1
|
Yan Y, Wei C, Liu X, Zhao X, Zhao S, Tong S, Ren G, Wei Q. Formulation, Characterization, Antibacterial Activity, Antioxidant Activity, and Safety Evaluation of Camphora longepaniculata Essential Oil Nanoemulsions Through High-Pressure Homogenization. Antioxidants (Basel) 2024; 14:33. [PMID: 39857367 PMCID: PMC11762553 DOI: 10.3390/antiox14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
The volatility, instability, and water insolubility of Camphora longepaniculata essential oil (CLEO) limit its practical applications in the food, pharmaceutical, and cosmetics industries. CLEO nanoemulsions (CLNEs) were formulated and characterized to overcome the aforementioned issues. The volatile compounds of CLEO were identified by gas chromatography-mass spectrometry. CLNEs were prepared using EL-40 (5%, w/w) as the surfactant via the high-pressure homogenization method. The formation of nanoemulsions was verified by Fourier transform infrared spectroscopy and transmission electron microscopy. Homogenized nanoemulsions had smaller particle sizes of 39.99 ± 0.47 nm and exhibited enhanced stability. The nanostructured CLEO showed an antibacterial effect against Escherichia coli and Staphylococcus aureus. The antibacterial mechanism was explored through bacterial morphology and intracellular lysate leakage. CLNEs disrupted the structure of bacterial cells and impaired the permeability of cell membranes, resulting in the leakage of bacterial intracellular contents. The nanoemulsions exhibited superior radical scavenging ability compared to the pure oil. Furthermore, evaluations of the cellular safety of the CLNEs demonstrated that the survival rate of exposed HOECs was greater than 90%, with an apoptosis rate of less than 10% in a concentration range. The results demonstrated that nanoemulsification improved the stability, solubility in aqueous media, and bioavailability of CLEO, thereby broadening its potential industrial applications as a natural antibacterial and antioxidant agent.
Collapse
Affiliation(s)
- Yue Yan
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Changhe Wei
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, College of Agricultural Science, Xichang University, Liangshan 615000, China
| | - Xin Liu
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
- Sichuan Province Engineering Technology Research Center of Oil Cinnamon, Yibin University, Yibin 644000, China
| | - Xin Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
- Sichuan Province Engineering Technology Research Center of Oil Cinnamon, Yibin University, Yibin 644000, China
| | - Shanmei Zhao
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Shuai Tong
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Guoyou Ren
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
| | - Qin Wei
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin 644000, China
- Sichuan Province Engineering Technology Research Center of Oil Cinnamon, Yibin University, Yibin 644000, China
| |
Collapse
|
2
|
Kim HJ, Hong JH. Multiplicative Effects of Essential Oils and Other Active Components on Skin Tissue and Skin Cancers. Int J Mol Sci 2024; 25:5397. [PMID: 38791435 PMCID: PMC11121510 DOI: 10.3390/ijms25105397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Naturally derived essential oils and their active components are known to possess various properties, ranging from anti-oxidant, anti-inflammatory, anti-bacterial, anti-fungal, and anti-cancer activities. Numerous types of essential oils and active components have been discovered, and their permissive roles have been addressed in various fields. In this comprehensive review, we focused on the roles of essential oils and active components in skin diseases and cancers as discovered over the past three decades. In particular, we opted to highlight the effectiveness of essential oils and their active components in developing strategies against various skin diseases and skin cancers and to describe the effects of the identified essential-oil-derived major components from physiological and pathological perspectives. Overall, this review provides a basis for the development of novel therapies for skin diseases and cancers, especially melanoma.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
3
|
Kayaian MR, Hawker MJ. Using 1,8-cineole plasma with both pulsed and continuous depositions to modify commercially available wound dressing materials. Biointerphases 2023; 18:051002. [PMID: 37850854 PMCID: PMC10586874 DOI: 10.1116/6.0003009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/19/2023] Open
Abstract
The current clinical standards for infected chronic wounds are oral and topical antibiotics. These strategies are problematic because antibiotic resistance can occur with prolonged use. As an alternative to clinical methods, essential oils show promise in preventing bacterial growth. Specifically, 1,8-cineole-an active component in eucalyptus oil-exhibits antifungal, anti-inflammatory, and antibacterial properties. Applying 1,8-cineole directly onto a wound is challenging, however, due to its volatile nature. To combat this issue, plasma-enhanced chemical vapor deposition (PECVD) has been established as a method to deposit a stable 1,8-cineole-derived film on model surfaces (e.g., glass and electrospun polystyrene nanofibers). The current study represents an extension of previous work, where both pulsed and continuous 1,8-cineole plasmas were used to deposit a 1,8-cineole-derived film on two commercially available wound dressings. Three surface analyses were conducted to characterize the plasma-modified dressings. First, water contact angle goniometry data demonstrated a decrease in hydrofiber wettability after treatment. Through scanning electron spectroscopy, the surface morphology of both materials did not change upon treatment. When comparing pulsed and continuous treatments, deconvolution of high-resolution C1s x-ray photoelectron spectra showed no differences in functional group retention. Importantly, the chemical compositions of treated wound dressings were different compared to untreated materials. Overall, this work seeks to elucidate how different PECVD parameters affect the surface properties of wound dressings. Understanding these parameters represents a key step toward developing alternative chronic wound therapies.
