1
|
Manoranjan N, Fang W, Zhu Y, Jin J. A Chiral COFs Membrane for Enantioselective Amino Acid Separation. Angew Chem Int Ed Engl 2025; 64:e202417088. [PMID: 39575974 DOI: 10.1002/anie.202417088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Indexed: 01/03/2025]
Abstract
Incorporating chiral molecules in the covalent organic frameworks (COFs) with uniformly ordered pores results in chiral COFs, which have been highly promising candidates for enantioseparation. Herein, a homochiral COF nanochannel membrane is reported by introducing chiral centers (L-phenylalanine methyl ester) into one of the organic ligands for the enantioseparation of chiral amino acids. The separation results show that the D-isomer is preferentially transported through the porous membrane channel. This composite membrane exhibits excellent selectivity for racemic phenylalanine with the highest enantiomeric excess value of up to 99.4 %. The adsorption and molecular modeling studies substantiate the experiment results by showing higher bonding affinity towards D-isomer over L-isomer. The excellent enantioselective gating performance unveils the porous COF skeleton with chiral selectors and the size-matching synergy for stereoselective interactions with chiral isomers.
Collapse
Affiliation(s)
- Narmadha Manoranjan
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P.R. China
| | - Wangxi Fang
- i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P.R. China
| | - Yuzhang Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, & Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, 215123, P.R. China
| | - Jian Jin
- College of Chemistry, Chemical Engineering and Materials Science, Jiangsu Key Laboratory of Advanced Functional Polymer Materials, & Suzhou key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou, 215123, P.R. China
| |
Collapse
|
2
|
Fang PH, Qu LL, Ma ZS, Han CQ, Li Z, Wang L, Zhou K, Li J, Liu XY. Full-Color Emissive Zirconium-Organic Frameworks Constructed via in Situ "One-Pot" Single-Site Modification for Tryptophan Detection and Energy Transfer. Angew Chem Int Ed Engl 2025; 64:e202414026. [PMID: 39291884 DOI: 10.1002/anie.202414026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/19/2024]
Abstract
Organic linker-based luminescent metal-organic frameworks (LMOFs) have received extensive studies due to the unlimited species of emissive organic linkers and tunable structure of MOFs. However, the multiple-step organic synthesis is always a great challenge for the development of LMOFs. As an alternative strategy, in situ "one-pot" strategy, in which the generation of emissive organic linkers and sequential construction of LMOFs happen in one reaction condition, can avoid time-consuming pre-synthesis of organic linkers. In the present work, we demonstrate the successful utilization of in situ "one-pot" strategy to construct a series of LMOFs via the single-site modification between the reaction of aldehydes and o-phenylenediamine-based tetratopic carboxylic acid. The resultant MOFs possess csq topology with emission covering blue to near-infrared. The nanosized LMOFs exhibit excellent sensitivity and selectivity for tryptophan detection. In addition, two component-based LMOFs can also be prepared via the in situ "one-pot" strategy and used to study energy transfer. This work not only reports the construction of LMOFs with full-color emissions, which can be utilized for various applications, but also indicates that in situ "one-pot" strategy indeed is a useful and powerful method to complement the traditional MOFs construction method for preparing porous materials with tunable functionalities and properties.
Collapse
Affiliation(s)
- Pu-Hao Fang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Lu-Lu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P. R. China
| | - Zhen-Sha Ma
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Chao-Qin Han
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Zhendong Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Lei Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Jingbai Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, P. R. China
| |
Collapse
|
3
|
Yao T, Feng C, Yan H. Current developments and applications of smart polymers based aqueous two-phase systems. Microchem J 2024; 204:111170. [DOI: 10.1016/j.microc.2024.111170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
|
4
|
Xu J, Liu X, Liang P, Yuan H, Yang T. In Situ Preparation of Tannic Acid-Modified Poly( N-isopropylacrylamide) Hydrogel Coatings for Boosting Cell Response. Pharmaceutics 2024; 16:538. [PMID: 38675199 PMCID: PMC11054217 DOI: 10.3390/pharmaceutics16040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The improvement of the capability of poly(N-isopropylacrylamide) (PNIPAAm) hydrogel coating in cell adhesion and detachment is critical to efficiently prepare cell sheets applied in cellular therapies and tissue engineering. To enhance cell response on the surface, the amine group-modified PNIPAAm (PNIPAAm-APTES) nanohydrogels were synthesized and deposited spontaneously on tannic acid (TA)-modified polyethylene (PE) plates. Subsequently, TA was introduced onto PNIPAAm-APTES nanohydrogels to fabricate coatings composed of TA-modified PNIPAAm-APTES (PNIPAAm-APTES-TA). Characterization techniques, including TEM, SEM, XPS, and UV-Vis spectroscopy, confirmed the effective deposition of hydrogels of PNIPAAm as well as the morphologies, content of chemical bonding-TA, and stability of various coatings. Importantly, the porous hydrogel coatings exhibited superhydrophilicity at 20 °C and thermo-responsive behavior. The fluorescence measurement demonstrated that the coating's stability effectively regulated protein behavior, influencing cell response. Notably, cell response tests revealed that even without precise control over the chain length/thickness of PNIPAAm during synthesis, the coatings enhanced cell adhesion and detachment, facilitating efficient cell culture. This work represented a novel and facile approach to preparing bioactive PNIPAAm for cell culture.
