1
|
Tan R, Wu J, Wang C, Zhao Z, Zhang X, Zhong C, Tang Z, Zheng R, Du B, He Y, Sun Y, Zhou P. The develop of persistent luminescence nanoparticles with excellent performances in cancer targeted bioimaging and killing: a review. J Nanobiotechnology 2025; 23:299. [PMID: 40247320 PMCID: PMC12007383 DOI: 10.1186/s12951-025-03350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/23/2025] [Indexed: 04/19/2025] Open
Abstract
The use of fluorescent nanomaterials in tumor imaging and treatment effectively avoids the original limitations of traditional tumor clinical diagnostic methods. The PLNPs emitted persistent luminescence after the end of excitation light. Owing to their superior optical properties, such as a reduced laser irradiation dose, spontaneous fluorescence interference elimination, and near-infrared imaging, PLNPs show great promise in tumor imaging. Moreover, they also achieve excellent anti-tumor therapeutic effects through surface modification and drug delivery. However, their relatively large size and limited surface modification capacity limit their ability to kill tumors effectively enough for clinical applications. Thus, this article reviews the synthesis and modification of PLNPs and the research progress in targeted tumor imaging and tumor killing. We also discuss the challenges and prospects of their future applications in these fields. This review has value for accelerating the design of PLNPs based platform for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Rongshuang Tan
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jianing Wu
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Chunya Wang
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhengyan Zhao
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xiaoyuan Zhang
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Chang Zhong
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zihui Tang
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Rui Zheng
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Binhong Du
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yunhan He
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yuhua Sun
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
- Department of Stomatology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| | - Ping Zhou
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
2
|
Liu Y, Li J, Xiahou J, Liu Z. Recent Advances in NIR or X-ray Excited Persistent Luminescent Materials for Deep Bioimaging. J Fluoresc 2025; 35:179-195. [PMID: 38008861 DOI: 10.1007/s10895-023-03513-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023]
Abstract
Due to their persistent luminescence, persistent luminescent (PersL) materials have attracted great interest. In the biomedical field, the use of persistent luminescent nanoparticles (PLNPs) eliminates the need for continuous in situ excitation, thereby avoiding interference from tissue autofluorescence and significantly improving the signal-to-noise ratio (SNR). Although persistent luminescence materials can emit light continuously, the luminescence intensity of small-sized nanoparticles in vivo decays quickly. Early persistent luminescent nanoparticles were mostly excited by ultraviolet (UV) or visible light and were administered for imaging purposes through ex vivo charging followed by injection into the body. Limited by the low in vivo penetration depth, UV light cannot secondary charge PLNPs that have decayed in vivo, and visible light does not penetrate deep enough to reach deep tissues, which greatly limits the imaging time of persistent luminescent materials. In order to address this issue, the development of PLNPs that can be activated by light sources with superior tissue penetration capabilities is essential. Near-infrared (NIR) light and X-rays are widely recognized as ideal excitation sources, making persistent luminescent materials stimulated by these two sources a prominent area of research in recent years. This review describes NIR and X-ray excitable persistent luminescence materials and their recent advances in bioimaging.
Collapse
Affiliation(s)
- Yuanqi Liu
- School of Material Science and Engineering, University of Jinan, Jinan, China
| | - Jinkai Li
- School of Material Science and Engineering, University of Jinan, Jinan, China.
- Infovision Optoelectronics (Kunshan)Co, Ltd, Kunshan, 215300, China.
| | - Junqing Xiahou
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| | - Zongming Liu
- School of Material Science and Engineering, University of Jinan, Jinan, China.
| |
Collapse
|
3
|
Chan MH, Chang YC. Recent advances in near-infrared I/II persistent luminescent nanoparticles for biosensing and bioimaging in cancer analysis. Anal Bioanal Chem 2024; 416:3887-3905. [PMID: 38592442 PMCID: PMC11192682 DOI: 10.1007/s00216-024-05267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Photoluminescent materials (PLNs) are photoluminescent materials that can absorb external excitation light, store it, and slowly release it in the form of light in the dark to achieve long-term luminescence. Developing near-infrared (NIR) PLNs is critical to improving long-afterglow luminescent materials. Because they excite in vitro, NIR-PLNs have the potential to avoid interference from in vivo autofluorescence in biomedical applications. These materials are promising for biosensing and bioimaging applications by exploiting the near-infrared biological window. First, we discuss the biomedical applications of PLNs in the first near-infrared window (NIR-I, 700-900 nm), which have been widely developed and specifically introduce biosensors and imaging reagents. However, the light in this area still suffers from significant light scattering and tissue autofluorescence, which will affect the imaging quality. Over time, fluorescence imaging technology in the second near-infrared window (NIR-II, 1000-1700 nm) has also begun to develop rapidly. NIR-II fluorescence imaging has the advantages of low light scattering loss, high tissue penetration depth, high imaging resolution, and high signal-to-noise ratio, and it shows broad application prospects in biological analysis and medical diagnosis. This critical review collected and sorted articles from the past 5 years and introduced their respective fluorescence imaging technologies and backgrounds based on the definitions of NIR-I and NIR-II. We also analyzed the current advantages and dilemmas that remain to be solved. Herein, we also suggested specific approaches NIR-PLNs can use to improve the quality and be more applicable in cancer research.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, 112304, Taipei, Taiwan.
