1
|
Tiwari N, Tiwari AK. Confinement Effects of Two-Dimensional Surfaces on Water Adsorption and Dissociation over Pt(111). Chemphyschem 2024; 25:e202400586. [PMID: 39221988 DOI: 10.1002/cphc.202400586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Accepted: 09/02/2024] [Indexed: 09/04/2024]
Abstract
It has been established that the confined space created by stacking a two dimensional (2D) surface atop a metal catalyst serves as a nano-reactor. According to recent research, when a graphene (Gr) overlayer encloses a catalyst from above, the activation barrier for the water dissociation reaction, a process with major industrial significance, decreases. In order to investigate how the effect of confinement varies among different two-dimensional (2D) materials, we study the adsorption and dissociation barriers of water molecule on (111) under graphene, hexagonal boron nitride (h-BN), and heptazine-based graphitic carbon nitride (g-C3N4) layers using density functional theory calculations. Our findings reveal that the strength of adsorption does not decrease consistently with a reduction in the height of the 2D overlayer. Furthermore, a smaller barrier is not always the consequence of poorer adsorption of the reactant. We also examine the effect of confinement on the shape of the reaction path, on the frequencies of vibrational modes, and on the rate constants derived using the harmonic transition state theory. Overall, all three 2D surfaces cause a decrease in barrier height and a weakening of adsorption, though to differing degrees due to a mix of mechanical, geometric and electronic variables.
Collapse
Affiliation(s)
- Nidhi Tiwari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Ashwani K Tiwari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
2
|
Xie G, Liu X, Guo B, Tan T, Gong JR. Porous 2D Catalyst Covers Improve Photoelectrochemical Water-Oxidation Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211008. [PMID: 37120723 DOI: 10.1002/adma.202211008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/26/2023] [Indexed: 06/19/2023]
Abstract
Confined catalysis under the cover of 2D materials has emerged as a promising approach for achieving highly effective catalysts in various essential reactions. In this work, a porous cover structure is designed to boost the interfacial charge and mass transfer kinetics of 2D-covered catalysts. The improvement in catalytic performance is confirmed by the photoelectrochemical oxidation evolution reaction (OER) on a photoanode based on an n-Si substrate modified with a NiOx thin-film model electrocatalyst covered with a porous graphene (pGr) monolayer. Experimental results demonstrate that the pGr cover enhances the OER kinetics by balancing the charge and mass transfer at the photoanode and electrolyte interface compared to the intrinsic graphene cover and cover-free control samples. Theoretical investigations further corroborate that the pore edges of the pGr cover boost the intrinsic catalytic activity of active sites on NiOx by reducing the reaction overpotential. Furthermore, the optimized pores, which can be easily controlled by plasma bombardment, allow oxygen molecules produced in the OER to pass through without peeling off the pGr cover, thus ensuring the structural stability of the catalyst. This study highlights the significant role of the porous cover structure in 2D-covered catalysts and provides new insight into the design of high-performance catalysts.
Collapse
Affiliation(s)
- Guancai Xie
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Xiaolong Liu
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Beidou Guo
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Ting Tan
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory of Nanophotonic Materials and Devices, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of CAS, Beijing, 100049, China
| | - Jian Ru Gong
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of CAS, Beijing, 100049, China
| |
Collapse
|
3
|
Guo Y, Chen Y, Duan X. The confined surface C 2N/Pt(111) as a highly efficient catalyst for CO oxidation. Phys Chem Chem Phys 2024; 26:8177-8182. [PMID: 38380533 DOI: 10.1039/d3cp06296a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The problem of poisoning on the surface of catalysts used in CO oxidation reactions, such as Pt, needs to be solved. In this work, we constructed lattice-matched C2N/Pt(111) catalysts with different configurations (top/fcc/hcp) and found that, within the confined space between the cover and the substrate, the adsorption energy of CO is reduced by 0.35 eV to 0.43 eV, while the adsorption of other reactants O/O2 is strengthened and the adsorption energy of the product CO2 is positive, indicating that the constraint effect produced by C2N and Pt(111) is beneficial to CO oxidation, when compared to the pure Pt(111). Our work suggests that the C2N cover not only protects the Pt surface under harsh conditions but also allows gaseous molecules CO and O2 to approach the Pt surface through a facile intercalation process, with enhanced surface reactivity for CO oxidation and reduced catalyst poisoning.
