticity. In addition, our results also reveal that the size insensitivity of the graphene sheet appears when the shear stress of the interlayer is highly localized, the increase of the crosslink density intensifies the nonuniformity of the shear stress and the optimal mechanical properties of the artificial nacre cannot be further enhanced by tuning the size of the graphene sheets. Three kinds of interface molecular interactions with their optimal crosslink densities are also proposed to simultaneously maximize the strength and toughness of graphene-based artificial nacres.
Collapse
Affiliation(s)
- Kaijin Wu
- Department of Modern Mechanics, CAS Key Laboratory of Mechanical Behavior and Design of Materials, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | |
Collapse
|