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, 112304, Taipei, Taiwan.
| |
Collapse
|
4
|
Abstract
Light-mediated therapeutics, including photodynamic therapy, photothermal therapy and light-triggered drug delivery, have been widely studied due to their high specificity and effective therapy. However, conventional light-mediated therapies usually depend on the activation of light-sensitive molecules with UV or visible light, which have poor penetration in biological tissues. Over the past decade, efforts have been made to engineer nanosystems that can generate luminescence through excitation with near-infrared (NIR) light, ultrasound or X-ray. Certain nanosystems can even carry out light-mediated therapy through chemiluminescence, eliminating the need for external activation. Compared to UV or visible light, these 4 excitation modes penetrate more deeply into biological tissues, triggering light-mediated therapy in deeper tissues. In this review, we systematically report the design and mechanisms of different luminescent nanosystems excited by the 4 excitation sources, methods to enhance the generated luminescence, and recent applications of such nanosystems in deep tissue light-mediated therapeutics.
Collapse
Affiliation(s)
- Chung Yin Tsang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Yong Zhang
- Department of Biomedical Engineering, The City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong.
| |
Collapse
|
5
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Xu D, Li C, Li W, Lin B, Lv R. Recent advances in lanthanide-doped up-conversion probes for theranostics. Front Chem 2023; 11:1036715. [PMID: 36846851 PMCID: PMC9949555 DOI: 10.3389/fchem.2023.1036715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
Up-conversion (or anti-Stokes) luminescence refers to the phenomenon whereby materials emit high energy, short-wavelength light upon excitation at longer wavelengths. Lanthanide-doped up-conversion nanoparticles (Ln-UCNPs) are widely used in biomedicine due to their excellent physical and chemical properties such as high penetration depth, low damage threshold and light conversion ability. Here, the latest developments in the synthesis and application of Ln-UCNPs are reviewed. First, methods used to synthesize Ln-UCNPs are introduced, and four strategies for enhancing up-conversion luminescence are analyzed, followed by an overview of the applications in phototherapy, bioimaging and biosensing. Finally, the challenges and future prospects of Ln-UCNPs are summarized.
Collapse
Affiliation(s)
| | | | | | - Bi Lin
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi’an, Shaanxi, China
| | | |
Collapse
|
7
|
Malhotra K, Hrovat D, Kumar B, Qu G, Houten JV, Ahmed R, Piunno PAE, Gunning PT, Krull UJ. Lanthanide-Doped Upconversion Nanoparticles: Exploring A Treasure Trove of NIR-Mediated Emerging Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2499-2528. [PMID: 36602515 DOI: 10.1021/acsami.2c12370] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Lanthanide-doped upconversion nanoparticles (UCNPs) possess the remarkable ability to convert multiple near-infrared (NIR) photons into higher energy ultraviolet-visible (UV-vis) photons, making them a prime candidate for several advanced applications within the realm of nanotechnology. Compared to traditional organic fluorophores and quantum dots (QDs), UCNPs possess narrower emission bands (fwhm of 10-50 nm), large anti-Stokes shifts, low toxicity, high chemical stability, and resistance to photobleaching and blinking. In addition, unlike UV-vis excitation, NIR excitation is nondestructive at lower power intensities and has high tissue penetration depths (up to 2 mm) with low autofluorescence and scattering. Together, these properties make UCNPs exceedingly favored for advanced bioanalytical and theranostic applications, where these systems have been well-explored. UCNPs are also well-suited for bioimaging, optically modulating chemistries, forensic science, and other state-of-the-art research applications. In this review, an up-to-date account of emerging applications in UCNP research, beyond bioanalytical and theranostics, are presented including optogenetics, super-resolution imaging, encoded barcodes, fingerprinting, NIR vision, UCNP-assisted photochemical manipulations, optical tweezers, 3D printing, lasing, NIR-II imaging, UCNP-molecule nanohybrids, and UCNP-based persistent luminescent nanocrystals.