Collapse
Affiliation(s)
- Jufei Xu
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China;
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China;
| | - Xiangzhe Liu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengpeng Liang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China;
| | - Hailong Yuan
- Department of Pharmacy, Air Force Medical Center, PLA, Air Force Medical University, Beijing 100142, China;
| | - Tianyou Yang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang 453003, China;
| |
Collapse
|
5
|
Niu X, Liu Y, Zhao R, Yuan M, Zhao H, Li H, Wang K. Enhancing Electrochemical Signal for Efficient Chiral Recognition by Encapsulating C 60 Fullerene into Chiral Lanthanum-Based MOFs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:17361-17370. [PMID: 38556802 DOI: 10.1021/acsami.4c03134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Chiral metal-organic frameworks (MOFs) have attracted much attention due to their highly tunable regular microporous structures. However, chiral electrochemical recognition based on chiral MOFs is often limited by poor charge separation and slow charge transfer kinetics. In this case, C60 can be encapsulated into the cavity of [La(BTB)]n by virtue of host-guest interactions through π-π stacking to synthesize the chiral composite C60@[La(BTB)]n and amplify electrochemically controlled enantioselective interactions with the target enantiomers. A large electrostatic potential difference is generated in chiral C60@[La(BTB)]n due to the host-guest interaction and the inhomogeneity of the charge distribution, leading to the generation of a strong built-in electric field and thus an overall enhancement of the conductivity of the chiral material. Their enantioselective detection of tryptophan enantiomers was demonstrated by electrochemical measurement. The results showed that chiral MOF materials can be used for enantiomeric recognition. It is worth noting that this new material derived from the concept of host-guest interaction to enhance charge separation opens up unprecedented possibilities for future enantioselective recognition and separation.
Collapse
Affiliation(s)
- Xiaohui Niu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Yongqi Liu
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Rui Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Mei Yuan
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Hongfang Zhao
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Hongxia Li
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| | - Kunjie Wang
- College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, P. R. China
| |
Collapse
|
6
|
Cai C, Ma S, Li F, Tan Z. Aqueous two-phase system based on pH-responsive polymeric deep eutectic solvent for efficient extraction of aromatic amino acids. Food Chem 2024; 430:137029. [PMID: 37523819 DOI: 10.1016/j.foodchem.2023.137029] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Recently, more and more attention has been paid to the construction of stimulus-responsive aqueous two-phase systems (ATPSs) for the extraction and separation of various bioactive compounds. In this work, an ATPS based on a pH-responsive polymeric deep eutectic solvent (PDES) and phosphate salt was constructed for the first time. The pH-response properties of the PDES were studied through a series of experiments. Additionally, the phase formation mechanism was studied through experiments and simulations. This novel PDES-based ATPS was used to extract aromatic amino acids (AAAs). The extraction efficiencies for tyrosine (Tyr), phenylalanine (Phe), and tryptophan (Trp) reached 95.25%, 99.05%, and 99.10%, respectively. By adjusting pH, PDES was recycled and reused. This novel and recyclable PDES-based ATPS could be an efficient method for the extraction of AAAs, which could also be applied used as a versatile and sustainable method for the extraction of other bioactive compounds in the future.
Collapse
Affiliation(s)
- Changyong Cai
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Shaoping Ma
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhijian Tan
- Institute of Bast Fiber Crops & Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| |
Collapse
|
7
|
Xia HL, Zhang J, Si J, Wang H, Zhou K, Wang L, Li J, Sun W, Qu L, Li J, Liu XY. Size- and Emission-Controlled Synthesis of Full-Color Luminescent Metal-Organic Frameworks for Tryptophan Detection. Angew Chem Int Ed Engl 2023; 62:e202308506. [PMID: 37416970 DOI: 10.1002/anie.202308506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
The development of nanoscaled luminescent metal-organic frameworks (nano-LMOFs) with organic linker-based emission to explore their applications in sensing, bioimaging and photocatalysis is of great interest as material size and emission wavelength both have remarkable influence on their performances. However, there is lack of platforms that can systematically tune the emission and size of nano-LMOFs with customized linker design. Herein two series of fcu- and csq-type nano-LMOFs, with precise size control in a broad range and emission colors from blue to near-infrared, were prepared using 2,1,3-benzothiadiazole and its derivative based ditopic- and tetratopic carboxylic acids as the emission sources. The modification of tetratopic carboxylic acids using OH and NH2 as the substituent groups not only induces significant emission bathochromic shift of the resultant MOFs, but also endows interesting features for their potential applications. As one example, we show that the non-substituted and NH2 -substituted nano-LMOFs exhibit turn-off and turn-on responses for highly selective and sensitive detection of tryptophan over other nineteen natural amino acids. This work sheds light on the rational construction of nano-LMOFs with specific emission behaviours and sizes, which will undoubtedly facilitate their applications in related areas.
Collapse
Affiliation(s)
- Hai-Lun Xia
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Jian Zhang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Jincheng Si
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, People's Republic of China
| | - Hexiang Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Kang Zhou
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Lei Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Jingbai Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| | - Wen Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian, 116024, People's Republic of China
| | - Lulu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, People's Republic of China
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ, 08854, USA
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Blvd, Nanshan District, Shenzhen, 518055, People's Republic of China
| |
Collapse
|
8
|
Xu J, Yang X, Guo J, Xu H, Gao Z, Song YY. Metal organic frameworks-in-nanochannels: A tailorable chromatography membrane for isolation of target protein. J Chromatogr A 2023; 1704:464134. [PMID: 37307635 DOI: 10.1016/j.chroma.2023.464134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/26/2023] [Accepted: 06/04/2023] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) demonstrate strong potential in biosample separation. However, the obtained MOFs powders are unsuitable for recovery techniques in an aqueous solution, especially the challenges of withdrawing MOFs particles and expanding their functions for specific applications. Herein, a general strategy is designed utilizing metal oxide-nanochannel arrays as precursors and templates for in-situ selective growth of MOFs structures. The exemplary MOFs (Ni-bipy) with tailored composition are selectively grown in NiO/TiO2 nanochannel membrane (NM) using NiO as the sacrificial precursor, which enables one to achieve a ∼262 times concentration of histidine-tagged proteins within 100 min. The significantly improved adsorption efficiency in a wide pH range and the effective enrichment from a complex matrix as a nanofilter illustrate the great potential of MOFs in nanochannels membranes for the high-efficiency recovery of essential proteins in complex biological samples. The porous self-aligned Ni-MOFs/TiO2 NM exhibits biocompatibility and flexible functionalities, which is desirable for the generation of multifunctional nanofilter devices and developing biomacromolecule delivery vehicles.
