1
|
El Qami A, Hilari JI, Blandin V, Gayraud O, Milet A, Vallée Y. Prebiotic formation of thioesters via cyclic anhydrides as a key step in the emergence of metabolism. Sci Rep 2025; 15:7039. [PMID: 40016351 PMCID: PMC11868630 DOI: 10.1038/s41598-025-91547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 02/21/2025] [Indexed: 03/01/2025] Open
Abstract
Thioesters are high-energy derivatives of carboxylic acids that are essential in the functioning of today's living cells. Their central role argues in favor of their early introduction in the abiotic reaction network which led to the emergence of life on Earth. We propose that the first thioesters appeared during the establishment of the reverse tricarboxylic acid (rTCA) cycle, an effective metabolic cycle for the synthesis of organic molecules from CO2. Most of the acids in this cycle are 1,4-diacids. We show that the formation of a cyclic anhydride from aqueous solutions of succinic or citric acid is possible using drying conditions over silica, as it could happen in an evaporating pond. When these 1,4-diacids are dried in the presence of thiols, thioesters are obtained. Our experimental and theoretical results demonstrate that analogs of succinyl-CoA and citryl-CoA, thioesters from the rTCA cycle, can be produced. Such a process highlights the importance of 1,4-diacids, which would have been introduced in the metabolism then under construction because of their ability to form anhydrides and to be activated in the absence of triphosphates or of any other activating agent. At its beginning, the rTCA cycle should therefore be interpreted mainly as a "1,4-diacid cycle".
Collapse
Affiliation(s)
| | | | | | - Oscar Gayraud
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| | - Anne Milet
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| | - Yannick Vallée
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France.
| |
Collapse
|
2
|
Palanivel M, Nataraj D, Thrupthika T, Ramya S, Premkumar S, Thangadurai TD. Nonclassical Pathways: Accelerated Crystal Growth of Sodium Hexafluorosilicate Microrods via Nanoparticle-Assisted Processes with 0D Silicon Quantum Dots. ACS OMEGA 2024; 9:24060-24070. [PMID: 38854570 PMCID: PMC11154940 DOI: 10.1021/acsomega.4c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 06/11/2024]
Abstract
Nonclassical crystallization represents an innovative pathway that utilizes nanoparticles, enabling the generation of single crystals, going beyond a classical mechanism dependent on atoms, ions, or molecules. Our investigation has revealed hierarchical structures emerging via the aggregation and fusion of primary silicon quantum dots (SiQDs). In contrast to the classical ion-by-ion crystallization process, the primary SiQDs initially undergo aggregation, followed by fusion and their subsequent crystallization, leading to the ultrafast crystal growth of sodium hexafluorosilicate (SHFS) microrods with diverse morphologies. A comprehensive fluorescence microscopy study is performed to examine the mechanism of microrod formation through the primary aggregation and fusion of SiQDs at room temperature in the presence of hydrogen fluoride (HF). The different concentrations of HF play a crucial role in the formation of flower-, block-, and hexagonal-shaped SHFS microrods. However, the presence of a high-concentration HF causes a reduction in microrod size, elucidated through a range of analytical and spectroscopic techniques.
Collapse
Affiliation(s)
- Maheswari Palanivel
- Quantum
Materials & Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Devaraj Nataraj
- Quantum
Materials & Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
- UGC−CPEPA
Centre for Advanced Studies in Physics for the Development of Solar
Energy Materials and Devices, Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Thankappan Thrupthika
- Quantum
Materials & Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Subramaniam Ramya
- Quantum
Materials & Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore, Tamil Nadu 641046, India
| | - Sellan Premkumar
- Joint
International Research Laboratory of Information Display and Visualization,
School of Electronics Science and Technology, Southeast University, Nanjing 210009, China
| | | |
Collapse
|
3
|
Samrout OE, Berlier G, Lambert JF. Amino Acid Polymerization on Silica Surfaces. Chempluschem 2024; 89:e202300642. [PMID: 38226922 DOI: 10.1002/cplu.202300642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
The polymerization of unactivated amino acids (AAs) is an important topic because of its applications in various fields including industrial medicinal chemistry and prebiotic chemistry. Silica as a promoter for this reaction, is of great interest owing to its large abundance and low cost. The amide/peptide bond synthesis on silica has been largely demonstrated but suffers from a lack of knowledge regarding its reaction mechanism, the key parameters, and surface features that influence AA adsorption and reactivity, the selectivity of the reaction product, the role of water in the reaction, etc. The present review addresses these problems by summarizing experimental and modeling results from the literature and attempts to rationalize some apparent divergences in published results. After briefly presenting the main types of silica surface sites and other relevant macroscopic features, we discuss the different deposition procedures of AAs, whose importance is often neglected. We address the possible AA adsorption mechanisms including covalent grafting and H-bonding and show that they are highly dependent on silanol types and density. We then consider how the adsorption mechanisms determine the occurrence and outcome of AA condensation (formation of cyclic dimers or of long linear chains), and outline some recent results that suggest significant polymerization selectivity in systems containing several AAs, as well as the formation of specific elements of secondary structure in the growing polypeptide chains.
