1
|
Zou Y, Sun Z, Wang Q, Ju Y, Sun N, Yue Q, Deng Y, Liu S, Yang S, Wang Z, Li F, Hou Y, Deng C, Ling D, Deng Y. Core-Shell Magnetic Particles: Tailored Synthesis and Applications. Chem Rev 2025; 125:972-1048. [PMID: 39729245 DOI: 10.1021/acs.chemrev.4c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Core-shell magnetic particles consisting of magnetic core and functional shells have aroused widespread attention in multidisciplinary fields spanning chemistry, materials science, physics, biomedicine, and bioengineering due to their distinctive magnetic properties, tunable interface features, and elaborately designed compositions. In recent decades, various surface engineering strategies have been developed to endow them desired properties (e.g., surface hydrophilicity, roughness, acidity, target recognition) for efficient applications in catalysis, optical modulation, environmental remediation, biomedicine, etc. Moreover, precise control over the shell structure features like thickness, porosity, crystallinity and compositions including metal oxides, carbon, silica, polymers, and metal-organic frameworks (MOFs) has been developed as the major method to exploit new functional materials. In this review, we highlight the synthesis methods, regulating strategies, interface engineering, and applications of core-shell magnetic particles over the past half-century. The fundamental methodologies for controllable synthesis of core-shell magnetic materials with diverse organic, inorganic, or hybrid compositions, surface morphology, and interface property are thoroughly elucidated and summarized. In addition, the influences of the synthesis conditions on the physicochemical properties (e.g., dispersibility, stability, stimulus-responsiveness, and surface functionality) are also discussed to provide constructive insight and guidelines for designing core-shell magnetic particles in specific applications. The brand-new concept of "core-shell assembly chemistry" holds great application potential in bioimaging, diagnosis, micro/nanorobots, and smart catalysis. Finally, the remaining challenges, future research directions and new applications for the core-shell magnetic particles are predicted and proposed.
Collapse
Affiliation(s)
- Yidong Zou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
| | - Zhenkun Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qiyue Wang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
| | - Yanmin Ju
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
| | - Nianrong Sun
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Qin Yue
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Yu Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Shanbiao Liu
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shengfei Yang
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Zhiyi Wang
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Fangyuan Li
- Department of Clinical Laboratory, Songjiang Research Institute, Shanghai Key Laboratory of Emotions and Affective Disorders, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, P. R. China
- Institute of Pharmaceutics, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yanglong Hou
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, School of Materials Science and Engineering, Peking University, Beijing 100871, P. R. China
- School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
| | - Chunhui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| | - Daishun Ling
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, School of Biomedical Engineering, National Center for Translational Medicine,, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yonghui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, iChEM, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
2
|
Dobroserdova AB, Minina ES, Sánchez PA, Likos CN, Kantorovich SS. Core-shell nanogels: the effects of morphology, electro- and magnetostatic interactions. SOFT MATTER 2024; 20:7797-7810. [PMID: 39018087 DOI: 10.1039/d4sm00450g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
We study the influence of core-shell morphology on the structural characteristics of nanogels. Using computer simulations, we examine three different types of systems, distinguished by their intermonomer interactions: those with excluded volume only; those with charged monomers and excluded volume; and those with excluded volume combined with a certain number of magnetised nanoparticles incorporated within the nanogel. We observe that if the polymers in the shell are short and dense, they tend to penetrate the core. This effect of backfolding is enhanced in charged nanogels, regardless of whether all monomers are charged, or only the core or shell ones. The presence of an experimentally available amount of magnetic nanoparticles in a gel, on the one hand, does not lead to any significant morphological changes. On the other hand, the morphology of the nanogel with magnetic particles has an impact on its magnetic susceptibility. Particular growth of the magnetic response is observed if a long shell of a nanogel is functionalised.
Collapse
Affiliation(s)
| | - Elena S Minina
- Faculty of Physics, University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
3
|
Gao Q, Wang X, Hu S, He PP, Gou S, Liu S, Du X, Guo W. Dual stimuli-responsive upconversion nanoparticle-poly- N-isopropylacrylamide/DNA core-shell microgels. SOFT MATTER 2024; 20:4052-4056. [PMID: 38738402 DOI: 10.1039/d4sm00258j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Stimuli-responsive upconversion nanoparticle (UCNP)-poly-N-isopropylacrylamide (pNIPAM)/DNA core-shell microgels with tunable sizes and programmable functions have been prepared. Thanks to the near-infrared (NIR)-responsive UCNP cores and thermosensitive polymeric shells, functional DNA-incorporated microgels with high DNA activity and loading efficiency are obtained, and the activity of the loaded DNA structures can be smartly regulated by NIR illumination and temperature simultaneously.
Collapse
Affiliation(s)
- Qi Gao
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Xiaowen Wang
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Shanjin Hu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Ping-Ping He
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Siyu Gou
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Shuo Liu
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| | - Xiaoxue Du
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
- Handan Key Laboratory of Novel Nanobiomaterials, College of Materials Science and Engineering, Hebei University of Engineering, Handan 056000, P. R. China.
| | - Weiwei Guo
- Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, P. R. China; Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, Nankai University, Tianjin 300350, P. R. China.