Collapse
Affiliation(s)
- Jingwen Xu
- College of Sciences, Northeastern University, Shenyang 110004, PR China
| | - Xiaorong Yang
- College of Sciences, Northeastern University, Shenyang 110004, PR China; Guizhou Institution of Products Quality Inspection & Testing, Guiyang 550000, PR China
| | - Junli Guo
- College of Sciences, Northeastern University, Shenyang 110004, PR China
| | - Huijie Xu
- College of Sciences, Northeastern University, Shenyang 110004, PR China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, PR China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, PR China.
| |
Collapse
|
9
|
Zheng X, Zhang Q, Ma Q, Li X, Zhao L, Sun X. A chiral metal-organic framework {(HQA)(ZnCl 2)(2.5H 2O)} n for the enantioseparation of chiral amino acids and drugs. J Pharm Anal 2023; 13:421-429. [PMID: 37181296 PMCID: PMC10173174 DOI: 10.1016/j.jpha.2023.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
Chiral metal-organic frameworks (CMOFs) with enantiomeric subunits have been employed in chiral chemistry. In this study, a CMOF formed from 6-methoxyl-(8S,9R)-cinchonan-9-ol-3-carboxylic acid (HQA) and ZnCl2, {(HQA)(ZnCl2)(2.5H2O)}n, was constructed as a chiral stationary phase (CSP) via an in situ fabrication approach and used for chiral amino acid and drug analyses for the first time. The {(HQA)(ZnCl2)(2.5H2O)}n nanocrystal and the corresponding chiral stationary phase were systematically characterised using a series of analytical techniques including scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, circular dichroism, X-ray photoelectron spectroscopy, thermogravimetric analysis, and Brunauer-Emmett-Teller surface area measurements. In open-tubular capillary electrochromatography (CEC), the novel chiral column exhibited strong and broad enantioselectivity toward a variety of chiral analytes, including 19 racemic dansyl amino acids and several model chiral drugs (both acidic and basic). The chiral CEC conditions were optimised, and the enantioseparation mechanisms are discussed. This study not only introduces a new high-efficiency member of the MOF-type CSP family but also demonstrates the potential of improving the enantioselectivities of traditional chiral recognition reagents by fully using the inherent characteristics of porous organic frameworks.
Collapse
Affiliation(s)
- Xiangtai Zheng
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China
| | - Qi Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Qianjie Ma
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Xinyu Li
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Liang Zhao
- Department of Pharmacy, Shanghai Baoshan Luodian Hospital, Shanghai, 201908, China
- Luodian Clinical Drug Research Center, Institute for Translational Medicine Research, Shanghai University, Shanghai, 200444, China
| | - Xiaodong Sun
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
10
|
Katayama T, Tanaka S, Tsuruoka T, Nagahama K. Two-Dimensional Metal-Organic Framework-Based Cellular Scaffolds with High Protein Adsorption, Retention, and Replenishment Capabilities. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34443-34454. [PMID: 35857286 DOI: 10.1021/acsami.2c08677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metal-organic frameworks (MOFs) are porous materials with adsorption, storage, and separation capabilities due to their high specific surface areas and large pore volumes. MOFs are thus used in biomedical applications, and MOF nanoparticles have been widely studied as nanocarriers for drug delivery systems. Several research groups recently reported that specific MOF nanoparticles can adsorb and retain proteins, suggesting to us that MOF nanoparticles may have advantages as novel cell culture scaffolds. However, MOF nanoparticles cannot be used as two-dimensional scaffolds for cells. We therefore established a bottom-up technique to construct two-dimensional MOFs [MIL-53 (Al)] on polymer films. The developed two-dimensional MIL-53 (Al) film [fMIL-53 (Al)] exhibited high serum protein adsorption, retention, and replenishment capabilities as compared to conventional cell culture scaffolds. β-Galactosidase, used as a model protein, adsorbed on fMIL-53 (Al) exhibited original enzymatic activity, indicating that proteins are not denatured during the adsorption process. The viability of mouse myoblast cells (C2C12) cultured on fMIL-53 (Al) was 100%, indicating the cell compatibility of fMIL-53 (Al). Importantly, C2C12 cells cultured on serum protein-preadsorbed fMIL-53 (Al) exhibited excellent long-term adhesion, morphology, and proliferation even in a medium lacking serum proteins, demonstrating an important advantage of fMIL-53 (Al) as a cell culture scaffold, given that conventional cell culture scaffolds typically require a serum-containing medium to support stable cell adhesion and proliferation. To our knowledge, this is the first report regarding the application of MOFs as cell culture scaffolds and will serve as a starting point for studying two- and three-dimensional MOF-based cellular scaffolds for cell culture systems and for in vitro and in vivo tissue engineering.