Collapse
Affiliation(s)
- Ola El Samrout
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Torino, Italy
| | - Gloria Berlier
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Torino, Italy
| | - Jean-François Lambert
- Laboratoire de Réactivité de Surface, LRS, Sorbonne Université Place Jussieu, 75005, Paris, France
| |
Collapse
|
4
|
Lei W, Lu X, Wang M. Multiphase displacement manipulated by micro/nanoparticle suspensions in porous media via microfluidic experiments: From interface science to multiphase flow patterns. Adv Colloid Interface Sci 2023; 311:102826. [PMID: 36528919 DOI: 10.1016/j.cis.2022.102826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Multiphase displacement in porous media can be adjusted by micro/nanoparticle suspensions, which is widespread in many scientific and industrial contexts. Direct visualization of suspension flow dynamics and corresponding multiphase patterns is crucial to understanding displacement mechanisms and eventually optimizing these processes in geological, biological, chemical, and other engineering systems. However, suspension flow inside the opaque realistic porous media makes direct observation challenging. The advances in microfluidic experiments have provided us with alternative methods to observe suspension influence on the interface and multiphase flow behaviors at high temporal and spatial resolutions. Macroscale processes are controlled by microscale interfacial behaviors, which are affected by multiple physical factors, such as particle adsorption, capillarity, and hydrodynamics. These properties exerted on the suspension flow in porous media may lead to interesting interfacial phenomena and new displacement consequences. As an underpinning science, understanding and controlling the suspension transport process from interface to flow patterns in porous media is critical for a lower operating cost to improve resource production while reducing harmful emissions and other environmental impacts. This review summarizes the basic properties of different micro/nanoparticle suspensions and the state-of-the-art microfluidic techniques for displacement research activities in porous media. Various suspension transport behaviors and displacement mechanisms explored by microfluidic experiments are comprehensively reviewed. This review is expected to boost both experimental and theoretical understanding of suspension transport and interfacial interaction processes in porous media. It also brings forward the challenges and opportunities for future research in controlling complex fluid flow in porous media for diverse applications.
Collapse
Affiliation(s)
- Wenhai Lei
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xukang Lu
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Moran Wang
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
5
|
El Samrout O, Fabbiani M, Berlier G, Lambert JF, Martra G. Emergence of Order in Origin-of-Life Scenarios on Mineral Surfaces: Polyglycine Chains on Silica. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15516-15525. [PMID: 36469018 PMCID: PMC9776562 DOI: 10.1021/acs.langmuir.2c02106] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The polymerization of amino acids (AAs) to peptides on oxide surfaces has attracted interest owing to its high importance in biotechnology, prebiotic chemistry, and origin of life theories. However, its mechanism is still poorly understood. We tried to elucidate the reactivity of glycine (Gly) from the vapor phase on the surface of amorphous silica under controlled atmosphere at 160 °C. Infrared (IR) spectroscopy reveals that Gly functionalizes the silica surface through the formation of ester species, which represent, together with the weakly interacting silanols, crucial elements for monomers activation and polymerization. Once activated, β-turns start to form as initiators for the growth of long linear polypeptides (poly-Gly) chains, which elongate into ordered structures containing both β-sheet and helical conformations. The work also points to the role of water vapor in the formation of further self-assembled β-sheet structures that are highly resistant to hydrolysis.