Collapse
Affiliation(s)
- Yiqun Guo
- School of Physical Science and Technology, Ningbo University, Ningbo-315211, P. R. China.
| | - Yongdao Chen
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiangmei Duan
- School of Physical Science and Technology, Ningbo University, Ningbo-315211, P. R. China.
| |
Collapse
|
4
|
Chen R, Wang Z, Chen S, Wang L, Wu W, Zhu Y, Cheng N. Optimizing Intermediate Adsorption on Pt Sites via Triple-Phase Interface Electronic Exchange for Methanol Oxidation. Inorg Chem 2024; 63:4364-4372. [PMID: 38373009 DOI: 10.1021/acs.inorgchem.3c04634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
For the most commonly applied platinum-based catalysts of direct methanol fuel cells, the adsorption ability toward reaction intermediates, including CO and OH, plays a vital role in their catalytic activity and antipoisoning in anodic methanol oxidation reaction (MOR). Herein, guided by a theoretical mechanism study, a favorable modulation of the electronic structure and intermediate adsorption energetics for Pt active sites is achieved by constructing the triple-phase interfacial structure between tin oxide (SnO2), platinum (Pt), and nitrogen-doped graphene (NG). From the strong electronic exchange at the triple-phase interface, the adsorption ability toward MOR reaction intermediates on Pt sites could be efficiently optimized, which not only inhibits the adsorption of CO* on active sites but also facilitates the adsorption of OH* to strip the poisoning species from the catalyst surface. Accordingly, the resulting catalyst delivers excellent catalytic activity and antipoisoning ability for MOR catalysis. The mass activity reaches 1098 mA mg-1Pt, 3.23 times of commercial Pt/C. Meanwhile, the initial potentials and main peak for CO oxidation are also located at a much lower potential (0.51 and 0.74 V) against commercial Pt/C (0.83 and 0.89 V).
Collapse
Affiliation(s)
- Runzhe Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou ,Fujian 350108, China
| | - Zichen Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
| | - Suhao Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
| | - Liang Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
| | - Wei Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
| | - Yu Zhu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou ,Fujian 350108, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Sugak N, Pham H, Datye A, Mukhopadhyay S, Tan H, Li M, Pfefferle LD. Controlling the spacing of the linked graphene oxide system with dithiol linkers under confinement. NANOSCALE ADVANCES 2023; 5:4553-4562. [PMID: 37638151 PMCID: PMC10448350 DOI: 10.1039/d3na00324h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023]
Abstract
2D nanoscale confined systems exhibit behavior that is markedly different from that observed at the macroscale. Confinement can be tuned by controlling the interlayer spacing between confining layers using organic dithiol linkers. Adjusting spacing and selective intercalation have important impacts for catalysis, superconductivity, spin engineering, sodium ion batteries, 2D magnets, optoelectronics, and many other applications. In this study, we report how reaction conditions and organic linkers can be used to create variable, reproducible spacings between graphene oxide to provide confinement systems. We determined the conditions under which the spacing can be variably adjusted by the type of linker used, the concentration of the linker, and the reaction conditions. Employing dithiol linkers of different lengths, such as three (TPDT) and four (QPDT) aromatic rings, we can adjust the spacing between graphene oxide layers under varied reaction conditions. Here, we show that by varying dithiol linker length and using different reaction conditions, we can reproducibly control the spacing between graphene oxide layers from 0.37 nm to over 0.50 nm.