| |
Collapse
|
4
|
Ji H, Zhu Q. Application of intelligent responsive DNA self-assembling nanomaterials in drug delivery. J Control Release 2023; 361:803-818. [PMID: 37597810 DOI: 10.1016/j.jconrel.2023.08.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Smart nanomaterials are nano-scaled materials that respond in a controllable and reversible way to external physical or chemical stimuli. DNA self-assembly is an effective way to construct smart nanomaterials with precise structure, diverse functions and wide applications. Among them, static structures such as DNA polyhedron, DNA nanocages and DNA hydrogels, as well as dynamic reactions such as catalytic hairpin reaction, hybridization chain reaction and rolling circle amplification, can serve as the basis for building smart nanomaterials. Due to the advantages of DNA, such as good biocompatibility, simple synthesis, rational design, and good stability, these materials have attracted increasing attention in the fields of pharmaceuticals and biology. Based on their specific response design, DNA self-assembled smart nanomaterials can deliver a variety of drugs, including small molecules, nucleic acids, proteins and other drugs; and they play important roles in enhancing cellular uptake, resisting enzymatic degradation, controlling drug release, and so on. This review focuses on different assembly methods of DNA self-assembled smart nanomaterials, therapeutic strategies based on various intelligent responses, and their applications in drug delivery. Finally, the opportunities and challenges of smart nanomaterials based on DNA self-assembly are summarized.
Collapse
Affiliation(s)
- Haofei Ji
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| | - Qubo Zhu
- Xiangya School of Pharmaceutical Sciences in Central South University, Changsha 410013, Hunan, China.
| |
Collapse
|
5
|
Jia X, Chen J, Xu W, Wang Q, Wei X, Ma Y, Chen F, Zhang G. Molecular dynamics study of low molecular weight gel forming salt-triggered dipeptide. Sci Rep 2023; 13:6328. [PMID: 37072489 PMCID: PMC10113269 DOI: 10.1038/s41598-023-33166-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/07/2023] [Indexed: 05/03/2023] Open
Abstract
Molecular dynamics simulation method was used to study the aggregation of Na and Ca salts in different concentrations of Naphthalene-dipeptide (2NapFF) solutions. The results show that high-valence Ca2+ triggers the formation of a gel at a certain dipeptide concentration, and the low-valence Na+ system follows the aggregation law of general surfactants. The results also show that hydrophobic and electrostatic forces are the main driving forces for the formation of dipeptide aggregates, and that hydrogen bonds do not play a major role in the formation of dipeptide solution aggregates. Hydrophobic and electrostatic effects are the main driving forces for the formation of gels in dipeptide solutions triggered by Ca2+. Electrostatic attraction drives Ca2+ to form a weak coordination with four oxygen atoms on two carboxyl groups, which causes the dipeptide molecules to form a gel with a branched network structure.
Collapse
Affiliation(s)
- Xiangfeng Jia
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, Shandong, China.
| | - Jingfei Chen
- Key Laboratory Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Wen Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, Shandong, China
| | - Qi Wang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, Shandong, China
| | - Xiaofeng Wei
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, Shandong, China
| | - Yongshan Ma
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, Shandong, China
| | - Feiyong Chen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, Shandong, China
- Institute of Resources and Environment Innovation, Shandong Jianzhu University, Jinan, 250101, Shandong, China
| | - Guiqin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, Shandong, China.
| |
Collapse
|
6
|
Fabrication of Au-polymer hybrid colloids via a pH-modulated in situ reduction process for improved catalytic activity. SN APPLIED SCIENCES 2023. [DOI: 10.1007/s42452-022-05252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AbstractHere, we reported a novel strategy for the controllable synthesis of Au nanoparticles within functional microgels. By simply mixing Au(Cl)4- ions with a microgel dispersion at room temperature for several hours, Au(III) ions were reduced into Au(0) nanoparticles on the surface of the microgels. Without the use of any additional reductant, the reduction of the Au(III) ions was realized and controlled by tuning the volume of the base solution as a result of the unique reductive 3-carbonyl-N-vinylcaprolactam structure inside the microgels. Moreover, the hybrid microgels showed efficient catalytic activities for the model reduction reaction of 4-nitrophenol (Nip). These results revealed that the synthesis strategy of fabricating Au-polymer hybrids possesses great potential in the field of wastewater treatment.
Collapse
|
7
|
Wang K, Zhang W, Liu N, Hu D, Yu F, He YP. Methionine-Derived Organogels as Lubricant Additives Enhance the Continuity of the Oil Film through Dynamic Self-Healing Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11492-11501. [PMID: 36089744 DOI: 10.1021/acs.langmuir.2c02181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
(S)-2-((1-(Hexadecylamino)-4-(methylthio)-1-oxobutan-2-yl)carbamoyl)benzoic acid (HMTA) was efficiently synthesized and successfully applied as an additive to several types of blank lubricant oils. Initially, HMTA self-assembles to fibrous structures and traps blank lubricant oils to form gel lubricants. The prepared gel lubricants show thermo-reversible properties and enhanced lubricating performance by 3∼5-fold. X-ray photoelectron spectrometry of the metal surface and the quartz crystal microbalance illustrated that there are no obvious interactions between HMTA and the metal surface. The results of Fourier transform infrared spectroscopy and X-ray diffraction further confirm that inter/intro-molecular H-bonding interactions are the main driving force for the self-healing of HMTA. Finally, molecular dynamics (MD) simulations show that the number of noncovalent H-bonding interactions fluctuates with time, and this highly dynamic H-bonding network could regulate the self-assembly process and result in the self-healing property of the HMTA organogel, which is consistent with the results of the step-strain tests. Especially, the Hirshfeld independent gradient model method at the quantum level demonstrated that C8/C9 aromatics of 500SN have strong π-π stacking interactions with the aromatic heads of HMTA and van der Waals interactions with the hydrophobic tails of HMTA, which disrupt the self-assembly behavior of the 500SN model. Therefore, the calculation studies offer a rational explanation for the superior lubricant property of the PAO10 gel as compared to that for 500SN.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| | - Wannian Zhang
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| | - Na Liu
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| | - Dianwen Hu
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
| | - Fang Yu
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| | - Yu-Peng He
- State Key Laboratory Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
- Ningbo Institute of Dalian University of Technology, No. 26 Yucai Road, Ningbo 315016, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Petrochemical University, Dandong Lu West 1, Fushun, 113001, Liaoning China
| |
Collapse
|
8
|
Gold Nanorods for Drug and Gene Delivery: An Overview of Recent Advancements. Pharmaceutics 2022; 14:pharmaceutics14030664. [PMID: 35336038 PMCID: PMC8951391 DOI: 10.3390/pharmaceutics14030664] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Over the past few decades, gold nanomaterials have shown great promise in the field of nanotechnology, especially in medical and biological applications. They have become the most used nanomaterials in those fields due to their several advantageous. However, rod-shaped gold nanoparticles, or gold nanorods (GNRs), have some more unique physical, optical, and chemical properties, making them proper candidates for biomedical applications including drug/gene delivery, photothermal/photodynamic therapy, and theranostics. Most of their therapeutic applications are based on their ability for tunable heat generation upon exposure to near-infrared (NIR) radiation, which is helpful in both NIR-responsive cargo delivery and photothermal/photodynamic therapies. In this review, a comprehensive insight into the properties, synthesis methods and toxicity of gold nanorods are overviewed first. For the main body of the review, the therapeutic applications of GNRs are provided in four main sections: (i) drug delivery, (ii) gene delivery, (iii) photothermal/photodynamic therapy, and (iv) theranostics applications. Finally, the challenges and future perspectives of their therapeutic application are discussed.