Collapse
Affiliation(s)
- Ola El Samrout
- Department
of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
- Laboratoire
de Réactivité de Surface, LRS, Sorbonne Université, Place Jussieu, 75005 Paris, France
| | - Marco Fabbiani
- Department
of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Gloria Berlier
- Department
of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Jean-François Lambert
- Laboratoire
de Réactivité de Surface, LRS, Sorbonne Université, Place Jussieu, 75005 Paris, France
| | - Gianmario Martra
- Department
of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
6
|
Arachchi S, Palma SP, Sanders CI, Xu H, Ghosh Biswas R, Soong R, Simpson AJ, Casabianca LB. Binding Between Antibiotics and Polystyrene Nanoparticles Examined by NMR. ACS ENVIRONMENTAL AU 2022; 3:47-55. [PMID: 36691656 PMCID: PMC9856636 DOI: 10.1021/acsenvironau.2c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 01/19/2023]
Abstract
Elucidating the interactions between plastic nanoparticles and small molecules is important to understanding these interactions as they occur in polluted waterways. For example, plastic that breaks down into micro- and nanoscale particles will interact with small molecule pollutants that are also present in contaminated waters. Other components of natural water, such as dissolved organic matter, will also influence these interactions. Here we use a collection of complementary NMR techniques to examine the binding between polystyrene nanoparticles and three common antibiotics, belonging to a class of molecules that are expected to be common in polluted water. Through examination of proton NMR signal intensity, relaxation times, saturation-transfer difference (STD) NMR, and competition STD-NMR, we find that the antibiotics have binding strengths in the order amoxicillin < metronidazole ≪ levofloxacin. Levofloxacin is able to compete for binding sites, preventing the other two antibiotics from binding. The presence of tannic acid disrupts the binding between levofloxacin and the polystyrene nanoparticles, but does not influence the binding between metronidazole and these nanoparticles.
Collapse
Affiliation(s)
- Saduni
S. Arachchi
- Department
of Chemistry, Clemson University, Clemson, South Carolina29634, United States
| | - Stephanie P. Palma
- Department
of Chemistry, Clemson University, Clemson, South Carolina29634, United States
| | - Charlotte I. Sanders
- Department
of Chemistry, Clemson University, Clemson, South Carolina29634, United States
| | - Hui Xu
- Department
of Chemistry, Clemson University, Clemson, South Carolina29634, United States
| | - Rajshree Ghosh Biswas
- Department
of Chemistry, University of Toronto Scarborough, Toronto, OntarioM1C 1A4, Canada
| | - Ronald Soong
- Department
of Chemistry, University of Toronto Scarborough, Toronto, OntarioM1C 1A4, Canada
| | - André J. Simpson
- Department
of Chemistry, University of Toronto Scarborough, Toronto, OntarioM1C 1A4, Canada
| | - Leah B. Casabianca
- Department
of Chemistry, Clemson University, Clemson, South Carolina29634, United States,
| |
Collapse
|
7
|
Abadian H, Cornette P, Costa D, Mezzetti A, Gervais C, Lambert JF. Leucine on Silica: A Combined Experimental and Modeling Study of a System Relevant for Origins of Life, and the Role of Water Coadsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8038-8053. [PMID: 35737817 DOI: 10.1021/acs.langmuir.2c00841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Leucine on silica constitutes an interesting system from the point of view of origins of life studies since leucine coadsorbed on SiO2 together with glutamic acid can give rise to rather long linear polypeptides upon activation. It is also an ideal system to test methods of molecular characterization of biomolecules deposited on mineral surfaces since it combines a small-scale model of peptides and proteins, which are among the most important components of biodevices, with one of the most widely used inorganic materials. We have deposited l-leucine on a high surface fumed silica in the submonolayer range and characterized it by a multipronged approach including macroscopic information (thermogravimetry, X-ray diffraction), in situ spectroscopic methods (IR, multinuclear solid-state NMR including single-pulse and CP-MAS, 2-D HETCOR), and molecular modeling by density functional theory (DFT), including calculation of NMR parameters. Specific information can be obtained on the adsorption and interaction mechanism. Leucine is rather strongly adsorbed without any covalent bonds, through the formation of a specific lattice of H-bonds that often involve coadsorbed water molecules. Its state is indeed strongly dependent on the drying procedure: insufficient drying results in liquid-like surroundings for the leucine functional groups, while vacuum drying only retains a limited number of waters (of the order of 5 per leucine molecule). The most stable models have zwitterionic leucine interacting directly with surface silanols through their ammonium group, while the carboxylate interacts through bridging waters. Experimental NMR chemical shifts are satisfactorily predicted for these models, and leucine can be viewed as a probe for specific groups of surface sites known as silanol nests.
