1
|
Mandal T, Kumar A, Panda J, Kumar Dutta T, Choudhury J. Directly Knitted Hierarchical Porous Organometallic Polymer-Based Self-Supported Single-Site Catalyst for CO 2 Hydrogenation in Water. Angew Chem Int Ed Engl 2023; 62:e202314451. [PMID: 37874893 DOI: 10.1002/anie.202314451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 10/26/2023]
Abstract
In recent times, heterogenization of homogeneous molecular catalysts onto various porous solid support structures has attracted significant research focus as a method for combining the advantages of both homogeneous as well as heterogeneous catalysis. The design of highly efficient, structurally robust and reusable heterogenized single-site catalysts for the CO2 hydrogenation reaction is a critical challenge that needs to be accomplished to implement a sustainable and practical CO2 -looped renewable energy cycle. This study demonstrated a heterogenized catalyst [Ir-HCP-(B/TPM)] containing a molecular Ir-abnormal N-heterocyclic carbene (Ir-aNHC) catalyst self-supported by hierarchical porous hyper-crosslinked polymer (HCP), in catalytic hydrogenation of CO2 to inorganic formate (HCO2 - ) salt that is a prospective candidate for direct formate fuel cells (DFFC). By employing this unique and first approach of utilizing a directly knitted HCP-based organometallic single-site catalyst for CO2 -to-HCO2 - in aqueous medium, extremely high activity with a single-run turnover number (TON) up to 50816 was achieved which is the highest so far considering all the heterogeneous catalysts for this reaction in water. Additionally, the catalyst featured excellent reusability furnishing a cumulative TON of 285400 in 10 cycles with just 1.6 % loss in activity per cycle. Overall, the new catalyst displayed attributes that are important for developing tangible catalysts for practical applications.
Collapse
Affiliation(s)
- Tanmoy Mandal
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Abhishek Kumar
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Jatin Panda
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Tapas Kumar Dutta
- Functional Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
2
|
Paterson R, Fahy LE, Arca E, Dixon C, Wills CY, Yan H, Griffiths A, Collins SM, Wu K, Bourne RA, Chamberlain TW, Knight JG, Doherty S. Amine-modified polyionic liquid supports enhance the efficacy of PdNPs for the catalytic hydrogenation of CO 2 to formate. Chem Commun (Camb) 2023; 59:13470-13473. [PMID: 37877311 DOI: 10.1039/d3cc04987f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Palladium nanoparticles stabilised by aniline modified polymer immobilised ionic liquid is a remarkably active catalyst for the hydrogenation of CO2 to formate; the initial TOF of 500 h-1 is markedly higher than either unmodified catalyst or its benzylamine and N,N-dimethylaniline modified counterparts and is among the highest to be reported for a PdNP-based catalyst.