Collapse
Affiliation(s)
- Karan Malhotra
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - David Hrovat
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Balmiki Kumar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Grace Qu
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Justin Van Houten
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Reda Ahmed
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Paul A E Piunno
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Patrick T Gunning
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, OntarioL5L 1C6, Canada
| |
Collapse
|
8
|
Yang S, Dai W, Zheng W, Wang J. Non-UV-activated persistent luminescence phosphors for sustained bioimaging and phototherapy. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Yadav N, Gaikwad RP, Mishra V, Gawande MB. Synthesis and Photocatalytic Applications of Functionalized Carbon Quantum Dots. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nisha Yadav
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh-201313, India
| | - Rahul P. Gaikwad
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai - Marathwada Campus, Jalna-431203, India
| | - Vivek Mishra
- Amity Institute of Click Chemistry Research and Studies, Amity University, Noida, Uttar Pradesh-201313, India
| | - Manoj B. Gawande
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology, Mumbai - Marathwada Campus, Jalna-431203, India
| |
Collapse
|
10
|
Jiang H, Wang R, Zhang Q, Song L, Sun X, Shi J, Zhang Y. A dual-functional nanoplatform based on NIR and green dual-emissive persistent luminescence nanoparticles for X-ray excited persistent luminescence imaging and photodynamic therapy. NANOSCALE 2022; 14:15451-15461. [PMID: 36226462 DOI: 10.1039/d2nr03631b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Persistent luminescence nanoparticles (PLNPs) possess advantages for high-sensitivity bioimaging and continuous photodynamic therapy (PDT) because they can emit persistent luminescence (PerL) after excitation ceases. However, PLNPs are limited to single-wavelength emission, which can only efficiently realize one of the functions of bioimaging or PDT. In addition, most PLNPs are excited by shallow tissue penetrating excitation light, which makes it difficult to achieve repeatable in vivo applications with high efficiency. Herein, X-ray-excited PLNPs (Zn3Ga2Ge2O10:Cr3+,Mn2+, ZGGCM) with dual emission for in vivo X-rays repeatedly activated PerL imaging and tumor PDT are reported for the first time. ZGGCM exhibits dual-emission peaks after X-ray excitation/re-excitation, located at 698 nm and 532 nm, respectively. Additionally, ZGGCM is modified with the photosensitizer rose bengal (RB) to construct a dual-functional nanoplatform based on PerL imaging and PDT. The results indicate that the PerL emission peak (698 nm) of Cr3+ ions in ZGGCM possesses excellent near-infrared (NIR) PerL imaging performance, and the green PerL emission peak (532 nm) of Mn2+ ions can activate RB effectively and generate reactive oxygen species (ROS), thereby causing a significant antitumor effect. This unique dual-functional nanoplatform is expected to further promote the application of PLNPs in the integration of efficient tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Huimin Jiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Ruoping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Liang Song
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
| | - Xia Sun
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, P.R. China
| | - Junpeng Shi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, 341000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Yang F, Wu X, Cui H, Ou Z, Jiang S, Cai S, Zhou Q, Wong BG, Huang H, Hong G. A biomineral-inspired approach of synthesizing colloidal persistent phosphors as a multicolor, intravital light source. SCIENCE ADVANCES 2022; 8:eabo6743. [PMID: 35905189 PMCID: PMC9337768 DOI: 10.1126/sciadv.abo6743] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/14/2022] [Indexed: 05/19/2023]
Abstract
Many in vivo biological techniques, such as fluorescence imaging, photodynamic therapy, and optogenetics, require light delivery into biological tissues. The limited tissue penetration of visible light discourages the use of external light sources and calls for the development of light sources that can be delivered in vivo. A promising material for internal light delivery is persistent phosphors; however, there is a scarcity of materials with strong persistent luminescence of visible light in a stable colloid to facilitate systemic delivery in vivo. Here, we used a bioinspired demineralization (BID) strategy to synthesize stable colloidal solutions of solid-state phosphors in the range of 470 to 650 nm and diameters down to 20 nm. The exceptional brightness of BID-produced colloids enables their utility as multicolor luminescent tags in vivo with favorable biocompatibility. Because of their stable dispersion in water, BID-produced nanophosphors can be delivered systemically, acting as an intravascular colloidal light source to internally excite genetically encoded fluorescent reporters within the mouse brain.
Collapse
Affiliation(s)
- Fan Yang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Xiang Wu
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Han Cui
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Zihao Ou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Shan Jiang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Sa Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Qi Zhou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Bryce G. Wong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Hans Huang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| | - Guosong Hong
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Wang M, Meng Y, Zhu Y, Song J, Yang J, Liu C, Zhu H, Yan D, Xu C, Liu Y. Afterglow-Suppressed Lu 2O 3:Eu 3+ Nanoscintillators for High-Resolution and Dynamic Digital Radiographic Imaging. Inorg Chem 2022; 61:11293-11305. [PMID: 35820030 DOI: 10.1021/acs.inorgchem.2c01417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lu2(1-x)Eu2xO3 nanoscintillators (x = 0.005, 0.01, 0.03, 0.05, 0.07, and 0.10) with red emission were synthesized by a coprecipitation method. It is found that their photo- and radioluminescence intensities increase with increasing Eu3+ concentration until x = 0.05. According to their concentration-dependent luminescence intensity ratios (I610(C2)/I582(S6)), the existing energy transfer from Eu3+(S6) (occupying S6 sites) to Eu3+(C2) (occupying C2 sites) can be confirmed. Based on the spectral data and density functional theory (DFT) calculations, the origin of Lu2O3:Eu3+ persistent luminescence at low concentration might be related to the tunneling processes between Eu3+ (occupying C2 and S6 sites) and oxygen interstitials (Oi×). After dispersing afterglow-suppressed Lu2O3:Eu3+ nanoscintillators into polymethyl methacrylate (PMMA) polymer-acetone solution, flexible PMMA-Lu2O3:Eu3+ composite films with high thermal stability and radiation resistance were fabricated by a doctor blade method. As the flexible composite film was used as an imaging plate, static X-ray images with high spatial resolution (5.5 lp/mm) under an extremely low dose of ∼1.1 μGyair can be acquired. When a watch with a moving second hand was used as an object, the dynamic X-ray imaging can be realized under a dose rate of 55 μGyair·s-1. Our results demonstrate that Lu2O3:Eu3+ nanoscintillators can be regarded as candidate materials for dynamic digital radiographic imaging.