Collapse
Affiliation(s)
- Nikita Sugak
- Department of Chemical and Environmental Engineering, Yale University PO Box 208286 New Haven CT 06510-8286 USA
| | - Hien Pham
- Department of Chemical & Biological Engineering, University of New Mexico Albuquerque NM 87131 USA
| | - Abhaya Datye
- Department of Chemical & Biological Engineering, University of New Mexico Albuquerque NM 87131 USA
| | - Shomeek Mukhopadhyay
- Department of Chemical and Environmental Engineering, Yale University PO Box 208286 New Haven CT 06510-8286 USA
| | - Haiyan Tan
- CAMMA Laboratory, Institute of Materials Science, University of Connecticut PO Box 06269 Storrs CT USA
| | - Min Li
- Materials Characterization Core Yale West Campus West Haven CT 06516 USA
| | - Lisa D Pfefferle
- Department of Chemical and Environmental Engineering, Yale University PO Box 208286 New Haven CT 06510-8286 USA
| |
Collapse
|
6
|
Sanad MMS, Taha TA, Helal A, Mahmoud MH. Rational optimization of g-C 3N 4/Co 3O 4 nanocomposite for enhanced photodegradation of Rhodamine B dye under visible light. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60225-60239. [PMID: 37017836 DOI: 10.1007/s11356-023-26767-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/28/2023] [Indexed: 05/10/2023]
Abstract
Heterogeneous catalysis is widely known as an efficient, clean, and low-cost technology to mitigate the environmental pollution of industrial effluents. This research aimed at optimizing the preparation and characterization of efficient g-C3N4/Co3O4 nanocomposite for catalytic removal of Rhodamine B (Rh B) dye. The detected XRD peaks for the prepared nano-Co3O4 are matched with the cubic crystal structure. In contrast, the broad peak at 27.3° corresponding to the graphite reflection of hkl (002) was noticeably weakened in the XRD pattern of the g-C3N4/Co3O4 composite. FTIR spectra of g-C3N4/Co3O4 nanocomposites revealed the active vibrational modes of each Co3O4 and g-C3N4 component. The microstructure study of g-C3N4 showed the strong interlayer stacking of carbon nitride nanosheets, while the surface morphology of g-C3N4/Co3O4 nanocomposite revealed a hybrid particulate system. EDS analysis indicated that the spot area of g-C3N4/Co3O4 confirmed the chemical ratios of carbon, nitrogen, cobalt, and oxygen. BET measurements of g-C3N4/Co3O4 showed a significant increase in the surface area and pore volume of single components due to the lamination of stacked g-C3N4 nanosheets by the intercalated Co3O4 nanoparticles. The prepared 30% g-C3N4/Co3O4 revealed the lowest value of Eg ~1.2 eV and the highest light absorptivity suggesting strong promotion for the photocatalytic performance under visible light. The maximum photocatalytic activity of about 87% was achieved by 30% g-C3N4/Co3O4 due to the photonic enhancement, which reduces the recombination of excited electrons. The developed nanocomposite with a g-C3N4/Co3O4 ratio of 0.3 exhibited high stability in its photocatalytic performance after four recycling times, and a slight decrease of about 7% was estimated after the 5th reuse test.
Collapse
Affiliation(s)
- Moustafa M S Sanad
- Central Metallurgical Research and Development Institute, (CMRDI), P.O. Box 87 Helwan, Cairo, 11421, Egypt.