Collapse
Affiliation(s)
- Reece Paterson
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Luke E Fahy
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Elisabetta Arca
- School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Casey Dixon
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Corinne Y Wills
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Han Yan
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, LS2 9JT, UK
| | - Anthony Griffiths
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, LS2 9JT, UK
| | - Sean M Collins
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, LS2 9JT, UK
| | - Kejun Wu
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, LS2 9JT, UK
| | - Richard A Bourne
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, LS2 9JT, UK
| | - Thomas W Chamberlain
- Institute of Process Research & Development, School of Chemistry and School of Chemical and Process Engineering, University of Leeds, Woodhouse Lane, LS2 9JT, UK
| | - Julian G Knight
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| | - Simon Doherty
- Newcastle University Centre for Catalysis (NUCAT), School of Chemistry, Bedson Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
| |
Collapse
|
3
|
Mirzakhani S, Yin BH, Masteri-Farahani M, Yip ACK. Heterogeneous Catalytic Systems for Carbon Dioxide Hydrogenation to Value-Added Chemicals. Chempluschem 2023; 88:e202300157. [PMID: 37263976 DOI: 10.1002/cplu.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/21/2023] [Accepted: 06/01/2023] [Indexed: 06/03/2023]
Abstract
Utilizing renewable energy to hydrogenate carbon dioxide into fuels eliminates massive CO2 emissions from the atmosphere and diminishes our need for using fossil fuels. This review presents the most recent developments for designing heterogeneous catalysts for the hydrogenation of CO2 to formate, methanol, and C2+ hydrocarbons. Thermodynamic challenges and mechanistic insights are discussed, providing a strong foundation to propose a suitable catalyst. The main body of this review focuses on nanostructured catalysts for constructing efficient heterogeneous systems. The most important factors affecting catalytic performance are highlighted, including active metals, supports and promoters that can potentially be used. The summary of the results and the outlook are presented in the final section. During the past few decades, heterogeneous CO2 hydrogenation has gained much attention and made tremendous progress. Thus, many highly efficient catalysts have been studied to discover their active sites and provide mechanistic insights. This paper summarizes recent advances in CO2 hydrogenation and its conversion into various hydrocarbons such as formate, methanol, and C2+ products. As for formate production, Au and Ru nanocatalysts show superior activity. However, considering the catalyst cost, Cu-based catalysts have an excellent prospect for methanol production, among other catalysts. Ultra-small nanoparticles and nanoclusters appear promising to provide highly active cost-effective catalysts. A growing number of researchers are investigating the possibility of directly synthesizing C2+ products through CO2 hydrogenation. The major challenge in producing heavy hydrocarbons is breaking the ASF limitations, which have been achieved over bifunctional catalysts using zeolites. Using suitable support and promoter can lead to a superior activity, ascribed to structural, electronic, and chemical promotional effects.
Collapse
Affiliation(s)
- Sara Mirzakhani
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Ben Hang Yin
- Robinson Research Institute, Faculty of Engineering, Victoria University of Wellington, Wellington, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | | | - Alex C K Yip
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
4
|
Verma P, Zhang S, Song S, Mori K, Kuwahara Y, Wen M, Yamashita H, An T. Recent strategies for enhancing the catalytic activity of CO2 hydrogenation to formate/formic acid over Pd-based catalyst. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
5
|
Preparation of supported In2O3/Pd nanocatalysts using natural pollen as bio-templates for CO2 hydrogenation to methanol: Effect of acid-etching on template. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Nakayama T, Hikawa H, Kikkawa S, Azumaya I. Water-promoted dehydrative coupling of 2-aminopyridines in heptane via a borrowing hydrogen strategy. RSC Adv 2021; 11:23144-23150. [PMID: 35480450 PMCID: PMC9034306 DOI: 10.1039/d1ra04118e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/23/2021] [Indexed: 11/23/2022] Open
Abstract
A synthetic method for dehydrative N-benzylation promoted by water molecules in heptane using a π-benzylpalladium system has been developed. The presence of water significantly accelerates carbon–nitrogen bond formation, which is accomplished in an atom-economical process to afford the corresponding N-monobenzylated products. A crossover experiment afforded H/D scrambled products, which is consistent with a borrowing hydrogen mechanism. Kinetic isotope effect measurements revealed that benzylic carbon–hydrogen bond cleavage was the rate-determining step. We describe a novel strategy for the water-promoted dehydrative coupling reaction in heptane, which offers a sustainable direct amination of alcohols.![]()
Collapse
Affiliation(s)
- Taku Nakayama
- Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Hidemasa Hikawa
- Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Shoko Kikkawa
- Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| | - Isao Azumaya
- Faculty of Pharmaceutical Sciences, Toho University 2-2-1 Miyama, Funabashi Chiba 274-8510 Japan
| |
Collapse
|
7
|
Bose I, Fa S, Zhao Y. Tunable Artificial Enzyme-Cofactor Complex for Selective Hydrolysis of Acetals. J Org Chem 2021; 86:1701-1711. [PMID: 33397107 PMCID: PMC8170846 DOI: 10.1021/acs.joc.0c02519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Enzymes frequently use unimpressive functional groups such as weak carboxylic acids for efficient, highly selective catalysis including hydrolysis of acetals and even amides. Much stronger acids generally have to be used for such purposes in synthetic systems. We report here a method to position an acidic group near the acetal oxygen of 2-(4-nitrophenyl)-1,3-dioxolane bound by an artificial enzyme. The hydrolytic activity of the resulting artificial enzyme-cofactor complex was tuned by the number and depth of the active site as well as the hydrophobicity and acidity of the cofactor. The selectivity of the complex was controlled by the size and shape of the active site and enabled less reactive acetals to be hydrolyzed over more reactive ones.