Collapse
Affiliation(s)
- Mingwei Wang
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yangqi Meng
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yaqi Zhu
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Jia Song
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Jian Yang
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Chunguang Liu
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Hancheng Zhu
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Duanting Yan
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Changshan Xu
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yuxue Liu
- School of Physics, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| |
Collapse
|
13
|
Li Y, Li Y. Dual-Mode nanoprobes for heart tissue imaging. Talanta 2022; 248:123641. [PMID: 35671546 DOI: 10.1016/j.talanta.2022.123641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
A new method that simultaneously alters multicolor upconversion luminescence (UCL) and improves overall UCL intensity, predominantly in red-emission bands, is presented here. Remarkedly enhanced temperature sensitivity at ultralow temperatures was also observed in Yb/Cu co-doped NaErF4 through transition metal Cu2+-doping. Varying the dopant (Cu2+) concentration in NaErF4:Yb effectively controlled the structure, allowing for blue, green, and red UCL output. Large enhancement across the entire UCL spectrum was observed for Cu2+-doped upconversion nanoparticles (UCNPs) compared to UCNPs not doped with Cu2+, resulting from non-radiative energy transfer between Cu2+ and Er3+. The rapid response of the NaErF4:Yb/Cu complex allowed for bioimaging of heart tissue within 1 h. Moreover, the relative sensitivity of UCNPs increased from 0.91% K-1 to 1.48% K-1 with metal Cu2+ doping at an ultralow temperature, which significantly impacts biomarker dependence on UCNPs.
Collapse
Affiliation(s)
- Yuemei Li
- Xiamen Key Laboratory of Cardiovascular Disease, Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.
| | - Yongmei Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, No.6 Huanrui North Road, Ruijing Street, Beichen District, Tianjin, 300134, China
| |
Collapse
|
14
|
Cao C, Xie Y, Li SW, Hong C. Er 3+-Ions-Doped Multiscale Nanoprobes for Fluorescence Imaging in Cellular and Living Mice. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2676. [PMID: 34685116 PMCID: PMC8539509 DOI: 10.3390/nano11102676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 12/29/2022]
Abstract
With the development of biotechnology, luminescent nanoprobes for biological disease detection are widely used. However, the further application in clinic is limited by the reduced penetration depth in the tissues and light scattering. In this work, we have synthesized NaYF4:Yb,Er,Ce@SiO2-OAlg nanomaterials, which have both upconversion and near-infrared (NIR) luminescence. The optimized probes were determined to achieve cell imaging by its upconversion (UCL) luminescence and in vivo imaging through collection of NIR fluorescence signals simultaneously. The research is conducive to developing accurate diagnostic techniques based on UCL and NIR fluorescence imaging by a single nanoparticle.
Collapse
Affiliation(s)
- Cong Cao
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.X.); (S.-W.L.); (C.H.)
| | | | | | | |
Collapse
|
15
|
Zhou Q, Xu M, Feng W, Li F. Quantum Yield Measurements of Photochemical Reaction-Based Afterglow Luminescence Materials. J Phys Chem Lett 2021; 12:9455-9462. [PMID: 34555905 DOI: 10.1021/acs.jpclett.1c02715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Afterglow materials have become one of the most promising luminescent materials due to their long luminescence lifetime. Photoluminescence quantum yield (PLQY), as one of the most fundamental and essential parameters of luminescent materials, can directly evaluate the luminescence properties of emissive compounds. Recently, a type of afterglow material based on a photochemical reaction has been developed. However, there is no suitable method to measure the PLQY of these afterglow materials due to their special luminescence principle. Herein, we present a method to measure the PLQY for these afterglow materials by collecting the luminescent dynamic curves of emission and excitation light at specific wavelength regions using a commercial spectrometer and an integrating sphere. We found that the emitted photons of this kind of afterglow material are in direct proportion to the excitation time, which means the PLQY is irrelevant to the excitation time.