Collapse
Affiliation(s)
- Hagop Abadian
- Laboratoire de Réactivité de Surface (LRS, UMR 7609 CNRS), Case courrier 178, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP, UMR 7574 CNRS), Case courrier 174, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Pauline Cornette
- Laboratoire de Réactivité de Surface (LRS, UMR 7609 CNRS), Case courrier 178, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Dominique Costa
- Institut de Recherche de Chimie Paris (IRCP, UMR8247 CNRS), 11 rue Pierre et Marie Curie, 75005 Paris, France
| | - Alberto Mezzetti
- Laboratoire de Réactivité de Surface (LRS, UMR 7609 CNRS), Case courrier 178, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Christel Gervais
- Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP, UMR 7574 CNRS), Case courrier 174, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - Jean-François Lambert
- Laboratoire de Réactivité de Surface (LRS, UMR 7609 CNRS), Case courrier 178, Sorbonne Université, 4 Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
8
|
Prihatiningsih M, Ariyanto T, Putra EGR, Susilo VY, Mahendra I, Prasetyo I. Radioiodination of Modified Porous Silica Nanoparticles as a Potential Candidate of Iodine-131 Drugs Vehicle. ACS OMEGA 2022; 7:13494-13506. [PMID: 35559138 PMCID: PMC9088772 DOI: 10.1021/acsomega.1c06492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/07/2022] [Indexed: 06/15/2023]
Abstract
There are challenges related to cancer treatment, namely, targeting and biocompatibility associated with a drug vehicle. This research aims to prepare a theranostic cancer vehicle based on porous silica nanoparticles (PSN) with controllable nanoparticle size, supporting targeting properties, and biocompatible. The synthesis method combined the Stöber process and liquid crystal templating using a dispersant and pore expander. Triethanolamine (TEA) and Pluronic F-127 were combined as a steric stabilizer and dispersing agent, while n-hexane was used as a pore expander. The amine functionalization was carried out using the 3-aminopropyl-triethoxysilane solution. Furthermore, radiolabeling of PSN using Iodine-131 and iodogen as oxidizing agents was carried out. The results showed that the best achievable PSN size was 100-150 nm with a polydispersity index of 0.24 using TEA-Pluronic F-127. The functionalization results did not significantly affect the radioiodination result. Radiochemical purity (RCP) values up to 95% were obtained in the radioiodination, while the labeled compounds were relatively stable with 12 mCi radioactivity, indicating the absence of radiolysis. The synthesized PSN was not toxic to normal cell samples up to a concentration of 150 μg/mL for PSN and 170 μg/mL for PSN-NH2. The cellular uptake testing results of the PSN-131I in cancer cell samples showed promising uptake ability.
Collapse
Affiliation(s)
- Maria
Christina Prihatiningsih
- Department
of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia
- Polytechnic
Institute of Nuclear Technology, National
Research and Innovation Agency, Jl. Babarsari POB 6101 Ykbb, Yogyakarta 55281, Indonesia
| | - Teguh Ariyanto
- Department
of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia
| | - Edy Giri Rachman Putra
- Center
for Science and Technology of Advanced Materials, National Research and Innovation Agency, Kawasan Puspiptek Serpong, Banten 15314, Indonesia
| | - Veronika Yulianti Susilo
- Research
and Technology Center for Radioisotope and Radiopharmaceutical, National Research and Innovation Agency, Kawasan Puspiptek Serpong, Banten 15314, Indonesia
| | - Isa Mahendra
- Research
and Technology Center for Applied Nuclear, National Research and Innovation Agency, Tamansari 71, Bandung 40132, West Java, Indonesia
| | - Imam Prasetyo
- Department
of Chemical Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika No. 2, Yogyakarta 55281, Indonesia
| |
Collapse
|
9
|
|
10
|
Sujith M, Vishnu EK, Sappati S, Oliyantakath Hassan MS, Vijayan V, Thomas KG. Ligand-Induced Ground- and Excited-State Chirality in Silicon Nanoparticles: Surface Interactions Matter. J Am Chem Soc 2022; 144:5074-5086. [PMID: 35258297 DOI: 10.1021/jacs.1c13698] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Silicon-based light-emitting materials have emerged as a favorable substitute to various organic and inorganic systems due to silicon's high natural abundance, low toxicity, and excellent biocompatibility. However, efforts on the design of free-standing silicon nanoparticles with chiral non-racemic absorption and emission attributes are rather scare. Herein, we unravel the structural requirements for ligand-induced chirality in silicon-based nanomaterials by functionalizing with D- and L-isomers of a bifunctional ligand, namely, tryptophan. The structural aspects of these systems are established using high-resolution high-angle annular dark-field imaging in the scanning transmission electron microscopy mode, solid-state nuclear magnetic resonance, Fourier transform infrared, and X-ray photoelectron spectroscopy. Silicon nanoparticles capped with L- and D-isomers of tryptophan displayed positive and negative monosignated circular dichroic signals and circularly polarized luminescence indicating their ground- and excited-state chirality. Various studies supported by density functional theory calculations signify that the functionalization of indole ring nitrogen on the silicon surface plays a decisive role in modifying the chiroptical characteristics by generating emissive charge-transfer states. The chiroptical responses originate from the multipoint interactions of tryptophan with the nanoparticle surface through the indole nitrogen and -CO2- groups that can transmit an enantiomeric structural imprint on the silicon surface. However, chiroptical properties are not observed in phenylalanine- and alanine-capped silicon nanoparticles, which are devoid of Si-N bonds and chiral footprints. Thus, the ground- and excited-state chiroptics in tryptophan-capped silicon nanoparticles originates from the collective effect of ligand-bound emissive charge-transfer states and chiral footprints. Being the first report on the circularly polarized luminescence in silicon nanoparticles, this work will open newer possibilities in the field of chirality.