Collapse
Affiliation(s)
- Tokitaka Katayama
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Shintaro Tanaka
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Takaaki Tsuruoka
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Koji Nagahama
- Department of Nanobiochemistry, Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
11
|
LU C, ZHANG Y, SU Y, WANG W, FENG Y. [Advances in separation and analysis of aromatic amino acids in food]. Se Pu 2022; 40:686-693. [PMID: 35903835 PMCID: PMC9404096 DOI: 10.3724/sp.j.1123.2022.04011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Indexed: 11/25/2022] Open
Abstract
Amino acids are important building blocks of proteins in the human body, which are involved in many metabolic pathways. Patients with metabolic diseases such as phenylketonuria, tyrosinemia, and hepatic encephalopathy are genetically defective and cannot metabolize aromatic amino acids (AAA) in food; hence, a regular diet may lead to permanent physiological damage. For this reason, it is necessary to restrict the intake of AAA in their daily diet by limiting natural protein intake, while ensuring normal intake of low protein foods and supplementation with low-AAA protein equivalents. Sources of low-AAA protein equivalents currently rely on free amino acid complex mixtures and low-AAA peptides (also known as high-Fischer-ratio peptides), which have better absorption availability and palatability. AAA separation and analysis techniques are essential for the preparation and detection of low-AAA peptides. Researchers in this field have explored a variety of efficient adsorption materials to selectively remove AAA from complex protein hydrolysates and thus prepare low-AAA peptide foods, or to establish analysis strategies for AAA. Covering more than 70 publications on AAA removal and separation in the last decade from Web of Science Core Collection and China National Knowledge Infrastructure, this review analyzes the structural characteristics and physicochemical properties of AAA, and summarizes the technological progress of AAA removal based on adsorbents such as activated carbon and resin. The applications of two-dimensional nanomaterials, molecular imprinting, cyclodextrins, and metal-organic frameworks in AAA adsorption and analysis from three dimensions, i. e., sample pretreatment, chiral separation and adsorption sensing, are also reviewed. The mainstream adsorbents for AAA removal, such as activated carbon, still suffer from poor specificity and cause environmental pollution during post-use treatment. Existing AAA separating materials show impressive selective adsorption capability in food samples and chiral mixtures as well as high sensitivity in adsorption sensing. The development of an efficient detection technology for AAA may help in detecting trace AAA in food and in evaluating chiral AAA adulteration in food samples. By exploring the advantages and disadvantages of each type of technology, we provide support for the advancement of the removal and analysis techniques for AAA.
Collapse
|
12
|
Xu H, Guo J, Li C, Zhao J, Gao Z, Song YY. Nanoarchitectonics of a MOF-in-Nanochannel (HKUST-1/TiO 2) Membrane for Multitarget Selective Enrichment and Staged Recovery. ACS APPLIED MATERIALS & INTERFACES 2022; 14:22006-22015. [PMID: 35533013 DOI: 10.1021/acsami.2c05296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enrichment and separation of specific endogenous molecules are essential for disease diagnosis and the pharmaceutical industry. Although many solid sorbents have been developed for target molecule enrichment, simultaneous separation of multitargets is still a challenge for adsorbents. In this study, we develop a multitarget selective sorbent based on a nanochannel membrane prepared by the anodization of a Ti-Cu alloy. The in situ growth of a metal-organic framework (MOF, herein using Cu-based HKUST-1) in the nanochannels enables the resulting MOF-in-nanochannel membrane to act as a nanofilter. Benefitting from the size-exclusion effect of MOFs and the distinct surface characteristics of each component in the HKUST-1/TiO2 nanochannels, the as-proposed membranes can be simply operated as a filter and exhibit satisfactory selectivities and enrichment capacities in the separation of aromatic amino acids, histidine-rich proteins, and phosphoproteins. More importantly, the adsorbed multitargets can be further controllably released from the membrane in a sequence via a staged recovery process. The use of this system is envisioned to provide an innovative and potential design for efficient sorption media for the selective enrichment and staged separation of specific biomolecules.
Collapse
Affiliation(s)
- Huijie Xu
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junli Guo
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Chaowei Li
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Junjian Zhao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Zhida Gao
- College of Sciences, Northeastern University, Shenyang 110004, China
| | - Yan-Yan Song
- College of Sciences, Northeastern University, Shenyang 110004, China
| |
Collapse
|
13
|
Zhang Z, Yang B, Zhang B, Cui M, Tang J, Qiao X. Type II porous ionic liquid based on metal-organic cages that enables L-tryptophan identification. Nat Commun 2022; 13:2353. [PMID: 35487897 PMCID: PMC9054828 DOI: 10.1038/s41467-022-30092-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Porous liquids with chemical separation properties are quite well-studied in general, but there is only a handful of reports in the context of identification and separation of non-gaseous molecules. Herein, we report a Type II porous ionic liquid composed of coordination cages that exhibits exceptional selectivity towards L-tryptophan (L-Trp) over other aromatic amino acids. A previously known class of anionic organic-inorganic hybrid doughnut-like cage (HD) is dissolved in trihexyltetradecylphosphonium chloride (THTP_Cl). The resulting liquid, HD/THTP_Cl, is thereby composed of common components, facile to prepare, and exhibit room temperature fluidity. The permanent porosity is manifested by the high-pressure isotherm for CH4 and modeling studies. With evidence from time-dependent amino acid uptake, competitive extraction studies and molecular dynamic simulations, HD/THTP_Cl exhibit better selectivity towards L-Trp than other solid state sorbents, and we attribute it to not only the intrinsic porosity of HD but also the host-guest interactions between HD and L-Trp. Specifically, each HD unit is filled with nearly 5 L-Trp molecules, which is higher than the L-Trp occupation in the structure unit of other benchmark metal-organic frameworks.
Collapse
Affiliation(s)
- Zhuxiu Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China
| | - Baolin Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China
| | - Bingjie Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China
| | - Mifen Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China
| | - Jihai Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China.
- Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), No. 5 Xinmofan Road, 210009, Nanjing, China.
| | - Xu Qiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhunan Road, 211816, Nanjing, China.
- Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), No. 5 Xinmofan Road, 210009, Nanjing, China.
| |
Collapse
|
14
|
Mohan B, Modi K, Parikh J, Ma S, Kumar S, Kumar Manar K, Sun F, You H, Ren P. Efficacy of 2-nitrobenzylidene-hydrazine-based selective and rapid sensor for Cu2+ ions, histidine, and tyrosine: Spectral and computational study. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
15
|
A smart magnetically separable MIL-53(Al) MOF-coated nano-adsorbent for antibiotic pollutant removal with rapid and non-contact inductive heat regeneration. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Si T, Wang L, Zhang H, Liang X, Lu X, Wang S, Guo Y. A novel approach for the preparation of core-shell MOF/polymer composites as mixed-mode stationary phase. Talanta 2021; 232:122459. [PMID: 34074436 DOI: 10.1016/j.talanta.2021.122459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
The nickel organic framework capped with polyvinylpyrrolidone was prepared and synergistically immobilized onto porous silica surface as the mixed-mode stationary phase for high-performance liquid chromatography. Here, polyvinylpyrrolidone firstly was chosen as functional molecules to change morphology and size of the metal organic framework. The silica microspheres were then modified by them via a simple bonding method rather than in-situ growth method with the aid of electrostatic interaction commonly used before. The stationary phase showed flexible selectivity for separation of both hydrophilic and hydrophobic compounds, especially for hydrophilic compounds such as carbohydrates, alkaloids and sulfonamides etc. The chromatographic behaviors were evaluated by investigating various factors, and a typical mixed-mode retention feature of the column was observed. The composites could be prepared repetitively, and relative standard deviations of retention time of objective compounds among different batches were less than 1.75%. It also showed excellent chromatographic reproducibility, stability and potentiality for application in real samples. In short, the composites can be used for a feasible option for analysis of multiple compounds as the mixed-mode stationary phase and it provides a general approach for preparing MOFs-based composites by changing morphology and size of MOFs.
Collapse
Affiliation(s)
- Tiantian Si
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Xiaojing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
| | - Xiaofeng Lu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China
| | - Shuai Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China.
| | - Yong Guo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
17
|
Jia S, Song S, Zhao X. Selective adsorption and separation of dyes from aqueous solution by a zirconium‐based porous framework material. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Shifang Jia
- College of Chemical and Biological Engineering Taiyuan University of Science and Technology Taiyuan China
| | - Sufang Song
- College of Chemical and Biological Engineering Taiyuan University of Science and Technology Taiyuan China
| | - Xudong Zhao
- College of Chemical and Biological Engineering Taiyuan University of Science and Technology Taiyuan China
| |
Collapse
|
18
|
Zhang L, Wang H, Zhao G, Li N, Wang X, Li Y, Jia Y, Qiao X. Anti-Tim4 Grafting Strongly Hydrophilic Metal-Organic Frameworks Immunoaffinity Flake for High-Efficiency Capture and Separation of Exosomes. Anal Chem 2021; 93:6534-6543. [PMID: 33851819 DOI: 10.1021/acs.analchem.1c00528] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Exosomes have become the most ideal analysis target for liquid biopsy since they carry a large amount of genetic materials. The study on exosomes has great significance for cancer diagnosis and prognosis. However, the extremely low concentration renders the development of a robust exosomes enrichment technique, with the merits of low nonspecific cell adhesion, high-capture efficiency, and easy nondestructive release of captured exosomes, of vital significance. We successfully designed and developed a novel Tim4@ILI-01 immunoaffinity flake material. First, a strongly hydrophilic ILI-01 MOFs matrix material was fabricated with cationic ionic liquid 1,3-bis(4-carboxybutyl)imidazolium bromide as the organic ligand. The nonspecific adsorption of the ILI-01 MOFs material was only 0.7% after two washings with a neutral buffer. Moreover, based on the inherent abundant carboxyl groups on the ILI-01 MOFs flake, they can be facilely functionalized with an anti-Tim4 antibody with the bonding efficiency of 82.4%. The capture efficiency of the developed Tim4@ILI-01 immunoaffinity material for exosomes reached 85.2%, which is 5.2 times higher than that via the gold standard ultracentrifugation method. Furthermore, based on the Ca2+-dependent characteristic of the binding between the Tim4@ILI-01 immunoaffinity material and phosphatidylserine (PS) on the surfaces of exosomes, the captured exosomes can be easily released with the addition of a chelating agent under neutral eluent conditions. Thus, the captured exosomes maintained good biological activity. The developed Tim4@ILI-01 immunoaffinity flake was successfully applied for enrichment of exosomes from serums of healthy persons and lung adenocarcinoma patients. The levels of the expressed CD44 gene significantly changed under different stages of lung adenocarcinoma cancer. All these results demonstrate that the Tim4@ILI-01 immunoaffinity flake is a robust enrichment material and has a good potential in practical clinical applications.