Collapse
Affiliation(s)
- Qianwen Zhou
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Ming Xu
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Wei Feng
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
16
|
Ma J, Zhu W, Lei L, Deng D, Hua Y, Yang YM, Xu S, Prasad PN. Highly Efficient NaGdF 4:Ce/Tb Nanoscintillator with Reduced Afterglow and Light Scattering for High-Resolution X-ray Imaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44596-44603. [PMID: 34516086 DOI: 10.1021/acsami.1c14503] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Scintillation-based X-ray excited optical luminescence (XEOL) imaging shows great potential applications in the fields of industrial security inspection and medical diagnosis. It is still a great challenge to achieve scintillators simultaneously with low toxicity, high stability, strong XEOL intensity, and weak afterglow as well as simple device processibility with weak light scattering. Herein, we introduce ethylenediaminetetraacetate (EDTA)-capped NaGdF4:10Ce/18Tb nanoparticles (NPs) as a highly sensitive nanoscintillator, which meets all of the abovementioned challenges. These NPs show comparable XEOL intensity to the commercial CsI (Tl) single crystal in the green region. We propose a mechanism that involves a new electron-captured path by Ce3+ ions and the promotion of energy migration from a trap center to surface quenchers via a Gd3+ sublattice, which greatly reduces the population in traps to produce significant reduction of afterglow. Moreover, by employing an ultrathin transparent NaGdF4:10Ce/18Tb film (0.045 mm) as a nanoscintillator screen for XEOL imaging, a high spatial resolution of 18.6 lp mm-1 is realized owing to the greatly limited optical scattering, which is superior to the commercial CsI (TI) scintillator and most reported lead halide perovskites. We demonstrate that doping Ce3+ ions can greatly limit X-ray-activated afterglow, enabling to use an ultrathin transparent fluoride NP-based nanoscintillator screen for high-quality XEOL imaging of various objects such as an electronics chip and biological tissue.
Collapse
Affiliation(s)
- Jinjing Ma
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Wenjuan Zhu
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310018, China
| | - Lei Lei
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Degang Deng
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Youjie Hua
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Yang Michael Yang
- College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310018, China
| | - Shiqing Xu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Paras N Prasad
- Institute for Lasers, Photonics, and Biophotonics and Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
17
|
Algar WR, Massey M, Rees K, Higgins R, Krause KD, Darwish GH, Peveler WJ, Xiao Z, Tsai HY, Gupta R, Lix K, Tran MV, Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem Rev 2021; 121:9243-9358. [PMID: 34282906 DOI: 10.1021/acs.chemrev.0c01176] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Research related to the development and application of luminescent nanoparticles (LNPs) for chemical and biological analysis and imaging is flourishing. Novel materials and new applications continue to be reported after two decades of research. This review provides a comprehensive and heuristic overview of this field. It is targeted to both newcomers and experts who are interested in a critical assessment of LNP materials, their properties, strengths and weaknesses, and prospective applications. Numerous LNP materials are cataloged by fundamental descriptions of their chemical identities and physical morphology, quantitative photoluminescence (PL) properties, PL mechanisms, and surface chemistry. These materials include various semiconductor quantum dots, carbon nanotubes, graphene derivatives, carbon dots, nanodiamonds, luminescent metal nanoclusters, lanthanide-doped upconversion nanoparticles and downshifting nanoparticles, triplet-triplet annihilation nanoparticles, persistent-luminescence nanoparticles, conjugated polymer nanoparticles and semiconducting polymer dots, multi-nanoparticle assemblies, and doped and labeled nanoparticles, including but not limited to those based on polymers and silica. As an exercise in the critical assessment of LNP properties, these materials are ranked by several application-related functional criteria. Additional sections highlight recent examples of advances in chemical and biological analysis, point-of-care diagnostics, and cellular, tissue, and in vivo imaging and theranostics. These examples are drawn from the recent literature and organized by both LNP material and the particular properties that are leveraged to an advantage. Finally, a perspective on what comes next for the field is offered.
Collapse
Affiliation(s)
- W Russ Algar
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Melissa Massey
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelly Rees
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rehan Higgins
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Katherine D Krause
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Ghinwa H Darwish
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - William J Peveler
- School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Zhujun Xiao
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hsin-Yun Tsai
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Rupsa Gupta
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Kelsi Lix
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Michael V Tran
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Hyungki Kim
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|
18
|
Liu N, Chen X, Sun X, Sun X, Shi J. Persistent luminescence nanoparticles for cancer theranostics application. J Nanobiotechnology 2021; 19:113. [PMID: 33879169 PMCID: PMC8056701 DOI: 10.1186/s12951-021-00862-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/09/2021] [Indexed: 11/10/2022] Open
Abstract
Persistent luminescence nanoparticles (PLNPs) are unique optical materials that emit afterglow luminescence after ceasing excitation. They exhibit unexpected advantages for in vivo optical imaging of tumors, such as autofluorescence-free, high sensitivity, high penetration depth, and multiple excitation sources (UV light, LED, NIR laser, X-ray, and radiopharmaceuticals). Besides, by incorporating other functional molecules, such as photosensitizers, photothermal agents, or therapeutic drugs, PLNPs are also widely used in persistent luminescence (PersL) imaging-guided tumor therapy. In this review, we first summarize the recent developments in the synthesis and surface functionalization of PLNPs, as well as their toxicity studies. We then discuss the in vivo PersL imaging and multimodal imaging from different excitation sources. Furthermore, we highlight PLNPs-based cancer theranostics applications, such as fluorescence-guided surgery, photothermal therapy, photodynamic therapy, drug/gene delivery and combined therapy. Finally, future prospects and challenges of PLNPs in the research of translational medicine are also discussed.
Collapse
Affiliation(s)
- Nian Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
- Department of Chemistry, Technical University of Munich, 85747, Garching, Germany
| | - Xiao Chen
- Medizinische Klinik Und Poliklinik IV, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Xia Sun
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, 361015, China.