| | - Taha A Taha
- Physics Department, College of Science, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
- Physics and Engineering Mathematics Department, Faculty of Electronic Engineering, Menoufia University, Menouf, 32952, Egypt
| | - Ahmed Helal
- Central Metallurgical Research and Development Institute, (CMRDI), P.O. Box 87 Helwan, Cairo, 11421, Egypt
| | - Mohamed H Mahmoud
- Physics Department, College of Science and Arts, Jouf University, P.O. Box 756, Al-Gurayyat, Saudi Arabia
| |
Collapse
|
7
|
Wang Y, Fu Q, Shen X. Promotion Effect of Well-Defined Deposited Water Layer on Carbon Monoxide Oxidation Catalyzed by Single-Atom Alloys. J Phys Chem Lett 2023; 14:3498-3505. [PMID: 37014142 DOI: 10.1021/acs.jpclett.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Single-atom alloys (SAAs) exhibit excellent catalytic performance and unique electronic structures, emerging as promising catalysts for potential industrial reactions. While most of them have been widely employed under reducing conditions, few are applied in oxidation reactions. Herein, using density functional theory calculations and microkinetic simulations, we demonstrate that a well-defined one water layer can improve CO oxidation on model SAAs, with reaction rates increased by orders of magnitude. It is found that the formation of hydrogen bonds and the transfer of charges effectively enhance the adsorption and activation of oxygen molecules at the H2O/SAA interfaces, which not only increases the surface coverage of O2 species but also reduces the energy barrier of CO oxidation. The proposed strategy in this work would extend the application range of SAA catalysts to oxidation reactions.
Collapse
Affiliation(s)
- Yan Wang
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Future Technology, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Fu
- School of Future Technology, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Xiangjian Shen
- Engineering Research Center of Advanced Functional Material Manufacturing of Ministry of Education, School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Two-dimensional g-C3N4 nanosheets-based photo-catalysts for typical sustainable processes. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
9
|
Fu Q. Dynamic Construction and Maintenance of Confined Nanoregions via Hydrogen-Bond Networks between Acetylene Reactants and a Polyoxometalate-Based Metal-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8275-8285. [PMID: 36745005 DOI: 10.1021/acsami.2c23072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The nanoconfinement effect in catalysis has attracted much attention because it provides a novel means of regulating the molecular properties and related reactions. Confined nanoregions composed of both reactants and catalysts through weak interactions are expected to improve the catalytic performance and promote the mass transport of relevant molecules simultaneously. However, at reaction temperatures, the structural variation of such confined spaces constructed via weak interactions remains unclear. Herein, through density functional theory calculations combined with ab initio molecular dynamics simulations, we have systematically investigated the dynamic structural evolution of the confined space constructed by acetylene reactants and a polyoxometalate-based metal-organic framework (POMOF) via hydrogen-bond networks. It is found that, at the reaction temperature of acetylene semihydrogenation, the hydrogen-bond networks and generated confined nanoregions are not rigid but are constantly changing and dynamically maintained. The steering role played by the O atoms at the surfaces of the polyoxometalate clusters is essential for generation of the hydrogen-bond networks and maintenance of the nanoregions. Upon confinement, the acetylene reactants can be better activated than those in an unconstrained atmosphere, which is reflected by the different dynamic distributions of the ∠CHC bending magnitude. Moreover, from a comparison of the distinct interaction characteristics between acetylene/ethylene and POMOF, the different manifestations in the adsorption energy variations of the confined molecules can be interpreted. This work helps to elucidate the underlying mechanisms of confined catalysis and may promote its application in practical catalytic processes.