Collapse
|
9
|
Sui H, Dong S, Zhang P, Hao J. Effect of environmental factors on the emulsion polymerization of nanogels. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Khafaji M, Bavi O, Zamani M. Gold-based hybrid nanostructures: more than just a pretty face for combinational cancer therapy. Biophys Rev 2022; 14:317-326. [PMID: 35340616 PMCID: PMC8921415 DOI: 10.1007/s12551-021-00926-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 01/31/2023] Open
Abstract
The early diagnosis together with an efficient therapy of cancer is essential to treat cancer patients and to enhance their quality of life. The use of nanostructures, as a newer technology, has demonstrated proven benefits as efficient cancer theranostic agents in numerous recent studies. Having a tunable surface plasmon resonance, gold nanostructures have been the subject of many recent studies as excellent imaging and photothermal therapy agents. However, the potential cytotoxicity and weak stability of gold nanostructures necessitate further modifications using biocompatible materials for biological applications. Based on the composition of the final structure, these gold-based hybrid nanostructures (GHNs) could be divided into five major groups; each of which has specific pros and cons. Understanding the strengths and weaknesses of each group helps scientists to optimize GHN designs with multiple functions by synergizing the benefits of different groups. This review aims to summarize the advancements in GHN design and provide a perspective view of future requirements for successful GHN-based targeted combinational cancer theranostic platforms.
Collapse
Affiliation(s)
- Mona Khafaji
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, 14588-89694 Tehran, Iran
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, 71557-13876 Shiraz, Iran
| | - Masoud Zamani
- Department of Chemical and Biological Engineering, University at Buffalo, State University of New York, Amherst, NY USA
| |
Collapse
|
11
|
Guo Y, Cao X, Zheng X, Abbas SJ, Li J, Tan W. Construction of nanocarriers based on nucleic acids and their application in nanobiology delivery systems. Natl Sci Rev 2022; 9:nwac006. [PMID: 35668748 PMCID: PMC9162387 DOI: 10.1093/nsr/nwac006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/23/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
Abstract
In recent years, nanocarriers based on nucleic acids (NCNAs) have emerged as powerful and novel nanocarriers that are able to meet the demand for cancer cell-specific targeting. Functional dynamics analysis revealed good biocompatibility, low toxicity, and programmable structures, and their advantages include controllable size and modifiability. The development of novel hybrids has focused on the distinct roles of biosensing, drug and gene delivery, vaccine transport, photosensitization, counteracting drug resistance and functioning as carriers and logic gates. This review is divided into three parts: (1) DNA nanocarriers, (2) RNA nanocarriers, and (3) DNA/RNA hybrid nanocarriers and their biological applications. We also provide perspectives on possible future directions for growth in this field.
Collapse
Affiliation(s)
- Yingshu Guo
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiuping Cao
- School of Chemistry and Chemical Engineering, Linyi University, Linyi276005, China
| | - Xiaofei Zheng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi276005, China
| | - Sk Jahir Abbas
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, Shanghai Jiao Tong University School of Medicine, College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai200240, China
| | - Juan Li
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310022, China
| | - Weihong Tan
- Institute of Cancer and Basic Medicine, Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou310022, China
| |
Collapse
|
12
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
13
|
Curreri AM, Mitragotri S, Tanner EEL. Recent Advances in Ionic Liquids in Biomedicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004819. [PMID: 34245140 PMCID: PMC8425867 DOI: 10.1002/advs.202004819] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/04/2021] [Indexed: 05/04/2023]
Abstract
The use of ionic liquids and deep eutectic solvents in biomedical applications has grown dramatically in recent years due to their unique properties and their inherent tunability. This review will introduce ionic liquids and deep eutectics and discuss their biomedical applications, namely solubilization of drugs, creation of active pharmaceutical ingredients, delivery of pharmaceuticals through biological barriers, stabilization of proteins and other nucleic acids, antibacterial agents, and development of new biosensors. Current challenges and future outlooks are discussed, including biocompatibility, the potential impact of the presence of impurities, and the importance of understanding the microscopic interactions in ionic liquids in order to design task-specific solvents.