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China.
| | - Junpeng Shi
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research On the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
19
|
Chen X, Li Y, Huang K, Huang L, Tian X, Dong H, Kang R, Hu Y, Nie J, Qiu J, Han G. Trap Energy Upconversion-Like Near-Infrared to Near-Infrared Light Rejuvenateable Persistent Luminescence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008722. [PMID: 33634900 DOI: 10.1002/adma.202008722] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Indexed: 05/21/2023]
Abstract
Persistent-luminescence phosphors (PLPs) have a wide variety of applications in the fields of photonics and biophotonics due to their ultralong afterglow lifetime. However, the existing PLPs are charged and recharged with short-wavelength high-energy photons or inconvenient and potentially risky X-ray beams. To date, deep tissue penetrable NIR light has mainly been used for photostimulated afterglow emission, which continues to decay and weaken after each cycle, Herein, a new paradigm of trap energy upconversion-like near-infrared (NIR) to near-infrared light rejuvenateable persistent luminescence in bismuth-doped calcium stannate phosphors and nanoparticles is reported. In contrast to the existing PLPs and persistent-luminescence nanoparticles, the materials enable the occurrence of a reversed transition of the carriers from a deep-level energy trap to a shallow-level trap upon excitation by low-energy NIR photons. Thus these new materials can be charged circularly via deep-tissue penetrable NIR photons, which is unable to be done for existing PLPs, and emit afterglow signals. This conceptual work will lay the foundation to design new categories of NIR-absorptive-NIR-emissive PLPs and nanoparticles featuring physically harmless and deep tissue penetrable NIR light renewability and sets the stage for numerous biological applications, which have been limited by current materials.
Collapse
Affiliation(s)
- Xingzhong Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, 510 006, China
| | - Yang Li
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, 510 006, China
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Kai Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Ling Huang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Xiumei Tian
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huafeng Dong
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, 510 006, China
| | - Ru Kang
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, 510 006, China
| | - Yihua Hu
- School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou, 510 006, China
| | - Jianmin Nie
- State Key Laboratory of Luminescent Materials and Devices School of Materials Science and Technology, South China University of Technology, Guangzhou, 510 640, China
| | - Jianrong Qiu
- State Key Laboratory of Modern Optical Instrumentation College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310 058, China
| | - Gang Han
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| |
Collapse
|
20
|
Yi Z, Luo Z, Qin X, Chen Q, Liu X. Lanthanide-Activated Nanoparticles: A Toolbox for Bioimaging, Therapeutics, and Neuromodulation. Acc Chem Res 2020; 53:2692-2704. [PMID: 33103883 DOI: 10.1021/acs.accounts.0c00513] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Owing to their unique features, the past decade has witnessed rapid developments of lanthanide-activated nanoparticles for biological applications. These include highly tunable upconverting and downshifting photoluminescence when illuminated in deep tissue, excellent photostability against blinking and bleaching effects, biocompatibility through versatile surface modification, and ease of achieving multifunctionality, as well as satisfactory signal output. These attributes make lanthanide-doped nanoparticles an ideal toolbox for advanced bioimaging and next-generation therapeutics.The interest in lanthanide-doped nanoparticles for biomedical research arises from their unique optical properties in response to deep-tissue-penetrable light sources. Upon near-infrared irradiation, these nanoparticles with properly doped emitters display photon upconversion with large anti-Stokes shifts and broad-spectrum tunability from the ultraviolet to the visible. It is also possible to achieve orthogonal photoluminescence with variations in wavelength and lifetime. Coupled with surface ligands, dyes, biomolecules, or other types of functional nanomaterials, lanthanide-doped nanoparticles offer new opportunities for applications in bioimaging, advanced oncotherapy, and neuromodulation. Given the possibility of locating downshifting luminescence at "biological transmission windows", exquisite design of lanthanide-doped nanoparticles also enables deep-tissue imaging with high spatial resolution. In addition, these nanoparticles can respond to high-energy photons, such as X-rays, to trigger nonradioactive and radiative pathways, making it possible to develop high-sensitivity X-ray detectors. Precise control of paramagnetic lanthanide ions in nanocrystal lattices also provides advanced materials for high-performance magnetic resonance imaging in medical diagnostics and biomedical research. Full consideration of fundamental attributes of lanthanide-doped nanoparticles will facilitate the design of multifunctional and sensitive probes and improve diagnostic and therapeutic outcomes.In this Account, we categorize various lanthanide-activation strategies into three modes: near-infrared excitation, X-ray irradiation, and magnetic field stimulation. We introduce energy manipulations in upconverting, downshifting, and persistence luminescence in spectral and time domains and discuss how they can be applied in biological practices. We assess general design principles for lanthanide-activated nanosystems with multiple modalities of bioimaging, oncotherapy, and neuromodulation. We also review the current state-of-the-art in the field of lanthanide-based theranostic nanoplatforms, with particular emphasis on energy conversion and nano-/biointerfacing as well as emerging bioapplications. In this context, we also highlight recent advances in controlling optical properties of nanoplatforms for single- or multimodal bioimaging, stimulus-responsive phototherapy, and optogenetics. Finally, we discuss future opportunities and challenges of this exciting research field.