Collapse
Affiliation(s)
- Qiang Fu
- School of Future Technology, University of Science and Technology of China (USTC), Hefei 230026, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China (USTC), Hefei 230026, China
| |
Collapse
|
10
|
Boix V, Scardamaglia M, Gallo T, D’Acunto G, Strømsheim MD, Cavalca F, Zhu S, Shavorskiy A, Schnadt J, Knudsen J. Following the Kinetics of Undercover Catalysis with APXPS and the Role of Hydrogen as an Intercalation Promoter. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Virginia Boix
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22362 Lund, Sweden
- NanoLund, Lund University, 22362 Lund, Sweden
| | | | - Tamires Gallo
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22362 Lund, Sweden
| | - Giulio D’Acunto
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22362 Lund, Sweden
- NanoLund, Lund University, 22362 Lund, Sweden
| | - Marie Døvre Strømsheim
- Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | - Suyun Zhu
- MAX IV Laboratory, Lund University, 22484 Lund, Sweden
| | | | - Joachim Schnadt
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22362 Lund, Sweden
- MAX IV Laboratory, Lund University, 22484 Lund, Sweden
- NanoLund, Lund University, 22362 Lund, Sweden
| | - Jan Knudsen
- Division of Synchrotron Radiation Research, Department of Physics, Lund University, 22362 Lund, Sweden
- MAX IV Laboratory, Lund University, 22484 Lund, Sweden
- NanoLund, Lund University, 22362 Lund, Sweden
| |
Collapse
|
11
|
Huang B, Tang J, Zhao X, Ma Z, Pei Y. Theoretical Study of CO Oxidation over Au1/MgO(100) with Different Vacancies. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Wan Q, Li J, Jiang R, Lin S. Construction of frustrated Lewis pairs on carbon nitride nanosheets for catalytic hydrogenation of acetylene. Phys Chem Chem Phys 2021; 23:24349-24356. [PMID: 34676856 DOI: 10.1039/d1cp03592d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Here, we studied Al or B atom-doped carbon nitride (g-C3N4 and C2N) as catalysts for H2 activation and acetylene hydrogenation using density functional theory calculations. The Al or B could be assembled with the surface N atoms of carbon nitride to form diverse frustrated Lewis pairs (FLPs). The results show that Al-N FLPs had lower barriers of H2 activation in comparison with B-N FLPs. The heterolytic H2 dissociation catalyzed by Al-N FLPs led to the formation of Al-H and N-H species. The Al-H species were highly active in the first hydrogenation of acetylene to C2H3*, yielding a mild barrier, while in the second hydrogenation step, the reaction between C2H3 and the H of N-H species caused a relatively high barrier. Electronic structure analysis demonstrated the electron transfer in the heterolytic H2 cleavage and explained the activity differences in various FLPs. The results suggest that Al with the surface N of carbon nitride can act as an FLP to catalyze the H2 activation and acetylene hydrogenation, thus providing a new strategy for the future development of noble metal-free hydrogenation catalysts.
Collapse
Affiliation(s)
- Qiang Wan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Juan Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Rong Jiang
- Institute of Advanced Energy Materials, Fuzhou University, Fuzhou 350002, China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350002, China.,Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian 361005, China.
| |
Collapse
|
13
|
Apostol NG, Bucur IC, Lungu GA, Tache CA, Teodorescu CM. CO adsorption and oxidation at room temperature on graphene synthesized on atomically clean Pt(001). Catal Today 2021. [DOI: 10.1016/j.cattod.2020.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Fei X, Wang P, Zhang D, Wang H, Wu Z. Confined Catalysts Application in Environmental Catalysis: Current Research Progress and Future Prospects. ChemCatChem 2021. [DOI: 10.1002/cctc.202001578] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xiaoqi Fei
- Key Laboratory of Environment Remediation and Ecological Health Ministry of Education College of Environmental & Resources Science Zhejiang University Hangzhou 310058 P.R. China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control Hangzhou 310058 P. R. China
| | - Penglu Wang
- International Joint Laboratory of Catalytic Chemistry Department of Chemistry Research Center of Nano Science and Technology College of Sciences Shanghai University Shanghai 200444 P. R. China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry Department of Chemistry Research Center of Nano Science and Technology College of Sciences Shanghai University Shanghai 200444 P. R. China
| | - Haiqiang Wang
- Key Laboratory of Environment Remediation and Ecological Health Ministry of Education College of Environmental & Resources Science Zhejiang University Hangzhou 310058 P.R. China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control Hangzhou 310058 P. R. China
| | - Zhongbiao Wu
- Key Laboratory of Environment Remediation and Ecological Health Ministry of Education College of Environmental & Resources Science Zhejiang University Hangzhou 310058 P.R. China
- Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control Hangzhou 310058 P. R. China
| |
Collapse
|
15
|
Huang J, Zhou C, Chu Z, Liu X, Duan X. Single transition metal anchored C9N4 sheets as an efficient catalyst for CO oxidation: a first-principles study. Phys Chem Chem Phys 2021; 23:1868-1873. [DOI: 10.1039/d0cp05306f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Single Ni/Co anchored C9N4 sheet works as an efficient catalyst for CO oxidation.