Collapse
Affiliation(s)
- Alexander M. Curreri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute of Biologically Inspired EngineeringBostonMA02115USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Wyss Institute of Biologically Inspired EngineeringBostonMA02115USA
| | - Eden E. L. Tanner
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
- Present address:
Department of Chemistry and BiochemistryThe University of MississippiUniversityMS38677USA
| |
Collapse
|
14
|
|
15
|
Zhang W, Zhang Z, Zhao S, Hong KH, Zhang MY, Song L, Yu F, Luo G, He YP. Pyromellitic-Based Low Molecular Weight Gelators and Computational Studies of Intermolecular Interactions: A Potential Additive for Lubricant. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:2954-2962. [PMID: 33636083 DOI: 10.1021/acs.langmuir.0c03625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Low molecular weight gelators (LMWG) have been extensively explored in many research fields due to their unique reversible gel-sol transformation. Intermolecular interactions between LMWG are known as the main driving force for self-assembly. During this self-assembly process, individually analyzing the contribution difference between various intermolecular interactions is crucial to understand the gel properties. Herein, we report 2,5-bis(hexadecylcarbamoyl)terephthalic acid (BHTA) as a LMWG, which could efficiently form a stable organogel with n-hexadecane, diesel, liquid paraffin, and base lubricant oil at a relatively low concentration. To investigate the contribution difference of intermolecular interactions, we first finished FT-IR spectroscopy and XRD experiments. On the basis of the d-spacing, a crude simulation model was built and then subjected to molecular dynamics (MD) simulations. Then, we knocked out the energy contribution of the H-bonding interactions and π-π stacking, respectively, to evaluate the intermolecular interactions significantly influencing the stability of the gel system. MD simulations results suggest that the self-assembly of the aggregates was mainly driven by dense H-bonding interactions between carbonyl acid and amide moieties of BHTA, which is consistent with FT-IR data. Moreover, wave function analysis at a quantum level suggested these electrostatic interactions located in the middle of the BHTA molecule were surrounded by strong dispersion attraction originating from a hydrophobic environment. Furthermore, we also confirmed that 2 wt % BHTA was able to form gel lubricant with 150BS. The coefficient of friction (COF) data show that the gel lubricant has a better tribological performance than 150BS base lubricant oil. Finally, XPS was performed and offered valuable information about the lubrication mechanism during the friction.
Collapse
Affiliation(s)
- Wannian Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Lu West 1, Fushun 113001, Liaoning, P. R. China
| | - Zhiqiang Zhang
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
| | - Shanlin Zhao
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Lu West 1, Fushun 113001, Liaoning, P. R. China
| | - Kwon Ho Hong
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Ming-Yuan Zhang
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Lu West 1, Fushun 113001, Liaoning, P. R. China
| | - Lijuan Song
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Lu West 1, Fushun 113001, Liaoning, P. R. China
| | - Fang Yu
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Lu West 1, Fushun 113001, Liaoning, P. R. China
| | - Genxiang Luo
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Lu West 1, Fushun 113001, Liaoning, P. R. China
| | - Yu-Peng He
- Key Laboratory for Functional Material, Educational Department of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, P. R. China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Shihua University, Dandong Lu West 1, Fushun 113001, Liaoning, P. R. China
| |
Collapse
|
16
|
Egorova KS, Posvyatenko AV, Larin SS, Ananikov V. Ionic liquids: prospects for nucleic acid handling and delivery. Nucleic Acids Res 2021; 49:1201-1234. [PMID: 33476366 PMCID: PMC7897475 DOI: 10.1093/nar/gkaa1280] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/13/2022] Open
Abstract
Operations with nucleic acids are among the main means of studying the mechanisms of gene function and developing novel methods of molecular medicine and gene therapy. These endeavours usually imply the necessity of nucleic acid storage and delivery into eukaryotic cells. In spite of diversity of the existing dedicated techniques, all of them have their limitations. Thus, a recent notion of using ionic liquids in manipulations of nucleic acids has been attracting significant attention lately. Due to their unique physicochemical properties, in particular, their micro-structuring impact and tunability, ionic liquids are currently applied as solvents and stabilizing media in chemical synthesis, electrochemistry, biotechnology, and other areas. Here, we review the current knowledge on interactions between nucleic acids and ionic liquids and discuss potential advantages of applying the latter in delivery of the former into eukaryotic cells.
Collapse
Affiliation(s)
- Ksenia S Egorova
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| | - Alexandra V Posvyatenko
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
- Molecular Immunology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela St 1, Moscow 117997, Russia
| | - Sergey S Larin
- Molecular Immunology Laboratory, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela St 1, Moscow 117997, Russia
| | - Valentine P Ananikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia
| |
Collapse
|
17
|
Sung B, Kim M, Abelmann L. Magnetic microgels and nanogels: Physical mechanisms and biomedical applications. Bioeng Transl Med 2021; 6:e10190. [PMID: 33532590 PMCID: PMC7823133 DOI: 10.1002/btm2.10190] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Soft micro- and nanostructures have been extensively developed for biomedical applications. The main focus has been on multifunctional composite materials that combine the advantages of hydrogels and colloidal particles. Magnetic microgels and nanogels can be realized by hybridizing stimuli-sensitive gels and magnetic nanoparticles. They are of particular interest since they can be controlled in a wide range of biological environments by using magnetic fields. In this review, we elucidate physical principles underlying the design of magnetic microgels and nanogels for biomedical applications. Particularly, this article provides a comprehensive and conceptual overview on the correlative structural design and physical functionality of the magnetic gel systems under the concept of colloidal biodevices. To this end, we begin with an overview of physicochemical mechanisms related to stimuli-responsive hydrogels and transport phenomena and summarize the magnetic properties of inorganic nanoparticles. On the basis of the engineering principles, we categorize and summarize recent advances in magnetic hybrid microgels and nanogels, with emphasis on the biomedical applications of these materials. Potential applications of these hybrid microgels and nanogels in anticancer treatment, protein therapeutics, gene therapy, bioseparation, biocatalysis, and regenerative medicine are highlighted. Finally, current challenges and future opportunities in the design of smart colloidal biodevices are discussed.