Collapse
Affiliation(s)
- Lei Zhang
- College of Pharmaceutical Sciences, Key Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding 071002, China.,Department of Medical Oncology, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding 071000, China.,College of Clinical Medicine, Hebei University, Baoding 071002, China
| | - Haiyan Wang
- College of Pharmaceutical Sciences, Key Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding 071002, China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Guofa Zhao
- Department of Medical Oncology, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding 071000, China.,College of Clinical Medicine, Hebei University, Baoding 071002, China
| | - Nan Li
- Department of Medical Oncology, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding 071000, China.,College of Clinical Medicine, Hebei University, Baoding 071002, China
| | - Xiaofang Wang
- Department of Medical Oncology, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding 071000, China.,College of Clinical Medicine, Hebei University, Baoding 071002, China
| | - Yumiao Li
- Department of Medical Oncology, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding 071000, China.,College of Clinical Medicine, Hebei University, Baoding 071002, China
| | - Youchao Jia
- Department of Medical Oncology, Hebei Key Laboratory of Cancer Radiotherapy and Chemotherapy, Affiliated Hospital of Hebei University, Baoding 071000, China.,College of Clinical Medicine, Hebei University, Baoding 071002, China
| | - Xiaoqiang Qiao
- College of Pharmaceutical Sciences, Key Laboratory of Public Health Safety of Hebei Province, Hebei University, Baoding 071002, China.,Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
19
|
Sun Y, Zheng W. Polyethylenimine-functionalized polyacrylonitrile anion exchange fiber as a novel adsorbent for rapid removal of nitrate from wastewater. CHEMOSPHERE 2020; 258:127373. [PMID: 32569957 DOI: 10.1016/j.chemosphere.2020.127373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/13/2020] [Accepted: 06/08/2020] [Indexed: 05/27/2023]
Abstract
The development of an adsorbent with high adsorption ability and favorable cyclic regeneration performance for the removal of nitrate residues from wastewater is a task of vital importance. To this end, polyacrylonitrile fiber (PANF) was modified with polyethyleneimine (PEI), and alkyl groups were then introduced around the active amine groups to prepare three polymer-based anion exchange fibers (PAN-PEI-3C, PAN-PEI-5C, and PAN-PEI-8C). The novel fibers were characterized using techniques such as scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The adsorption isotherms of the fibers were best fitted by the Langmuir model, and PAN-PEI-5C exhibited a higher adsorption amount of nitrate (31.32 mg/g) than the other adsorbents. The equilibrium was reached expeditiously (within 10 min), and both pseudo-first-order and pseudo-second-order models could well describe the adsorption kinetics. More attractively, the saturated PAN-PEI-5C could be eluted using a low-concentration (0.3 M) NaCl solution, without any sharp loss of adsorption amount for five consecutive cycles in the presence of dissolved organic matter (DOM). Furthermore, PAN-PEI-5C could effectively adsorb low-concentration nitrate from real secondary effluents in a fixed-bed column experiment. Our work provides a promising and low-cost material for the removal of nitrate residues in practical applications.
Collapse
Affiliation(s)
- Yue Sun
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China.
| | - Weisheng Zheng
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
20
|
Sustainable activation of peroxymonosulfate by the Mo(IV) in MoS2 for the remediation of aromatic organic pollutants. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.08.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Deischter J, Wolter N, Palkovits R. Tailoring Activated Carbons for Efficient Downstream Processing: Selective Liquid-Phase Adsorption of Lysine. CHEMSUSCHEM 2020; 13:3614-3621. [PMID: 32421219 PMCID: PMC7496951 DOI: 10.1002/cssc.202000885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Indexed: 06/11/2023]
Abstract
The essential amino acid lysine is of great importance in the nutrition and pharmaceutical industries and is mainly produced in biorefineries by the fermentation of glucose. In biorefineries, downstream processing is often the most energy-consuming step. Adsorption on hydrophobic adsorbents represents an energy, resource, and cost-saving alternative. The results reported herein provide insights into the selective separation of l-lysine from aqueous solution by liquid-phase adsorption using tailored activated carbons. A variety of commercial activated carbons with different textural properties and surface functionalities is investigated. Comprehensive adsorbent characterization establishes structure-adsorption relationships that define the major roles of the specific surface area and oxygen functionalities. A 13-fold increase of the separation of lysine and glucose is achieved through systematic modification of a selected activated carbon by oxidation, and lysine adsorption is enhanced by 30 %.
Collapse
Affiliation(s)
- Jeff Deischter
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Nadja Wolter
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
| | - Regina Palkovits
- Institut für Technische und Makromolekulare Chemie (ITMC)RWTH Aachen UniversityWorringerweg 252074AachenGermany
| |
Collapse
|
22
|
Xie L, Xu M, Liu X, Zhao M, Li J. Hydrophobic Metal-Organic Frameworks: Assessment, Construction, and Diverse Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901758. [PMID: 32099755 PMCID: PMC7029650 DOI: 10.1002/advs.201901758] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/18/2019] [Indexed: 05/28/2023]
Abstract
Tens of thousands of metal-organic frameworks (MOFs) have been developed in the past two decades, and only ≈100 of them have been demonstrated as porous and hydrophobic. These hydrophobic MOFs feature not only a rich structural variety, highly crystalline frameworks, and uniform micropores, but also a low affinity toward water and superior hydrolytic stability, which make them promising adsorbents for diverse applications, including humid CO2 capture, alcohol/water separation, pollutant removal from air or water, substrate-selective catalysis, energy storage, anticorrosion, and self-cleaning. Herein, the recent research advancements in hydrophobic MOFs are presented. The existing techniques for qualitatively or quantitatively assessing the hydrophobicity of MOFs are first introduced. The reported experimental methods for the preparation of hydrophobic MOFs are then categorized. The concept that hydrophobic MOFs normally synthesized from predesigned organic ligands can also be prepared by the postsynthetic modification of the internal pore surface and/or external crystal surface of hydrophilic or less hydrophobic MOFs is highlighted. Finally, an overview of the recent studies on hydrophobic MOFs for various applications is provided and suggests the high versatility of this unique class of materials for practical use as either adsorbents or nanomaterials.