Collapse
Affiliation(s)
- Ishani Bose
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111
| | - Shixin Fa
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111
| | - Yan Zhao
- Department of Chemistry, Iowa State University, Ames, Iowa 50011-3111
| |
Collapse
|
8
|
Shao X, Miao X, Yu X, Wang W, Ji X. Efficient synthesis of highly dispersed ultrafine Pd nanoparticles on a porous organic polymer for hydrogenation of CO2 to formate. RSC Adv 2020; 10:9414-9419. [PMID: 35497209 PMCID: PMC9050159 DOI: 10.1039/d0ra01324b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/24/2020] [Indexed: 11/21/2022] Open
Abstract
Precise design of catalytic supports is an encouraging technique for simultaneously improving the activity and stability of the catalyst. However, development of efficient heterogeneous catalysts for transforming CO2 into formic acid (FA) is still a big challenge. Herein, we report that Pd nanoparticles (NPs) based on a porous organic polymeric support containing amide and pyridine functional groups (AP-POP) can be an efficient catalyst for selective hydrogenation of CO2 to form formate with high efficiency even under mild reaction conditions (6.0 MPa, 80 °C). Electron density of the active Pd species modulated via the interaction between pyridine nitrogen and Pd play important roles in dramatic enhancement of catalytic activity and was indicated by X-ray photoelectron spectroscopy (XPS) along with CO chemisorption. This work provides an interesting and effective strategy for precise support design to improve the catalytic performance of nanoparticles. Precise design of catalytic supports is an encouraging technique for simultaneously improving the activity and stability of the catalyst.![]()
Collapse
Affiliation(s)
- Xianzhao Shao
- Shaanxi Key Laboratory of Catalysis
- School of Chemistry and Environment Science
- Shaanxi University of Technology
- Hanzhong 723001
- China
| | - Xinyi Miao
- Shaanxi Key Laboratory of Catalysis
- School of Chemistry and Environment Science
- Shaanxi University of Technology
- Hanzhong 723001
- China
| | - Xiaohu Yu
- Shaanxi Key Laboratory of Catalysis
- School of Chemistry and Environment Science
- Shaanxi University of Technology
- Hanzhong 723001
- China
| | - Wei Wang
- Shaanxi Key Laboratory of Catalysis
- School of Chemistry and Environment Science
- Shaanxi University of Technology
- Hanzhong 723001
- China
| | - Xiaohui Ji
- Shaanxi Key Laboratory of Catalysis
- School of Chemistry and Environment Science
- Shaanxi University of Technology
- Hanzhong 723001
- China
| |
Collapse
|
9
|
Hu L, Zhao Y. A Bait‐and‐Switch Method for the Construction of Artificial Esterases for Substrate‐Selective Hydrolysis. Chemistry 2019; 25:7702-7710. [DOI: 10.1002/chem.201900560] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Lan Hu
- Department of ChemistryIowa State University Ames IA 50011-3111 USA
| | - Yan Zhao
- Department of ChemistryIowa State University Ames IA 50011-3111 USA
| |
Collapse
|
10
|
Magnetic organic-silica hybrid supported Pt nanoparticles for carbon sequestration reaction. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00773-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|