Collapse
Affiliation(s)
- Baeckkyoung Sung
- KIST Europe Forschungsgesellschaft mbHSaarbrückenGermany
- Department of Biological SciencesKent State UniversityKentOhioUSA
- Division of Energy and Environment TechnologyUniversity of Science and TechnologyDaejeonRepublic of Korea
| | - Min‐Ho Kim
- Department of Biological SciencesKent State UniversityKentOhioUSA
| | - Leon Abelmann
- KIST Europe Forschungsgesellschaft mbHSaarbrückenGermany
- MESA+ Institute for Nanotechnology, University of TwenteEnschedeThe Netherlands
| |
Collapse
|
18
|
Jiao PC, Zhang Y, Yuan WL, Tao GH, Cai HQ. Synthesis, structure and properties of water-free pentanitratoyttrate(III) ionic liquids. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Watanabe T, Nishizawa Y, Minato H, Song C, Murata K, Suzuki D. Hydrophobic Monomers Recognize Microenvironments in Hydrogel Microspheres during Free-Radical-Seeded Emulsion Polymerization. Angew Chem Int Ed Engl 2020; 59:8849-8853. [PMID: 32232936 DOI: 10.1002/anie.202003493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/25/2020] [Indexed: 11/10/2022]
Abstract
The three-dimensional structure of nanocomposite microgels was precisely determined by cryo-electron micrography. Several nanocomposite microgels that differ with respect to their nanocomposite structure, which were obtained from seeded emulsion polymerization in the presence of microgels, were used as model nanocomposite materials for cryo-electron micrography. The obtained three-dimensional segmentation images of these nanocomposite microgels provide important insights into the interactions between the hydrophobic monomers and the microgels, that is, hydrophobic styrene monomers recognize molecular-scale differences in polarity within the microgels during the emulsion polymerization. This result led to the formation of unprecedented multi-layered nanocomposite microgels, which promise substantial potential in colloidal applications.
Collapse
Affiliation(s)
- Takumi Watanabe
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida Ueda, Nagano, 386-8567, Japan
| | - Yuichiro Nishizawa
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida Ueda, Nagano, 386-8567, Japan
| | - Haruka Minato
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida Ueda, Nagano, 386-8567, Japan
| | - Chihong Song
- Department National Institute for Physiological Sciences, 38 Nishigonaka, Okazaki, Aichi, 444-8585, Japan
| | - Kazuyoshi Murata
- Department National Institute for Physiological Sciences, 38 Nishigonaka, Okazaki, Aichi, 444-8585, Japan
| | - Daisuke Suzuki
- Graduate School of Textile Science & Technology, Shinshu University, 3-15-1 Tokida Ueda, Nagano, 386-8567, Japan.,Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, 3-15-1 Tokida Ueda, Nagano, 386-8567, Japan
| |
Collapse
|
20
|
Watanabe T, Nishizawa Y, Minato H, Song C, Murata K, Suzuki D. Hydrophobic Monomers Recognize Microenvironments in Hydrogel Microspheres during Free‐Radical‐Seeded Emulsion Polymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Takumi Watanabe
- Graduate School of Textile Science & Technology Shinshu University 3-15-1 Tokida Ueda Nagano 386-8567 Japan
| | - Yuichiro Nishizawa
- Graduate School of Textile Science & Technology Shinshu University 3-15-1 Tokida Ueda Nagano 386-8567 Japan
| | - Haruka Minato
- Graduate School of Textile Science & Technology Shinshu University 3-15-1 Tokida Ueda Nagano 386-8567 Japan
| | - Chihong Song
- Department National Institute for Physiological Sciences 38 Nishigonaka Okazaki Aichi 444-8585 Japan
| | - Kazuyoshi Murata
- Department National Institute for Physiological Sciences 38 Nishigonaka Okazaki Aichi 444-8585 Japan
| | - Daisuke Suzuki
- Graduate School of Textile Science & Technology Shinshu University 3-15-1 Tokida Ueda Nagano 386-8567 Japan
- Research Initiative for Supra-Materials Interdisciplinary Cluster for Cutting Edge Research Shinshu University 3-15-1 Tokida Ueda Nagano 386-8567 Japan
| |
Collapse
|
21
|
Fukagawa T, Tanaka H, Morikawa K, Tanaka S, Hatakeyama Y, Hino K. Spatial Ordering of the Structure of Polymer-Capped Gold Nanorods under an External DC Electric Field. J Phys Chem Lett 2020; 11:2086-2091. [PMID: 32101434 DOI: 10.1021/acs.jpclett.0c00566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We studied the alignment changes of polymer-capped gold nanorods (GNRs@PS) under an applied electric field by visible-near-infrared absorption and small-angle X-ray scattering (SAXS) measurements. Monodispersed GNRs with an aspect ratio of 4.0 were produced by the seed-mediated growth method using cetyltrimethylammonium bromide and sodium oleate binary surfactants. We investigated the phase transition between the ordered structure of GNRs@PS induced by the external electric field. At appropriate field strengths (>3 V/μm), the SAXS profiles of GNRs@PS showed a smectic ordered structure. Increasing the electric field strength densified the ordered structure and greatly increased the Raman signals (the 298 and 445 cm-1 bands) of the carbon tetrachloride (solvent) between the GNRs@PS. The insights gained are potentially applicable to catalysts, future displays, optical filters, and data storage devices.