Collapse
Affiliation(s)
- Lin‐Hua Xie
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Ming‐Ming Xu
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Xiao‐Min Liu
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Min‐Jian Zhao
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| | - Jian‐Rong Li
- Beijing Key Laboratory for Green Catalysis and SeparationDepartment of Chemistry and Chemical EngineeringCollege of Environmental and Energy EngineeringBeijing University of TechnologyBeijing100124P. R. China
| |
Collapse
|
23
|
Chiu CC, Shieh FK, Tsai HHG. Ligand Exchange in the Synthesis of Metal-Organic Frameworks Occurs Through Acid-Catalyzed Associative Substitution. Inorg Chem 2019; 58:14457-14466. [PMID: 31498604 DOI: 10.1021/acs.inorgchem.9b01947] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The syntheses of metal-organic frameworks (MOFs) can be improved through modulated synthesis, synthesis employing precursors, and postsynthetic exchange (PSE) modifications, all of which share ligand exchange as a common and crucial reaction. To date, however, the mechanism of ligand exchange and the underlying principles governing it have remained elusive. Herein, we report energy landscapes for the ligand exchange processes of 1,4-benzenedicarboxylic acid and 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylic acid with Zr6O4(OH)4(OMc)12 (OMc = methacrylate), as calculated using density functional theory (DFT). The rate-limiting step of ligand exchange follows an associative-substitution mechanism catalyzed by protons, consistent with previous kinetic data. Our calculations suggest that the acid catalysis is dependent on the relative basicities of the incoming and outgoing ligands coordinated in the complex, allowing molecular-level rationalization of many seminal MOF syntheses that had previously been interpreted macroscopically. Our results provide new insights for MOF synthesis and new clues for the rational de novo synthesis of MOFs.
Collapse
Affiliation(s)
- Chih-Chiang Chiu
- Department of Chemistry , National Central University , No. 300, Zhongda Road , Zhongli District, Taoyuan City 32001 , Taiwan
| | - Fa-Kuen Shieh
- Department of Chemistry , National Central University , No. 300, Zhongda Road , Zhongli District, Taoyuan City 32001 , Taiwan
| | - Hui-Hsu Gavin Tsai
- Department of Chemistry , National Central University , No. 300, Zhongda Road , Zhongli District, Taoyuan City 32001 , Taiwan.,Research Center of New Generation Light Driven Photovoltaic Module , National Central University , No. 300, Zhongda Road , Zhongli District, Taoyuan City 32001 , Taiwan
| |
Collapse
|
24
|
Si T, Liu L, Liang X, Duo H, Wang L, Wang S. Solid-phase extraction of phenoxyacetic acid herbicides in complex samples with a zirconium(IV)-based metal-organic framework. J Sep Sci 2019; 42:2148-2154. [PMID: 30997954 DOI: 10.1002/jssc.201900243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/13/2019] [Accepted: 04/14/2019] [Indexed: 12/11/2022]
Abstract
A zirconium(IV)-based metal-organic framework material (MOF-808) has been synthesized in a simple way and used for the extraction of phenoxyacetic acids in complex samples. The material has good thermal and chemical stability, large specific surface area (905.36 m²/g), and high pore size (22.18 Å). Besides, it contains a large amount of Zr-O groups, easy-to-form Zr-O-H bond with carboxyl groups of phenoxyacetic acids, and possesses biphenyl skeleton structure, easy to interact with compounds through π-π and hydrophobic interactions. These characteristics make the material very suitable for the extraction of certain compounds with a high extraction efficiency and excellent selectivity. The extraction conditions were optimized, and then an analytical method was successfully established and applied for analysis of actual samples. The solid-phase extraction method based on prepared material had a wide linear range of 0.2-250 μg/L and a low detection limit of 0.1-0.5 μg/L for four phenoxyacetic acid compounds including 2,4-dichlorophenoxyacetic acid, 2-(2,4-dichlorophenoxy) propionic acid, 4-chlorophenoxyacetic acid, and dicamba. The relative standard deviations of intra- and interday precision were 1.8-3.8 and 4.3-6.9%, and the recoveries after spiking were between 77.1 and 109.3%. The results showed that the material is a desired substituent for the extraction of compounds with benzene ring structure containing carboxyl groups.
Collapse
Affiliation(s)
- Tiantian Si
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Lei Liu
- Exploration and Development Research Institute, Changqing Oilfield, Xi'an, P. R. China
| | - Xiaojing Liang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou, P. R. China
| | - Huixiao Duo
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou, P. R. China.,University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Licheng Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou, P. R. China
| | - Shuai Wang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Chinese Academy of Sciences, Lanzhou Institute of Chemical Physics, Lanzhou, P. R. China
| |
Collapse
|
25
|
De Schouwer F, Claes L, Vandekerkhove A, Verduyckt J, De Vos DE. Protein-Rich Biomass Waste as a Resource for Future Biorefineries: State of the Art, Challenges, and Opportunities. CHEMSUSCHEM 2019; 12:1272-1303. [PMID: 30667150 DOI: 10.1002/cssc.201802418] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Protein-rich biomass provides a valuable feedstock for the chemical industry. This Review describes every process step in the value chain from protein waste to chemicals. The first part deals with the physicochemical extraction of proteins from biomass, hydrolytic degradation to peptides and amino acids, and separation of amino acid mixtures. The second part provides an overview of physical and (bio)chemical technologies for the production of polymers, commodity chemicals, pharmaceuticals, and other fine chemicals. This can be achieved by incorporation of oligopeptides into polymers, or by modification and defunctionalization of amino acids, for example, their reduction to amino alcohols, decarboxylation to amines, (cyclic) amides and nitriles, deamination to (di)carboxylic acids, and synthesis of fine chemicals and ionic liquids. Bio- and chemocatalytic approaches are compared in terms of scope, efficiency, and sustainability.