Collapse
Affiliation(s)
- Zhigao Yi
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- The N.1 Institute for Health, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Zichao Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- The N.1 Institute for Health, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Xian Qin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Qiushui Chen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- The N.1 Institute for Health, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
- Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| |
Collapse
|
21
|
Fritzen DL, Giordano L, Rodrigues LCV, Monteiro JHSK. Opportunities for Persistent Luminescent Nanoparticles in Luminescence Imaging of Biological Systems and Photodynamic Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2015. [PMID: 33066063 PMCID: PMC7600618 DOI: 10.3390/nano10102015] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
The use of luminescence in biological systems allows us to diagnose diseases and understand cellular processes. Persistent luminescent materials have emerged as an attractive system for application in luminescence imaging of biological systems; the afterglow emission grants background-free luminescence imaging, there is no need for continuous excitation to avoid tissue and cell damage due to the continuous light exposure, and they also circumvent the depth penetration issue caused by excitation in the UV-Vis. This review aims to provide a background in luminescence imaging of biological systems, persistent luminescence, and synthetic methods for obtaining persistent luminescent materials, and discuss selected examples of recent literature on the applications of persistent luminescent materials in luminescence imaging of biological systems and photodynamic therapy. Finally, the challenges and future directions, pointing to the development of compounds capable of executing multiple functions and light in regions where tissues and cells have low absorption, will be discussed.
Collapse
Affiliation(s)
- Douglas L. Fritzen
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | - Luidgi Giordano
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | - Lucas C. V. Rodrigues
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo-SP 05508-000, Brazil; (D.L.F.); (L.G.)
| | | |
Collapse
|
22
|
Cheng Y, Sun K. Up-conversion Persistent Luminescence of a 980 nm Laser Activated Zn 3Ga 2(Ge xSn 1-x)O 8:Yb,Er,Cr Phosphors. J Fluoresc 2020; 30:1251-1259. [PMID: 32761420 DOI: 10.1007/s10895-020-02593-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/27/2020] [Indexed: 10/23/2022]
Abstract
Zn3Ga2(GexSn1-x)O8:Yb,Er,Cr phosphors with different doping ratio of Ge/Sn were prepared by high temperature solid-state method. After excited at 270 nm with a xenon lamp for 15 min, the persistent luminescence (PL) of Zn3Ga2(GexSn1-x)O8:Yb,Er,Cr phosphor can last more than 60 min. Under the excitation at 980 nm, Zn3Ga2(GexSn1-x)O8:Yb,Er,Cr phosphors can generate effective up-conversion emissions from Er3+ ions at 410 nm, 525 nm, 550 nm, 660 nm and Cr3+ ions around 700 nm. Besides, after ceasing irradiation, Zn3Ga2(GexSn1-x)O8:Yb,Er,Cr phosphors show up-conversion persistent luminescence (UCPL) from Cr3+ ions around 700 nm. Moreover, Zn3Ga1.995(Ge0.3Sn0.7) O8:Yb3+,Er3+,Cr3+ phosphor is optimal with the best persistent luminescent and up-conversion persistent luminescent properties. In short, owing to the long afterglow time, strong up-conversion emissions and novel up-conversion persistent luminescence, the as-prepared Zn3Ga2(GexSn1-x)O8:Yb,Er,Cr phosphors can be potentially applied in a wide range of fields, such as security materials, coating materials, infrared detection, fluorescent label, tracer and testing.
Collapse
Affiliation(s)
- Yuan Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative, Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals, Ministry of Education, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Kangning Sun
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China. .,Engineering Ceramics Key Laboratory of Shandong Province, Shandong University, Jinan, 250061, People's Republic of China.
| |
Collapse
|
23
|
Lin Q, Li Z, Ji C, Yuan Q. Electronic structure engineering and biomedical applications of low energy-excited persistent luminescence nanoparticles. NANOSCALE ADVANCES 2020; 2:1380-1394. [PMID: 36132298 PMCID: PMC9417836 DOI: 10.1039/c9na00817a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/17/2020] [Indexed: 06/13/2023]
Abstract
Persistent luminescence nanoparticles (PLNPs) are new luminescent materials that can store the excitation energy quickly and persistently emit it after ceasing excitation sources. Due to the advantages of long-lasting luminescence without constant excitation, PLNPs have been widely used in biomedical applications. Visible light excitable PLNPs (VPLNPs) and near-infrared excitable PLNPs (NPLNPs) are two kinds of novel and promising PLNPs. Compared to conventional PLNPs, VPLNPs and NPLNPs have the characteristics of low tissue damage, deep tissue penetration, and high signal-to-noise ratio. With these special features, they have great potential in applications such as long-term tracing, deep-tissue bioimaging, and precise treatment. In this review, we introduce the common strategy of constructing VPLNPs and NPLNPs based on electronic structure engineering and the applications of VPLNPs and NPLNPs in biomedicine. This review article aims to offer valuable information about the progress and development direction of VPLNPs and NPLNPs, promoting more applications in biomedicine, materials science, energy engineering, and environmental technologies in the future.