Collapse
Affiliation(s)
- Toshiaki Fukagawa
- Department of Chemistry, Faculty of Education, Aichi University of Education, 1 Hirosawa, Igaya, Kariya, Aichi 448-8542, Japan
| | - Hiroaki Tanaka
- Department of Chemistry, Faculty of Education, Aichi University of Education, 1 Hirosawa, Igaya, Kariya, Aichi 448-8542, Japan
| | - Kouki Morikawa
- Department of Chemistry, Faculty of Education, Aichi University of Education, 1 Hirosawa, Igaya, Kariya, Aichi 448-8542, Japan
| | - Shunsuke Tanaka
- Department of Chemistry, Faculty of Education, Aichi University of Education, 1 Hirosawa, Igaya, Kariya, Aichi 448-8542, Japan
| | - Yoshikiyo Hatakeyama
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Kazuyuki Hino
- Department of Chemistry, Faculty of Education, Aichi University of Education, 1 Hirosawa, Igaya, Kariya, Aichi 448-8542, Japan
| |
Collapse
|
22
|
Tian J, Xiao C, Huang B, Wang C, Zhang W. Janus macromolecular brushes for synergistic cascade-amplified photodynamic therapy and enhanced chemotherapy. Acta Biomater 2020; 101:495-506. [PMID: 31726248 DOI: 10.1016/j.actbio.2019.11.018] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/17/2019] [Accepted: 11/08/2019] [Indexed: 12/15/2022]
Abstract
The aggregation-caused quenching (ACQ) effect of photosensitizers and multidrug resistance are the major obstacles in photodynamic therapy (PDT) and chemotherapy, respectively. Synergistic photo-chemotherapy is a promising cancer treatment to overcome the short boards of each single therapy. However, the fabrication of nanocarriers acting as both photosensitizers in PDT and the vehicle of drug release is a key challenge. Herein, we constructed a well-defined porphyrin-containing Janus macromolecular brush and used it as both a photosensitizer and a pH-responsive vehicle for DOX release. The Janus macromolecular brush with pH-responsive side chains and porphyrin units linked covalently in each repeat unit was synthesized by the combination of reversible addition-fragmentation chain transfer (RAFT) polymerization and click chemistry. The high grafting content of porphyrin units in the macromolecular brush improved the DOX loading capability by π-π stacking and therefore reduced the total treatment dose of DOX-loaded macromolecular brush nanoparticles (NPs). The pH-responsive side chains played triple roles in synergistic cascade-amplified PDT and enhanced chemotherapy including an executor of controlled drug release, a ligand with a mitochondria-targeting feature, and a barrier to reduce the ACQ effect of porphyrin units. In vitro and in vivo studies confirmed that the DOX-loaded macromolecular brush NPs exhibited high phototoxicity and significant tumor inhibition efficacy. STATEMENT OF SIGNIFICANCE: Synergistic photodynamic therapy (PDT) and chemotherapy has emerged as a promising cancer treatment to overcome the challenges of a single modality. Herein, we constructed new pH-responsive vesicles using porphyrin-containing Janus macromolecular brushes as theranostic nanocarriers to encapsulate high-loading doxorubicin (DOX) for synergistic cascade-amplified PDT and enhanced chemotherapy. The high grafting content of porphyrin units in Janus macromolecular brushes improved DOX loading capability by π-π stacking for enhanced chemotherapy. Moreover, pH-responsive side chains subsequently enhanced the suppression of the aggregation-caused quenching (ACQ) effect of porphyrins for cascade-amplified PDT. In vitro and in vivo studies confirmed that DOX-loaded macromolecular brush nanoparticles exhibited high phototoxicity and significant tumor inhibition efficacy.
Collapse
|
23
|
Wang S, Liu K, Wang F, Peng F, Tu Y. The Application of Micro‐ and Nanomotors in Classified Drug Delivery. Chem Asian J 2019; 14:2336-2347. [DOI: 10.1002/asia.201900274] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 04/04/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Shuanghu Wang
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| | - Kun Liu
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| | - Fei Wang
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| | - Fei Peng
- School of Materials Science and EngineeringSun Yat-sen University Guangzhou 510275 China
| | - Yingfeng Tu
- School of Pharmaceutical ScienceGuangdong Provincial Key Laboratory of New Drug ScreeningSouthern Medical University Guangzhou 510515 China
| |
Collapse
|
24
|
Wang Y, Wang L, Yan M, Feng L, Dong S, Hao J. Drug Implants of Hydrogels via Collective Behavior of Microgel Colloids for On-Demand Cancer Therapy. ACS APPLIED BIO MATERIALS 2019; 2:1531-1541. [DOI: 10.1021/acsabm.8b00823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| | - Ling Wang
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| | - Miaomiao Yan
- Department of Pharmacy, Binzhou Medical College, Yantai 264003, P. R. China
| | - Lei Feng
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, P. R. China
| |
Collapse
|
25
|
Wang Y, Guo L, Dong S, Cui J, Hao J. Microgels in biomaterials and nanomedicines. Adv Colloid Interface Sci 2019; 266:1-20. [PMID: 30776711 DOI: 10.1016/j.cis.2019.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 11/28/2022]
Abstract
Microgels are colloidal particles with crosslinked polymer networks and dimensions ranging from tens of nanometers to micrometers. Specifically, smart microgels are fascinating capable of responding to biological signals in vivo or remote triggers and making the possible for applications in biomaterials and biomedicines. Therefore, how to fundamentally design microgels is an urgent problem to be solved. In this review, we put forward our important fundamental opinions on how to devise the intelligent microgels for cancer therapy, biosensing and biological lubrication. We focus on the design ideas instead of specific implementation process by employing reverse synthesis analysis to programme the microgels at the original stage. Moreover, special insights will be, for the first time, as far as we know, dedicated to the particles completely composed of DNA or proteins into microgel systems. These are discussed in detail in this review. We expect to give readers a broad overview of the design criteria and practical methodologies of microgels according to the application fields, as well as to propel the further developments of highly interesting concepts and materials.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Luxuan Guo
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| |
Collapse
|
26
|
Sufi SA, Pajaniradje S, Mukherjee V, Rajagopalan R. Redox Nano-Architectures: Perspectives and Implications in Diagnosis and Treatment of Human Diseases. Antioxid Redox Signal 2019; 30:762-785. [PMID: 29334759 DOI: 10.1089/ars.2017.7412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