Collapse
Affiliation(s)
- Free De Schouwer
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Laurens Claes
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Annelies Vandekerkhove
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Jasper Verduyckt
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| | - Dirk E De Vos
- Centre for Surface Chemistry and Catalysis, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, post box 2461, 3001, Heverlee, Belgium
| |
Collapse
|
26
|
Li X, Li B, Liu M, Zhou Y, Zhang L, Qiao X. Core-Shell Metal-Organic Frameworks as the Mixed-Mode Stationary Phase for Hydrophilic Interaction/Reversed-Phase Chromatography. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10320-10327. [PMID: 30785718 DOI: 10.1021/acsami.9b00285] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stationary phases with mixed-mode mechanisms have emerged as a hot research topic. In the present research, monodisperse core-shell UiO-67@SiO2 materials were prepared and further served as the packed column for mixed-mode hydrophilic interaction liquid chromatography/reversed-phase liquid chromatography. The developed UiO-67@SiO2 materials were characterized via thermogravimetric analysis, scanning electron microscopy, X-ray Powder diffraction, and Fourier transform infrared techniques. The developed UiO-67@SiO2 column shows flexible selectivity for separation of both hydrophobic (anilines, alkylbenzenes, and polycyclic aromatic hydrocarbons) and hydrophilic (thioureas) compounds. Furthermore, the UiO-67@SiO2 column was also utilized to characterize potential pollutants in lake water samples. In summary, the UiO-67@SiO2 column provided flexible selectivity and wide-range retention behaviors for both hydrophilic and hydrophobic analytes.
Collapse
Affiliation(s)
- Xueyun Li
- College of Pharmacy, Hebei Province Key Laboratory of Analytical Science & Technology, MOE Key Laboratory of Medicinal Chemistry & Molecular Diagnosis , Hebei University , Baoding 071002 , China
| | - Bo Li
- College of Pharmacy, Hebei Province Key Laboratory of Analytical Science & Technology, MOE Key Laboratory of Medicinal Chemistry & Molecular Diagnosis , Hebei University , Baoding 071002 , China
| | - Mingchen Liu
- College of Pharmacy, Hebei Province Key Laboratory of Analytical Science & Technology, MOE Key Laboratory of Medicinal Chemistry & Molecular Diagnosis , Hebei University , Baoding 071002 , China
| | - Yufeng Zhou
- College of Pharmacy, Hebei Province Key Laboratory of Analytical Science & Technology, MOE Key Laboratory of Medicinal Chemistry & Molecular Diagnosis , Hebei University , Baoding 071002 , China
| | - Liyuan Zhang
- Key Laboratory of Proteomics, Liaoning Province , Dalian Medical University , No. 9 Lvshun South Road , Dalian 116044 , China
| | - Xiaoqiang Qiao
- College of Pharmacy, Hebei Province Key Laboratory of Analytical Science & Technology, MOE Key Laboratory of Medicinal Chemistry & Molecular Diagnosis , Hebei University , Baoding 071002 , China
| |
Collapse
|
27
|
Qiao M, Liu X, Song JW, Yang T, Chen ML, Wang JH. Improving the adsorption capacity for ovalbumin by functional modification of aminated mesoporous silica nanoparticles with tryptophan. J Mater Chem B 2018; 6:7703-7709. [PMID: 32254892 DOI: 10.1039/c8tb02221f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tryptophan (Trp) modified aminated mesoporous silica nanoparticles (AMSNs), shortened to Trp-AMSNs, are prepared via covalent binding. The obtained Trp-AMSNs exhibit a uniform size of ca. 83 nm, a mesopore diameter of ca. 2.6 nm, along with a pore volume of 0.439 cm3 g-1. It is demonstrated that Trp-AMSNs selectively adsorb ovalbumin (Ova) from complex biological matrices. At pH 5.0, 1.0 mg of Trp-AMSNs produces an adsorption efficiency of 96% for 100 mg L-1 Ova in 1.0 mL of solution. An adsorption capacity of 1240.3 mg g-1 is derived for Ova, which is much improved with respect to that of the native AMSNs. The retained Ova could be readily recovered by a sodium dodecyl sulfate (SDS) solution (0.5%, m/v), providing a recovery of 71.2%. Trp-AMSNs are further applied for the isolation of Ova from a protein mixture (with a molar ratio of ovalbumin/lysozyme of 1 : 10) and an egg-white sample. High-purity Ova is obtained, as demonstrated by SDS-PAGE assay results.
Collapse
Affiliation(s)
- Min Qiao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| | | | | | | | | | | |
Collapse
|
28
|
Hu X, Zhu H, Sang X, Wang D. Design and Synthesis of Zirconium-Containing Coordination Polymer Based on Unsymmetric Indolyl Dicarboxylic Acid and Catalytic Application on Borrowing Hydrogen Reaction. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800875] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xinyu Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 Jiangsu Province People's Republic of China
| | - Haiyan Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 Jiangsu Province People's Republic of China
| | - Xinxin Sang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 Jiangsu Province People's Republic of China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering; Jiangnan University; Wuxi 214122 Jiangsu Province People's Republic of China
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials, College of Materials and Chemical Engineering; China Three Gorges University; Yichang, Hubei 443002 People's Republic of China
| |
Collapse
|
29
|
Mukherjee S, Desai AV, Ghosh SK. Potential of metal–organic frameworks for adsorptive separation of industrially and environmentally relevant liquid mixtures. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.001] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|