Collapse
Affiliation(s)
- Mia-Rose Kayaian
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave, SB70, Fresno, California 93740-8034
| | - Morgan J Hawker
- Department of Chemistry and Biochemistry, California State University, Fresno, 2555 E. San Ramon Ave, SB70, Fresno, California 93740-8034
| |
Collapse
|
4
|
Kışla D, Gökmen GG, Akdemir Evrendilek G, Akan T, Vlčko T, Kulawik P, Režek Jambrak A, Ozogul F. Recent developments in antimicrobial surface coatings: Various deposition techniques with nanosized particles, their application and environmental concerns. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Sultana A, Zare M, Luo H, Ramakrishna S. Surface Engineering Strategies to Enhance the In Situ Performance of Medical Devices Including Atomic Scale Engineering. Int J Mol Sci 2021; 22:11788. [PMID: 34769219 PMCID: PMC8583812 DOI: 10.3390/ijms222111788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Decades of intense scientific research investigations clearly suggest that only a subset of a large number of metals, ceramics, polymers, composites, and nanomaterials are suitable as biomaterials for a growing number of biomedical devices and biomedical uses. However, biomaterials are prone to microbial infection due to Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Staphylococcus epidermidis (S. epidermidis), hepatitis, tuberculosis, human immunodeficiency virus (HIV), and many more. Hence, a range of surface engineering strategies are devised in order to achieve desired biocompatibility and antimicrobial performance in situ. Surface engineering strategies are a group of techniques that alter or modify the surface properties of the material in order to obtain a product with desired functionalities. There are two categories of surface engineering methods: conventional surface engineering methods (such as coating, bioactive coating, plasma spray coating, hydrothermal, lithography, shot peening, and electrophoretic deposition) and emerging surface engineering methods (laser treatment, robot laser treatment, electrospinning, electrospray, additive manufacturing, and radio frequency magnetron sputtering technique). Atomic-scale engineering, such as chemical vapor deposition, atomic layer etching, plasma immersion ion deposition, and atomic layer deposition, is a subsection of emerging technology that has demonstrated improved control and flexibility at finer length scales than compared to the conventional methods. With the advancements in technologies and the demand for even better control of biomaterial surfaces, research efforts in recent years are aimed at the atomic scale and molecular scale while incorporating functional agents in order to elicit optimal in situ performance. The functional agents include synthetic materials (monolithic ZnO, quaternary ammonium salts, silver nano-clusters, titanium dioxide, and graphene) and natural materials (chitosan, totarol, botanical extracts, and nisin). This review highlights the various strategies of surface engineering of biomaterial including their functional mechanism, applications, and shortcomings. Additionally, this review article emphasizes atomic scale engineering of biomaterials for fabricating antimicrobial biomaterials and explores their challenges.