SIGNIFICANCE Efficient targeted therapy with minimal side-effects is the need of the hour. Locally altered redox state is observed in several human ailments, such as inflammation, sepsis, and cancer. This has been taken advantage of in designing redox-responsive nanodrug carriers. Redox-responsive nanosystems open a door to a multitude of possibilities for the control of diseases over other drug delivery systems. Recent Advances: The first-generation nanotherapy relies on novel properties of nanomaterials to shield the drug and deliver it to the diseased tissue or organ. The second generation is based on targeting the drug or diagnostic material to the diseased cell-specific receptors, or to a particular organ to improve the efficacy of the drug. The third and the latest generation of nanocarriers, the stimuli-responsive nanocarriers exploit the disease condition or environment to specifically deliver the drug or diagnostic probe for the best diagnosis and treatment. Several different kinds of stimuli such as temperature, magnetic field, pH, and altered redox state-responsive nanosystems have educed immense promise in the field of nanomedicine and therapy. CRITICAL ISSUES We describe the evolution of nanomaterial since its inception with an emphasis on stimuli-responsive nanocarriers, especially redox-sensitive nanocarriers. Importantly, we discuss the future perspectives of redox-responsive nanocarriers and their implications. FUTURE DIRECTIONS Redox-responsive nanocarriers achieve a near-to-zero premature release of the drug, thus avoiding off-site toxicity associated with the free drug. This bears great potential for the development of more effective drug delivery with better pharmacokinetics and pharmacodynamics.
Collapse
Affiliation(s)
- Shamim Akhtar Sufi
- 1 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India.,2 DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sankar Pajaniradje
- 1 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Victor Mukherjee
- 1 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India.,2 DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rukkumani Rajagopalan
- 1 Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India.,2 DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
27
|
Wang Y, Wang L, Guo L, Yan M, Feng L, Dong S, Hao J. Photo-responsive magnetic mesoporous silica nanocomposites for magnetic targeted cancer therapy. NEW J CHEM 2019. [DOI: 10.1039/c8nj06105j] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A drug delivery platform for enhancing lung cancer treatment with controlled drug release, magnetic targeting and specific cancer cells targeting.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education
- Jinan 250100
- P. R. China
| | - Ling Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education
- Jinan 250100
- P. R. China
| | - Luxuan Guo
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education
- Jinan 250100
- P. R. China
| | - Maiomiao Yan
- Department of Pharmacy, Binzhou Medical College
- Yantai 264003
- P. R. China
| | - Lei Feng
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education
- Jinan 250100
- P. R. China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education
- Jinan 250100
- P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education
- Jinan 250100
- P. R. China
| |
Collapse
|
28
|
Egorova KS, Ananikov VP. Fundamental importance of ionic interactions in the liquid phase: A review of recent studies of ionic liquids in biomedical and pharmaceutical applications. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.09.025] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Wang Y, Wang L, Yan M, Cai A, Dong S, Hao J. Plasmonic microgels of Au nanorods: Self-assembly and applications in chemophotothermo-synergistic cancer therapy. J Colloid Interface Sci 2018; 536:728-736. [PMID: 30414559 DOI: 10.1016/j.jcis.2018.10.107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 10/27/2022]
Abstract
Plasmonic microgels (PMgels) of the self-assembled gold nanorods (Au NRs) with side-by-side piles in ionic liquid microgels were prepared. Transmission electron microscopy (TEM) images revealed unique self-growth and self-arrangement of Au NRs in the microgel systems. The fabrication of PMgels occurs through co-assembling Au NRs and an ionic liquid microgel system, therefore differs from the fabrication of conventional plasmonic hybrid nanocomposites. These PMgels showed strong absorption in the near-infrared window and enhanced photothermal conversion efficiency, up to 52.8%, compared to the Au NRs (22%) as a result of the ordering and dense packing of Au NRs in the microgels. When the PMgels were exposed to a near-IR laser, the doxorubicin hydrochloride (Dox) released from PMgels and the resulting thermal effect can immensely inhibit tumor growth both in vitro and in vivo. The tests demonstrated that no tumor metastasis occurred. This platform of the PMgels with the laser-controlled delivery system could provide chemo-photothermal synergistic therapy for a wide spectrum of diseases.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Ling Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Maiomiao Yan
- Department of Pharmacy, Binzhou Medical College, Yantai 264003, PR China
| | - Anran Cai
- Department of Pharmacy, Binzhou Medical College, Yantai 264003, PR China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials (Shandong University), Ministry of Education, Jinan 250100, PR China.
| |
Collapse
|
30
|
Agrawal G, Agrawal R. Functional Microgels: Recent Advances in Their Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801724. [PMID: 30035853 DOI: 10.1002/smll.201801724] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Here, a spotlight is shown on aqueous microgel particles which exhibit a great potential for various biomedical applications such as drug delivery, cell imaging, and tissue engineering. Herein, different synthetic methods to develop microgels with desirable functionality and properties along with degradable strategies to ensure their renal clearance are briefly presented. A special focus is given on the ability of microgels to respond to various stimuli such as temperature, pH, redox potential, magnetic field, light, etc., which helps not only to adjust their physical and chemical properties, and degradability on demand, but also the release of encapsulated bioactive molecules and thus making them suitable for drug delivery. Furthermore, recent developments in using the functional microgels for cell imaging and tissue regeneration are reviewed. The results reviewed here encourage the development of a new class of microgels which are able to intelligently perform in a complex biological environment. Finally, various challenges and possibilities are discussed in order to achieve their successful clinical use in future.