Collapse
Affiliation(s)
- Meleppatt Sujith
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - E Krishnan Vishnu
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Subrahmanyam Sappati
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Muhammed Shafeek Oliyantakath Hassan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - Vinesh Vijayan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| | - K George Thomas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram 695551, India
| |
Collapse
|
11
|
de Azambuja F, Loosen A, Conic D, van den Besselaar M, Harvey JN, Parac-Vogt TN. En Route to a Heterogeneous Catalytic Direct Peptide Bond Formation by Zr-Based Metal–Organic Framework Catalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Alexandra Loosen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Dragan Conic
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | | - Jeremy N. Harvey
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | |
Collapse
|
12
|
Rheological, physicochemical, and microstructural properties of asphalt binder modified by fumed silica nanoparticles. Sci Rep 2021; 11:11455. [PMID: 34075083 PMCID: PMC8169902 DOI: 10.1038/s41598-021-90620-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/13/2021] [Indexed: 11/08/2022] Open
Abstract
Warm mix asphalt (WMA) is gaining increased attention in the asphalt paving industry as an eco-friendly and sustainable technology. WMA technologies are favorable in producing asphalt mixtures at temperatures 20-60 °C lower in comparison to conventional hot mix asphalt. This saves non-renewable fossil fuels, reduces energy consumption, and minimizes vapors and greenhouse gas emissions in the production, placement and conservation processes of asphalt mixtures. At the same time, this temperature reduction must not reduce the performance of asphalt pavements in-field. Low aging resistance, high moisture susceptibility, and low durability are generally seen as substantial drawbacks of WMA, which can lead to inferior pavement performance, and increased maintenance costs. This is partly due to the fact that low production temperature may increase the amount of water molecules trapped in the asphalt mixture. As a potential remedy, here we use fumed silica nanoparticles (FSN) have shown excellent potential in enhancing moisture and aging susceptibility of asphalt binders. In this study, asphalt binder modification by means of FSN was investigated, considering the effects of short-term and long-term aging on the rheological, thermal, and microstructural binder properties. This research paves the way for optimizing WMA by nanoparticles to present enhanced green asphalt technology.
Collapse
|
13
|
Pálvölgyi PS, Nelo M, Pitkänen O, Peräntie J, Liimatainen H, Myllymäki S, Jantunen H, Kordas K. Ultra-low permittivity porous silica-cellulose nanocomposite substrates for 6G telecommunication. NANOTECHNOLOGY 2020; 31:435203. [PMID: 32650329 DOI: 10.1088/1361-6528/aba4cc] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The continuously increasing demand for faster data traffic of our telecommunication devices requires new and better materials and devices that operate at higher frequencies than today. In this work, a porous composite of silica nanoshells and cellulose nanofibers is demonstrated as a suitable candidate of dielectric substrates to be used in future 6G frequency bands. The hollow nanospheres of amorphous SiO2 with outstanding electromagnetic properties were obtained by a template-assisted Stöber process, in which a thin shell of silica is grown on polystyrene nanospheres first, and then the polymer core is burned off in a subsequent step. To be able to produce substrates with sufficient mechanical integrity, the nanoshells of SiO2 were reinforced with cellulose nanofibers resulting in a porous composite of very low mass density (0.19 ± 0.02 g cm-3), which is easy to press and mold to form films or slabs. The low relative dielectric permittivity (ε r = 1.19 ± 0.01 at 300 GHz and ε r = 1.17 ± 0.01 at 2.0 THz) and corresponding loss tangent (tan δ= 0.011 ± 0.001 at 300 GHz and tan δ = 0.011 ± 0.001 at 2.0 THz) of the composite films are exploited in substrates for radio frequency filter structures designed for 300 GHz operation.