Collapse
Affiliation(s)
- Afreen Sultana
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (A.S.); (S.R.)
| | - Mina Zare
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (A.S.); (S.R.)
| | - Hongrong Luo
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu 610064, China
| | - Seeram Ramakrishna
- Center for Nanotechnology & Sustainability, Department of Mechanical Engineering, National University of Singapore, Singapore 117581, Singapore; (A.S.); (S.R.)
| |
Collapse
|
6
|
Shakeel F, Salem-Bekhit MM, Haq N, Alshehri S. Nanoemulsification Improves the Pharmaceutical Properties and Bioactivities of Niaouli Essential Oil ( Melaleuca quinquenervia L.). Molecules 2021; 26:4750. [PMID: 34443336 PMCID: PMC8401722 DOI: 10.3390/molecules26164750] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/18/2022] Open
Abstract
We develop a suitable delivery system for niaouli essential oil (NEO) using a nanoemulsification method for acne vulgaris. Prepared nanoemulsions (NEs) were characterized for droplet dimension, rheology, surface charge, and stability. The ability of NEO formulations against Propionibacterium acnes and Staphylococcus epidermidis was investigated and all formulations showed antiacne potential in vitro. Ex vivo permeation studies indicated significant improvement in drug permeations and steady state flux of all NEO-NEs compared to the neat NEO (p < 0.05). On the basis of the studied pharmaceutical parameters, enhanced ex vivo skin permeation, and marked effect on acne pathogens, formulation NEO-NE4 was found to be the best (oil (NEO; 10% v/v); Kolliphor EL (9.25% v/v), Carbitol (27.75% v/v), and water (53% v/v)). Concisely, the in vitro and ex vivo results revealed that nanoemulsification improved the delivery as well as bioactivities of NEO significantly.
Collapse
Affiliation(s)
| | | | | | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (F.S.); (M.M.S.-B.); (N.H.)
| |
Collapse
|
7
|
Misra N, Bhatt S, Arefi‐Khonsari F, Kumar V. State of the art in nonthermal plasma processing for biomedical applications: Can it help fight viral pandemics like COVID-19? PLASMA PROCESSES AND POLYMERS (PRINT) 2021; 18:2000215. [PMID: 34220401 PMCID: PMC8237024 DOI: 10.1002/ppap.202000215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 03/07/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Plasma processing finds widespread biomedical applications, such as the design of biosensors, antibiofouling surfaces, controlled drug delivery systems, and in plasma sterilizers. In the present coronavirus disease (COVID-19) situation, the prospect of applying plasma processes like surface activation, plasma grafting, plasma-enhanced chemical vapor deposition/plasma polymerization, surface etching, plasma immersion ion implantation, crosslinking, and plasma decontamination to provide timely solutions in the form of better antiviral alternatives, practical diagnostic tools, and reusable personal protective equipment is worth exploring. Herein, the role of nonthermal plasmas and their contributions toward healthcare are timely reviewed to engage different communities in assisting healthcare associates and clinicians, not only to combat the current COVID-19 pandemic but also to prevent similar kinds of future outbreaks.
Collapse
Affiliation(s)
- Nilanjal Misra
- Radiation Technology Development DivisionBhabha Atomic Research CentreTrombayMumbaiMaharashtraIndia
| | - Sudhir Bhatt
- Department of Engineering and Physical SciencesInstitute of Advanced ResearchGandhinagarGujaratIndia
| | | | - Virendra Kumar
- Radiation Technology Development DivisionBhabha Atomic Research CentreTrombayMumbaiMaharashtraIndia
- Department of Chemical SciencesHomi Bhabha National InstituteAnushaktinagarMumbaiMaharashtraIndia
| |
Collapse
|
8
|
Morelli A, Hawker MJ. Utilizing Radio Frequency Plasma Treatment to Modify Polymeric Materials for Biomedical Applications. ACS Biomater Sci Eng 2021. [PMID: 33913325 DOI: 10.1021/acsbiomaterials.0c01673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Studies that utilize radio frequency plasma modification as a strategy to tune the surface properties of polymeric constructs with the goal of enhancing their use as biomedical devices have grown considerably in number over the past decade. In this Review, we present the importance of plasma surface treatment to biomedical applications, including tissue engineering and wound healing. First, we introduce several key polymeric materials of interest for use as biomaterials, including those that are naturally derived and synthetic. We, then, provide an overview of possible outcomes of plasma modification, such as surface activation, etching, and deposition of a thin film, all of which can be used to alter the surface properties of a given polymer. Following this discussion, we review the methods used to characterize plasma-treated polymer surface properties, as well as the techniques used to evaluate their interactions with biological species of interest such as mammalian cells, bacteria, and blood components. To close, we provide a perspective on future outlooks of this exciting and rapidly evolving field.