Collapse
Affiliation(s)
- Junchao Huang
- School of Physical Science and Technology
- Ningbo University
- Ningbo
- P. R. China
| | - Chun Zhou
- School of Physical Science and Technology
- Ningbo University
- Ningbo
- P. R. China
| | - Zhaoqin Chu
- School of Physical Science and Technology
- Ningbo University
- Ningbo
- P. R. China
| | - Xu Liu
- School of Physical Science and Technology
- Ningbo University
- Ningbo
- P. R. China
| | - Xiangmei Duan
- School of Physical Science and Technology
- Ningbo University
- Ningbo
- P. R. China
- Laboratory of Clean Energy Storage and Conversion
| |
Collapse
|
16
|
Affiliation(s)
- Zhongkui Zhao
- State Key Laboratory of Fine Chemicals Department of Catalysis Chemistry and Engineering School of Chemical Engineering Dalian University of Technology 2 Linggong Road Dalian 116024 P. R. China
| |
Collapse
|
17
|
Guan H, Chen Y, Ruan C, Lin J, Su Y, Wang X, Qu L. Versatile application of wet-oxidation for ambient CO abatement over Fe(OH) supported subnanometer platinum group metal catalysts. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63489-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Wang S, Li J, Li Q, Bai X, Wang J. Metal single-atom coordinated graphitic carbon nitride as an efficient catalyst for CO oxidation. NANOSCALE 2020; 12:364-371. [PMID: 31825440 DOI: 10.1039/c9nr07726j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Single-atom catalysts (SACs) often present outstanding activity due to their high ratio of low-coordinated metal atoms and can be applied to the activation of strong chemical bonds such as C[triple bond, length as m-dash]O. Herein, we investigate the potential usage of a single-atom catalyst, in which isolated cobalt atoms are supported on porous graphitic carbon nitride (Co/g-C3N4), for CO oxidation. Based on the adsorption/co-adsorption energies of O2, CO, 2O2, CO + O2 and 2CO, the screening criteria and the reaction mechanisms of CO oxidation, including the Eley-Rideal, New Eley-Rideal, Langmuir-Hinshelwood, and termolecular Eley-Rideal mechanisms, are established and compared. In particular, the energy barriers of the rate-limiting steps for the CO oxidation process by all possible reaction pathways are in a range from 0.21 to 0.59 eV, suggesting that the Co/g-C3N4 catalyst can boost CO oxidation at low temperature. Moreover, the preparation of the SAC (Co/g-C3N4) by using CoCl2 as an appropriate metal precursor and the stability (up to 600 K) are evaluated by ab initio molecular dynamics simulations. The high stability and excellent activity of the Co/g-C3N4 SAC for CO oxidation offer a high possibility of clean energy production.
Collapse
Affiliation(s)
- Shiyan Wang
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Jiaqi Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Qiang Li
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Xiaowan Bai
- School of Physics, Southeast University, Nanjing 211189, China.
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China.