Collapse
Affiliation(s)
- Petra S Pálvölgyi
- Microelectronics research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, P.O. Box 4500, FI-90014, Finland
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Swanson HL, Guo C, Cao M, Addison JB, Holland GP. Probing the binding modes and dynamics of histidine on fumed silica surfaces by solid-state NMR. Phys Chem Chem Phys 2020; 22:20349-20361. [PMID: 32901618 DOI: 10.1039/d0cp03472j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Silica nanoparticles can be designed to exhibit a diverse range of morphologies (e.g. non-porous, mesoporous), physical properties (e.g. hydrophobic, hydrophilic) and a wide range of chemical and biomolecular surface functionalizations. In the present work, the adsorption complex of histidine (His) and fumed silica nanoparticles (FSN) is probed using thermal analysis (TGA/DTG) and a battery of solid-state (SS) NMR methods supported by DFT chemical shift calculations. Multinuclear (1H/13C/15N) one- and two-dimensional magic angle spinning (MAS) SSNMR experiments were applied to determine site-specific interactions between His and FSN surfaces as a function of adsorption solution concentration, pH and hydration state. By directly comparing SSNMR observables (linewidth, chemical shift and relaxation parameters) for His-FSN adsorption complexes to various crystalline, amorphous and aqueous His forms, the His structural and dynamic environment on FSN surfaces could be determined at an atomic level. The observed 13C and 15N MAS NMR chemical shifts, linewidths and relaxation parameters show that the His surface layer on FSN has a significant dependence on pH and hydration state. His is highly dynamic on FSN surfaces under acidic conditions (pH 4) as evidenced by sharp resonances with near isotropic chemical shifts regardless of hydration level indicating a non-specific binding arrangement while, a considerably more rigid His environment with defined protonation states is observed at near neutral pH with subtle variations between hydrated and anhydrous complexes. At near neutral pH, less charge repulsion occurs on the FSN surface and His is more tightly bound as evidenced by considerable line broadening likely due to chemical shift heterogeneity and a distribution in hydrogen-bonding strengths on the FSN surface. Multiple His sites exchange with a tightly bound water layer in hydrated samples while, direct interaction with the FSN surface and significant chemical shift perturbations for imidazole ring nitrogen sites and some carbon resonances are observed after drying. The SSNMR data was used to propose an interfacial molecular binding model between His and FSN surfaces under varying conditions setting the stage for future multinuclear, multidimensional SSNMR studies of His-containing peptides on silica nanoparticles and other nanomaterials of interest.
Collapse
Affiliation(s)
- Haley L Swanson
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA.
| | - Chengchen Guo
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
| | - Michael Cao
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA.
| | - J Bennett Addison
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA.
| | - Gregory P Holland
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA.
| |
Collapse
|
15
|
Kamanna K, Khatavi S, Hiremath P. Microwave-assisted One-pot Synthesis of Amide Bond using WEB. CURRENT MICROWAVE CHEMISTRY 2020. [DOI: 10.2174/2213335606666190828114344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background:
Amide bond plays a key role in medicinal chemistry, and the analysis of bioactive
molecular database revealed that the carboxamide group appears in more than 25% of the existing
database drugs. Typically amide bonds are formed from the union of carboxylic acid and
amine; however, the product formation does not occur spontaneously. Several synthetic methods
have been reported for amide bond formation in literature. Present work demonstrated simple and
eco-friendly amide bond formation using carboxylic acid and primary amines through in situ generation
of O-acylurea. The reaction was found to be more efficient, faster reaction rate; simple work-up
gave pure compound isolation in moderate to excellent yield using microwave irradiation as compared
to conventional heating.
Methods:
Developed one-pot synthesis of amide compounds using agro-waste derived greener catalyst
under microwave irradiation.
Results:
Twenty amide bond containing organic compounds are synthesized from carboxylic acid
with primary amine catalyzed by agro-waste derived medium under microwave irradiation. First, the
reaction involved carboxylic acid activation using EDC.HCl, which is the required base for the neutralization
and coupling. The method employed natural agro-waste derived from banana peel ash
(WEB) for the coupling gave target amide product without the use of an external organic or inorganic
base.
Conclusion:
In the present work, we demonstrated that agro-waste extract is an alternative greener
catalytic medium for the condensation of organic carboxylic acid and primary amine under microwave
irradiation. The method found several advantages compared to reported methods like solventfree,
non-toxic, cheaper catalyst, and simple reaction condition. The final isolated product achieved
chromatographically pure by simple recrystallization and did not require further purification.