Collapse
Affiliation(s)
- Alyssa Morelli
- Department of Chemistry and Biochemistry, California State University Fresno, 2555 East San Ramon Avenue, MS SB70 Fresno, California 93740, United States
| | - Morgan J Hawker
- Department of Chemistry and Biochemistry, California State University Fresno, 2555 East San Ramon Avenue, MS SB70 Fresno, California 93740, United States
| |
Collapse
|
9
|
Abstract
At the biointerface where materials and microorganisms meet, the organic and synthetic worlds merge into a new science that directs the design and safe use of synthetic materials for biological applications. Vapor deposition techniques provide an effective way to control the material properties of these biointerfaces with molecular-level precision that is important for biomaterials to interface with bacteria. In recent years, biointerface research that focuses on bacteria-surface interactions has been primarily driven by the goals of killing bacteria (antimicrobial) and fouling prevention (antifouling). Nevertheless, vapor deposition techniques have the potential to create biointerfaces with features that can manipulate and dictate the behavior of bacteria rather than killing or deterring them. In this review, we focus on recent advances in antimicrobial and antifouling biointerfaces produced through vapor deposition and provide an outlook on opportunities to capitalize on the features of these techniques to find unexplored connections between surface features and microbial behavior.
Collapse
Affiliation(s)
- Trevor B. Donadt
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Rong Yang
- Robert F. Smith School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
10
|
Shao DD, Yang WJ, Xiao HF, Wang ZY, Zhou C, Cao XL, Sun SP. Self-Cleaning Nanofiltration Membranes by Coordinated Regulation of Carbon Quantum Dots and Polydopamine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:580-590. [PMID: 31809020 DOI: 10.1021/acsami.9b16704] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Performance declination of nanofiltration (NF) membranes caused by concentration polarization (CP) and membrane fouling has severely restricted their practical application in many fields. This work reports the construction of a novel interlayer between the substrate and the selective layer of conventional composite membranes by coordinating regulation of carbon quantum dots (CQDs) and polydopamine (PDA). Unlike traditional methods that treat CP and fouling separately, the new strategy grants the membrane with dual functions at one time. First, the insertion of the PDA-CQDs layer reformulates the interfacial polymerization process that reduces the solute transport resistance and mitigates the CP issue. Second, the sandwiched photoactive CQDs can degrade organic molecules adsorbed on the membrane surface under visible light, which is promising for low-cost fouling remediation. This study may offer valuable insights into the preparation of durable self-cleaning NF membranes for the effective treatment of complex wastewater in various industries.
Collapse
|
11
|
Nikitin D, Madkour S, Pleskunov P, Tafiichuk R, Shelemin A, Hanuš J, Gordeev I, Sysolyatina E, Lavrikova A, Ermolaeva S, Titov V, Schönhals A, Choukourov A. Cu nanoparticles constrain segmental dynamics of cross-linked polyethers: a trade-off between non-fouling and antibacterial properties. SOFT MATTER 2019; 15:2884-2896. [PMID: 30849134 DOI: 10.1039/c8sm02413h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Copper has a strong bactericidal effect against multi-drug resistant pathogens and polyethers are known for their resistance to biofilm formation. Herein, we combined Cu nanoparticles (NPs) and a polyether plasma polymer in the form of nanocomposite thin films and studied whether both effects can be coupled. Cu NPs were produced by magnetron sputtering via the aggregation in a cool buffer gas whereas polyether layers were synthesized by Plasma-Assisted Vapor Phase Deposition with poly(ethylene oxide) (PEO) used as a precursor. In situ specific heat spectroscopy and XPS analysis revealed the formation of a modified polymer layer around the NPs which propagates on the scale of a few nanometers from the Cu NP/polymer interface and then transforms into a bulk polymer phase. The chemical composition of the modified layer is found to be ether-deficient due to the catalytic influence of copper whereas the bulk polymer phase exhibits the chemical composition close to the original PEO. Two cooperative glass transition phenomena are revealed that belong to the modified polymer layer and the bulk phase. The former is characterized by constrained mobility of polymer segments which manifests itself via a 30 K increase of dynamic glass transition temperature. Furthermore, the modified layer is characterized by the heterogeneous structure which results in higher fragility of this layer as compared to the bulk phase. The Cu NPs/polyether thin films exhibit reduced protein adsorption; however, the constrained segmental dynamics leads to the deterioration of the non-fouling properties for ultra-thin polyether coatings. The films are found to have a bactericidal effect against multi-drug resistant Gram-positive Methicillin-Resistant Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Daniil Nikitin
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, Prague, Czech Republic.