| |
Collapse
|
19
|
Gerber IC, Serp P. A Theory/Experience Description of Support Effects in Carbon-Supported Catalysts. Chem Rev 2019; 120:1250-1349. [DOI: 10.1021/acs.chemrev.9b00209] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Iann C. Gerber
- LPCNO, Université de Toulouse, CNRS, INSA, UPS, 135 avenue de Rangueil, F-31077 Toulouse, France
| | - Philippe Serp
- LCC-CNRS, Université de Toulouse, UPR 8241 CNRS, INPT, 31400 Toulouse, France
| |
Collapse
|
20
|
Precise fabrication of porous one-dimensional gC3N4 nanotubes doped with Pd and Cu atoms for efficient CO oxidation and CO2 reduction. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107460] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
21
|
Eid K, Sliem MH, Abdullah AM. Unraveling template-free fabrication of carbon nitride nanorods codoped with Pt and Pd for efficient electrochemical and photoelectrochemical carbon monoxide oxidation at room temperature. NANOSCALE 2019; 11:11755-11764. [PMID: 31183488 DOI: 10.1039/c9nr02571e] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The tailored synthesis of carbon nitrides (CNs) is of particular interest in multidisciplinary catalytic applications. However, their fabrication in the form of one-dimensional (1D) nanorods for electrocatalytic carbon monoxide (CO) oxidation is not hitherto reported. Herein, a facile roadmap is presented for the rational design of Pt- and Pd-codoped CN (PtPd/CNs) nanorods via protonation of melamine in an ethylene glycol solution containing Pt and Pd precursors using NaNO3 and HCl and subsequent annealing. The protonation induces the polymerization of melamine to melon nanosheets that consequently roll up to CN nanorods. This tailored the prompt high mass production of uniform 1D CN nanorods (94 ± 2 nm) with a high surface area (155.2 m2 g-1) and they were atomically codoped with Pt and Pd (1.5 wt%) without a template and/or multiple complicated steps. The electrocatalytic CO oxidation activity of PtPd/CNs is 2.01 and 23.41 times greater than that of the commercial Pt/C catalyst and metal-free CNs, respectively, at room temperature. Meanwhile, the UV-vis light irradiation enhanced the CO oxidation activity of PtPd/CNs nanorods by 1.48 fold compared to that in the dark, emanated from the coupling between the drastic inbuilt catalytic merits of PtPd and the inimitable physicochemical properties of CNs. The presented study may pave the way for using CN-based materials in gas conversion reactions.
Collapse
Affiliation(s)
- Kamel Eid
- Center for advanced materials, Qatar University, Doha 2713, Qatar.
| | | | | |
Collapse
|
22
|
|
23
|
Esrafili MD, Heidari S. CO catalytic oxidation over C59X heterofullerenes (X = B, Si, P, S): A DFT study. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Píš I, Magnano E, Nappini S, Bondino F. Under-cover stabilization and reactivity of a dense carbon monoxide layer on Pt(111). Chem Sci 2019; 10:1857-1865. [PMID: 30842854 PMCID: PMC6371755 DOI: 10.1039/c8sc04461a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/01/2018] [Indexed: 01/07/2023] Open
Abstract
A dense CO overlayer on a Pt(111) surface under a 2D hybrid h-BN–graphene cover was studied.
The space between a metal surface and a two-dimensional cover can be regarded as a nanoreactor, where confined molecule adsorption and surface reactions may occur. In this work, we report CO intercalation and reactivity between a graphene-hexagonal boron nitride (h-BNG) heterostructure and Pt(111). By employing high resolution X-ray photoemission spectroscopy (XPS) we demonstrate the molecular intercalation of the full h-BNG overlayer and stabilization of a dense R23.4°–13CO layer on Pt(111) under ultra-high vacuum at room temperature. We provide experimental evidence of a weakened CO–metal bond due to the confinement effects of the 2D cover. Temperature-programmed XPS results reveal that CO desorption is kinetically delayed and occurs at a higher temperature than on bare Pt(111). Moreover, CO partially reacts with the h-BNG layer to form boron-oxide species, which affect repeated CO intercalation. Finally, we found that the properties of the system towards interaction with CO can be considerably recovered using high temperature treatment.
Collapse
Affiliation(s)
- Igor Píš
- Elettra - Sincrotrone Trieste S.C.p.A. , 34149 Basovizza , Trieste , Italy . .,IOM-CNR , Laboratorio TASC , 34149 Basovizza , Trieste , Italy .
| | - Elena Magnano
- IOM-CNR , Laboratorio TASC , 34149 Basovizza , Trieste , Italy . .,Department of Physics , University of Johannesburg , Auckland Park 2006 , South Africa
| | - Silvia Nappini
- IOM-CNR , Laboratorio TASC , 34149 Basovizza , Trieste , Italy .
| | - Federica Bondino
- IOM-CNR , Laboratorio TASC , 34149 Basovizza , Trieste , Italy .
| |
Collapse
|
25
|
Mohajeri A, Hassani N. The interplay between structural perfectness and CO oxidation catalysis on aluminum, phosphorous and silicon complexes of corroles. Phys Chem Chem Phys 2019; 21:7661-7674. [DOI: 10.1039/c8cp07372d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Catalytic oxidation of carbon monoxide on perfect and defective structures of corrole complexes with aluminum, phosphorous and silicon have been investigated by performing density functional theory calculations.