Collapse
Affiliation(s)
- Kantharaju Kamanna
- Department of Chemistry, Peptide and Medicinal Chemistry Research Laboratory, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India
| | - S.Y. Khatavi
- Department of Chemistry, Peptide and Medicinal Chemistry Research Laboratory, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India
| | - P.B. Hiremath
- Department of Chemistry, Peptide and Medicinal Chemistry Research Laboratory, Rani Channamma University, Vidyasangama, P-B, NH-4, Belagavi 591156, Karnataka, India
| |
Collapse
|
16
|
Casabianca LB. Solid-state nuclear magnetic resonance studies of nanoparticles. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2020; 107:101664. [PMID: 32361159 DOI: 10.1016/j.ssnmr.2020.101664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/06/2020] [Accepted: 04/02/2020] [Indexed: 05/24/2023]
Abstract
In this trends article, we review seminal and recent studies using static and magic-angle spinning solid-state NMR to study the structure of nanoparticles and ligands attached to nanoparticles. Solid-state NMR techniques including one-dimensional multinuclear NMR, cross-polarization, techniques for measuring dipolar coupling and internuclear distances, and multidimensional NMR have provided insight into the core-shell structure of nanoparticles as well as the structure of ligands on the nanoparticle surface. Hyperpolarization techniques, in particular solid-state dynamic nuclear polarization (DNP), have enabled detailed studies of nanoparticle core-shell structure and surface chemistry, by allowing unprecedented levels of sensitivity to be achieved. The high signal-to-noise afforded by DNP has allowed homonuclear and heteronuclear correlation experiments involving nuclei with low natural abundance to be performed in reasonable experimental times, which previously would not have been possible. The use of DNP to study nanoparticles and their applications will be a fruitful area of study in the coming years as well.
Collapse
|
17
|
Wang Y, Yu J, Wang Y, Chen Z, Dong L, Cai R, Hong M, Long X, Yang S. In situ templating synthesis of mesoporous Ni–Fe electrocatalyst for oxygen evolution reaction. RSC Adv 2020; 10:23321-23330. [PMID: 35520306 PMCID: PMC9059140 DOI: 10.1039/d0ra03111a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/26/2020] [Indexed: 01/27/2023] Open
Abstract
Low-cost and efficient electrocatalysts with high dispersion of active sites and high conductivity are of high importance for oxygen evolution reaction (OER). Herein, we use amorphous mesoporous fumed silica (MFS) as a skeleton material to disperse Ni2+ and Fe3+ through a simple impregnation strategy. The MFS is in situ etched away during the OER process in 1 M KOH to prepare a stable mesoporous Ni–Fe electrocatalyst. The high specific surface area and abundant surface silanol groups in the mesoporous fumed silica afford rich anchor sites for fixing metal atoms via strong chemical metal–oxygen interactions. Raman and XPS investigations reveal that Ni2+ formed covalent bonds with surface Si–OH groups, and Fe3+ inserted into the framework of fumed silica forming Fe–O–Si bonds. The mesoporous Ni–Fe catalysts offer high charge transfer abilities in the OER process. When loaded on nickel foam, the optimal 2Ni1Fe-MFS catalyst exhibits an overpotential of 270 mV at 10 mA cm−2 and a Tafel slope of 41 mV dec−1. Notably, 2Ni1Fe-MFS shows a turnover frequency value of 0.155 s−1 at an overpotential of 300 mV, which is 80 and 190 times higher than that of the state-of-the-art IrO2 and RuO2 catalysts. Furthermore, 2Ni1Fe-MFS exhibits 100% faradaic efficiency, large electrochemically active surface area, and good long-term durability, confirming its outstanding OER performance. Such high OER efficiency can be ascribed to the synergistic effect of high surface area, dense metal active sites and interfacial conductive path. This work provides a promising strategy to develop simple, cost-effective, and highly efficient porous Ni–Fe based catalysts for OER. A stable mesoporous Ni–Fe–O electrocatalyst with high OER efficiency is constructed using mesoporous fumed silica as a template.![]()
Collapse
Affiliation(s)
- Ya Wang
- State Key Laboratory of Chemical Oncogenomics
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research
- School of Chemical Biology & Biotechnology
- Peking University Shenzhen Graduate School (PKUSZ)
- Shenzhen 518055
| | - Jun Yu
- State Key Laboratory of Chemical Oncogenomics
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research
- School of Chemical Biology & Biotechnology
- Peking University Shenzhen Graduate School (PKUSZ)
- Shenzhen 518055
| | - Yanding Wang
- State Key Laboratory of Chemical Oncogenomics
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research
- School of Chemical Biology & Biotechnology
- Peking University Shenzhen Graduate School (PKUSZ)
- Shenzhen 518055
| | - Zhuwen Chen
- State Key Laboratory of Chemical Oncogenomics
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research
- School of Chemical Biology & Biotechnology
- Peking University Shenzhen Graduate School (PKUSZ)
- Shenzhen 518055
| | - Lei Dong
- State Key Laboratory of Chemical Oncogenomics