| | - Sherif Madkour
- Bundesanstalt für Materialforschung und - prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Pavel Pleskunov
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, Prague, Czech Republic.
| | - Renata Tafiichuk
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, Prague, Czech Republic.
| | - Artem Shelemin
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, Prague, Czech Republic.
| | - Jan Hanuš
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, Prague, Czech Republic.
| | - Ivan Gordeev
- Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 16200 Prague, Czech Republic
| | - Elena Sysolyatina
- Gamaleya National Research Center of Epidemiology and Microbiology, Gamaleya 18, 123098 Moscow, Russia
| | - Alexandra Lavrikova
- Gamaleya National Research Center of Epidemiology and Microbiology, Gamaleya 18, 123098 Moscow, Russia
| | - Svetlana Ermolaeva
- Gamaleya National Research Center of Epidemiology and Microbiology, Gamaleya 18, 123098 Moscow, Russia
| | - Valerii Titov
- G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya 1, 153045 Ivanovo, Russia
| | - Andreas Schönhals
- Bundesanstalt für Materialforschung und - prüfung (BAM), Unter den Eichen 87, 12205 Berlin, Germany.
| | - Andrei Choukourov
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, Prague, Czech Republic.
| |
Collapse
|
12
|
Hybrid breath figure method: A new insight in Petri dishes for cell culture. J Colloid Interface Sci 2019; 541:114-122. [DOI: 10.1016/j.jcis.2019.01.074] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/14/2019] [Accepted: 01/16/2019] [Indexed: 12/19/2022]
|
13
|
Al-Jumaili A, Kumar A, Bazaka K, Jacob MV. Plant Secondary Metabolite-Derived Polymers: A Potential Approach to Develop Antimicrobial Films. Polymers (Basel) 2018; 10:E515. [PMID: 30966549 PMCID: PMC6415405 DOI: 10.3390/polym10050515] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/21/2022] Open
Abstract
The persistent issue of bacterial and fungal colonization of artificial implantable materials and the decreasing efficacy of conventional systemic antibiotics used to treat implant-associated infections has led to the development of a wide range of antifouling and antibacterial strategies. This article reviews one such strategy where inherently biologically active renewable resources, i.e., plant secondary metabolites (PSMs) and their naturally occurring combinations (i.e., essential oils) are used for surface functionalization and synthesis of polymer thin films. With a distinct mode of antibacterial activity, broad spectrum of action, and diversity of available chemistries, plant secondary metabolites present an attractive alternative to conventional antibiotics. However, their conversion from liquid to solid phase without a significant loss of activity is not trivial. Using selected examples, this article shows how plasma techniques provide a sufficiently flexible and chemically reactive environment to enable the synthesis of biologically-active polymer coatings from volatile renewable resources.
Collapse
Affiliation(s)
- Ahmed Al-Jumaili
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- Physics Department, College of Science, Ramadi, Anbar University, Ramadi 11, Iraq.
| | - Avishek Kumar
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| | - Kateryna Bazaka
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
- School of Chemistry, Physics, Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Mohan V Jacob
- Electronics Materials Lab, College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|