Collapse
Affiliation(s)
- Afshan Mohajeri
- Department of Chemistry
- College of Sciences
- Shiraz University
- Shiraz 7194684795
- Iran
| | - Nasim Hassani
- Department of Chemistry
- College of Sciences
- Shiraz University
- Shiraz 7194684795
- Iran
| |
Collapse
|
26
|
Versatile Synthesis of Pd and Cu Co-Doped Porous Carbon Nitride Nanowires for Catalytic CO Oxidation Reaction. Catalysts 2018. [DOI: 10.3390/catal8100411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Developing efficient catalyst for CO oxidation at low-temperature is crucial in various industrial and environmental remediation applications. Herein, we present a versatile approach for controlled synthesis of carbon nitride nanowires (CN NWs) doped with palladium and copper (Pd/Cu/CN NWs) for CO oxidation reactions. This is based on the polymerization of melamine by nitric acid in the presence of metal-precursors followed by annealing under nitrogen. This intriguingly drove the formation of well-defined, one-dimensional nanowires architecture with a high surface area (120 m2 g−1) and doped atomically with Pd and Cu. The newly-designed Pd/Cu/CN NWs fully converted CO to CO2 at 149 °C, that was substantially more active than that of Pd/CN NWs (283 °C) and Cu/CN NWs (329 °C). Moreover, Pd/Cu/CN NWs fully reserved their initial CO oxidation activity after 20 h. This is mainly attributed to the combination between the unique catalytic properties of Pd/Cu and outstanding physicochemical properties of CN NWs, which tune the adsorption energies of CO reactant and reaction product during the CO oxidation reaction. The as-developed method may open new frontiers on using CN NWs supported various noble metals for CO oxidation reaction.
Collapse
|
27
|
Bi W, Hu Y, Li W, Jiang H, Li C. Construction of Nanoreactors Combining Two-Dimensional Hexagonal Boron Nitride (h-BN) Coating with Pt/Al2O3 Catalyst toward Efficient Catalysis for CO Oxidation. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02547] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei Bi
- Key Laboratory for Ultrafine Materials of the Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Yanjie Hu
- Key Laboratory for Ultrafine Materials of the Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Wenge Li
- Key Laboratory for Ultrafine Materials of the Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Hao Jiang
- Key Laboratory for Ultrafine Materials of the Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of the Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
28
|
Ji M, Huang J, Zhang K, He D, Chang S, Luo D, Zhang E, Xu M, Liu J, Zhang J, Xu J, Wang J, Zhu C. Cu nanocrystal enhancement of C3N4/Cu hetero-structures and new applications in photo-electronic catalysis: hydrazine oxidation and redox reactions of organic molecules. Inorg Chem Front 2018. [DOI: 10.1039/c8qi00594j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A C3N4/Cu hetero-structure was prepared for new applications in photo-electronic redox reactions.
Collapse
|
29
|
Yu MA, Feng Y, Gao L, Lin S. Phosphomolybdic acid supported single-metal-atom catalysis in CO oxidation: first-principles calculations. Phys Chem Chem Phys 2018; 20:20661-20668. [DOI: 10.1039/c8cp03916j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Highly active phosphomolybdic acid supported single-metal-atom catalysts for CO oxidation.
Collapse
Affiliation(s)
- Ming-an Yu
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350002
- China
| | - Yingxin Feng
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350002
- China
| | - Liye Gao
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350002
- China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment
- College of Chemistry
- Fuzhou University
- Fuzhou 350002
- China
| |
Collapse
|