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research
- School of Chemical Biology & Biotechnology
- Peking University Shenzhen Graduate School (PKUSZ)
- Shenzhen 518055
| | - Rongming Cai
- State Key Laboratory of Chemical Oncogenomics
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research
- School of Chemical Biology & Biotechnology
- Peking University Shenzhen Graduate School (PKUSZ)
- Shenzhen 518055
| | - Mei Hong
- State Key Laboratory of Chemical Oncogenomics
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research
- School of Chemical Biology & Biotechnology
- Peking University Shenzhen Graduate School (PKUSZ)
- Shenzhen 518055
| | - Xia Long
- State Key Laboratory of Chemical Oncogenomics
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research
- School of Chemical Biology & Biotechnology
- Peking University Shenzhen Graduate School (PKUSZ)
- Shenzhen 518055
| | - Shihe Yang
- State Key Laboratory of Chemical Oncogenomics
- Guangdong Provincial Key Laboratory of Nano-Micro Materials Research
- School of Chemical Biology & Biotechnology
- Peking University Shenzhen Graduate School (PKUSZ)
- Shenzhen 518055
| |
Collapse
|
18
|
Gajaganti S, Kumar D, Singh S, Srivastava V, Allam BK. A New Avenue to the Synthesis of Symmetrically Substituted Pyridines Catalyzed by Magnetic Nano–Fe
3
O
4
: Methyl Arenes as Sustainable Surrogates of Aryl Aldehydes. ChemistrySelect 2019. [DOI: 10.1002/slct.201900289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Somaiah Gajaganti
- Department of ChemistryIndian Institute of Technology (BHU) Varanasi 221 005, Uttar Pradesh India
| | - Dhirendra Kumar
- Department of ChemistryIndian Institute of Technology (BHU) Varanasi 221 005, Uttar Pradesh India
| | - Sundaram Singh
- Department of ChemistryIndian Institute of Technology (BHU) Varanasi 221 005, Uttar Pradesh India
| | - Vandana Srivastava
- Department of ChemistryIndian Institute of Technology (BHU) Varanasi 221 005, Uttar Pradesh India
| | - Bharat Kumar Allam
- Department of ChemistryIndian Institute of Technology (BHU) Varanasi 221 005, Uttar Pradesh India
| |
Collapse
|
19
|
Guo C, Yarger JL. Characterizing gold nanoparticles by NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2018; 56:1074-1082. [PMID: 29808623 DOI: 10.1002/mrc.4753] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/16/2018] [Accepted: 05/19/2018] [Indexed: 06/08/2023]
Abstract
Gold nanoparticles have attracted considerable attention in recent research because of their wide applications in various fields such as material science, electrical engineering, physical science, and biomedical engineering. Researchers have developed many methods for synthesizing different kinds of gold nanoparticles, where the sizes and surface chemistry of the nanoparticles are considered to be the two key factors. Traditionally, the sizes of nanoparticles are determined by electron microscopy whereas the surface chemistry is characterized by optical spectroscopies such as infrared spectroscopy and Raman spectroscopy. Compared with that, nuclear magnetic resonance (NMR) spectroscopy provides a more advanced and convenient way for size determination and surface chemistry investigations by combining one- and multiple-dimensional NMR spectroscopy and diffusion-order NMR spectroscopy. Here, we show a thorough study that NMR spectroscopy can be applied to characterize small thiol-protected gold nanoparticles, including size determination, surface chemistry investigation, and structural study. The results show that the nanoparticles' sizes determined by NMR agree well with transmission electron microscopy results. Furthermore, the ligand densities of nanoparticles were determined by quantitative NMR spectroscopy, and the structures of ligands capped on the surfaces were studied thoroughly by one- and multiple-dimensional NMR spectroscopy. In this work, we establish a general method for researchers to characterize nanostructures by using NMR spectroscopy.
Collapse
Affiliation(s)
- Chengchen Guo
- School of Molecular Sciences, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ, 85287-1604
| | - Jeffery L Yarger
- School of Molecular Sciences, Magnetic Resonance Research Center, Arizona State University, Tempe, AZ, 85287-1604
| |
Collapse
|
20
|
Rimola A, Fabbiani M, Sodupe M, Ugliengo P, Martra G. How Does Silica Catalyze the Amide Bond Formation under Dry Conditions? Role of Specific Surface Silanol Pairs. ACS Catal 2018. [DOI: 10.1021/acscatal.7b03961] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marco Fabbiani
- Dipartimento de Scienza e Alta Tecnologia, Università degli Studi dell’insubria, Via Valleggio 11, 22100 Como, Italy
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Inter-Departmental centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Gianmario Martra
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Inter-Departmental centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
21
|
Fabbiani M, Rebba E, Pazzi M, Vincenti M, Fois E, Martra G. Solvent-free synthesis of Ser–His dipeptide from non-activated amino acids and its potential function as organocatalyst. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3198-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|