Collapse
Affiliation(s)
- Garima Agrawal
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Paper Mill Road, Saharanpur, 247001, Uttar Pradesh, India
| | - Rahul Agrawal
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1500, USA
| |
Collapse
|
31
|
Gu S, Yang L, Li S, Yang J, Zhang B, Yang J. Thermo- and glucose-sensitive microgels with improved salt tolerance for controlled insulin release in a physiological environment. POLYM INT 2018. [DOI: 10.1002/pi.5634] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shiling Gu
- State Key Laboratory of Chemical Resource, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology; Beijing University of Chemical Technology; Beijing China
| | - Liu Yang
- State Key Laboratory of Chemical Resource, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology; Beijing University of Chemical Technology; Beijing China
| | - Shirui Li
- Department of Endocrinology; China-Japan Friendship Hospital; Beijing China
| | - Junjiao Yang
- College of Science; Beijing University of Chemical Technology; Beijing China
| | - Bo Zhang
- Department of Endocrinology; China-Japan Friendship Hospital; Beijing China
| | - Jing Yang
- State Key Laboratory of Chemical Resource, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology; Beijing University of Chemical Technology; Beijing China
| |
Collapse
|
32
|
Abstract
Light as an external stimulus can be precisely manipulated in terms of irradiation time, site, wavelength, and density. As such, photoresponsive drug/gene delivery systems have been increasingly pursued and utilized for the spatiotemporal control of drug/gene delivery to enhance their therapeutic efficacy and safety. In this review, we summarized the recent research progress on photoresponsive drug/gene delivery, and two major categories of delivery systems were discussed. The first category is the direct responsive systems that experience photoreactions on the vehicle or drug themselves, and different materials as well as chemical structures responsive to UV, visible, and NIR light are summarized. The second category is the indirect responsive systems that require a light-generated mediator signal, such as heat, ROS, hypoxia, and gas molecules, to cascadingly trigger the structural transformation. The future outlook and challenges are also discussed at the end.
Collapse
Affiliation(s)
- Yang Zhou
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Huan Ye
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| | - Yongbing Chen
- Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Rongying Zhu
- Department of Cardiothoracic Surgery , The Second Affiliated Hospital of Soochow University , Suzhou 215004 , China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology , Soochow University , Suzhou 215123 , China
| |
Collapse
|
33
|
Macchione MA, Biglione C, Strumia M. Design, Synthesis and Architectures of Hybrid Nanomaterials for Therapy and Diagnosis Applications. Polymers (Basel) 2018; 10:E527. [PMID: 30966561 PMCID: PMC6415435 DOI: 10.3390/polym10050527] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 12/25/2022] Open
Abstract
Hybrid nanomaterials based on inorganic nanoparticles and polymers are highly interesting structures since they combine synergistically the advantageous physical-chemical properties of both inorganic and polymeric components, providing superior functionality to the final material. These unique properties motivate the intensive study of these materials from a multidisciplinary view with the aim of finding novel applications in technological and biomedical fields. Choosing a specific synthetic methodology that allows for control over the surface composition and its architecture, enables not only the examination of the structure/property relationships, but, more importantly, the design of more efficient nanodevices for therapy and diagnosis in nanomedicine. The current review categorizes hybrid nanomaterials into three types of architectures: core-brush, hybrid nanogels, and core-shell. We focus on the analysis of the synthetic approaches that lead to the formation of each type of architecture. Furthermore, most recent advances in therapy and diagnosis applications and some inherent challenges of these materials are herein reviewed.
Collapse
Affiliation(s)
- Micaela A Macchione
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Av. Medina Allende, Córdoba X5000HUA, Argentina.
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET. Av. Velez Sárfield 1611, Córdoba X5000HUA, Argentina.
| | - Catalina Biglione
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | - Miriam Strumia
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Av. Haya de la Torre esq. Av. Medina Allende, Córdoba X5000HUA, Argentina.
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), CONICET. Av. Velez Sárfield 1611, Córdoba X5000HUA, Argentina.
| |
Collapse
|
34
|
Wang L, Dong S, Hao J. Recent progress of magnetic surfactants: Self-assembly, properties and functions. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
35
|
Wang Y, Wang L, Hao J, Dong S. Plasmonic core–shell ionic microgels for photo-tuning catalytic applications. NEW J CHEM 2018. [DOI: 10.1039/c7nj03661b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
NIR laser acts as a motor to drive and control Au-based catalysts which exhibit highly catalytic activity.
Collapse
Affiliation(s)
- Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials
- Shandong University
- Ministry of Education
- Jinan 250100
- P. R. China
| | - Ling Wang
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials
- Shandong University
- Ministry of Education
- Jinan 250100
- P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials
- Shandong University
- Ministry of Education
- Jinan 250100
- P. R. China
| | - Shuli Dong
- Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials
- Shandong University
- Ministry of Education
- Jinan 250100
- P. R. China
| |
Collapse
|