Collapse
Affiliation(s)
- Qiaosong Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chenhui Ji
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| |
Collapse
|
24
|
Wu S, Li Y, Ding W, Xu L, Ma Y, Zhang L. Recent Advances of Persistent Luminescence Nanoparticles in Bioapplications. NANO-MICRO LETTERS 2020; 12:70. [PMID: 34138268 PMCID: PMC7770784 DOI: 10.1007/s40820-020-0404-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/02/2020] [Indexed: 05/21/2023]
Abstract
Persistent luminescence phosphors are a novel group of promising luminescent materials with afterglow properties after the stoppage of excitation. In the past decade, persistent luminescence nanoparticles (PLNPs) with intriguing optical properties have attracted a wide range of attention in various areas. Especially in recent years, the development and applications in biomedical fields have been widely explored. Owing to the efficient elimination of the autofluorescence interferences from biotissues and the ultra-long near-infrared afterglow emission, many researches have focused on the manipulation of PLNPs in biosensing, cell tracking, bioimaging and cancer therapy. These achievements stimulated the growing interest in designing new types of PLNPs with desired superior characteristics and multiple functions. In this review, we summarize the works on synthesis methods, bioapplications, biomembrane modification and biosafety of PLNPs and highlight the recent advances in biosensing, imaging and imaging-guided therapy. We further discuss the new types of PLNPs as a newly emerged class of functional biomaterials for multiple applications. Finally, the remaining problems and challenges are discussed with suggestions and prospects for potential future directions in the biomedical applications.
Collapse
Affiliation(s)
- Shuqi Wu
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yang Li
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Weihang Ding
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Letong Xu
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yuan Ma
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Lianbing Zhang
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
25
|
Qiu X, Zhou Q, Zhu X, Wu Z, Feng W, Li F. Ratiometric upconversion nanothermometry with dual emission at the same wavelength decoded via a time-resolved technique. Nat Commun 2020; 11:4. [PMID: 31911593 PMCID: PMC6946702 DOI: 10.1038/s41467-019-13796-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
The in vivo temperature monitoring of a microenvironment is significant in biology and nanomedicine research. Luminescent nanothermometry provides a noninvasive method of detecting the temperature in vivo with high sensitivity and high response speed. However, absorption and scattering in complex tissues limit the signal penetration depth and cause errors due to variation at different locations in vivo. In order to minimize these errors and monitor temperature in vivo, in the present work, we provided a strategy to fabricate a same-wavelength dual emission ratiometric upconversion luminescence nanothermometer based on a hybrid structure composed of upconversion emissive PbS quantum dots and Tm-doped upconversion nanoparticles. The ratiometric signal composed of two upconversion emissions working at the same wavelength, but different luminescent lifetimes, were decoded via a time-resolved technique. This nanothermometer improved the temperature monitoring ability and a thermal resolution and sensitivity of ~0.5 K and ~5.6% K−1 were obtained in vivo, respectively. Traditional ratiometric temperature monitoring is challenging due to the variation in tissue absorption and scattering of different wavelengths. Here, the authors show improved accuracy by using emission at the same wavelength, but different luminescent lifetimes decoded by a time-resolved technique.
Collapse
Affiliation(s)
- Xiaochen Qiu
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Qianwen Zhou
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Xingjun Zhu
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Zugen Wu
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China
| | - Wei Feng
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China.
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 2005 Songhu Road, Shanghai, 200433, P. R. China.
| |
Collapse
|
26
|
Ma Q, Wang J, Li Z, Lv X, Liang L, Yuan Q. Recent Progress in Time-Resolved Biosensing and Bioimaging Based on Lanthanide-Doped Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804969. [PMID: 30761729 DOI: 10.1002/smll.201804969] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 12/29/2018] [Indexed: 05/19/2023]
Abstract
Luminescent nanomaterials have attracted great attention in luminescence-based bioanalysis due to their abundant optical and tunable surface physicochemical properties. However, luminescent nanomaterials often suffer from serious autofluorescence and light scattering interference when applied to complex biological samples. Time-resolved luminescence methodology can efficiently eliminate autofluorescence and light scattering interference by collecting the luminescence signal of a long-lived probe after the background signals decays completely. Lanthanides have a unique [Xe]4fN electronic configuration and ladder-like energy states, which endow lanthanide-doped nanoparticles with many desirable optical properties, such as long luminescence lifetimes, large Stokes/anti-Stokes shifts, and sharp emission bands. Due to their long luminescence lifetimes, lanthanide-doped nanoparticles are widely used for high-sensitive biosensing and high-contrast bioimaging via time-resolved luminescence methodology. In this review, recent progress in the development of lanthanide-doped nanoparticles and their application in time-resolved biosensing and bioimaging are summarized. At the end of this review, the current challenges and perspectives of lanthanide-doped nanoparticles for time-resolved bioapplications are discussed.
Collapse
Affiliation(s)
- Qinqin Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhiheng Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaobo Lv
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ling Liang
- Molecular Science and Biomedicine Laboratory, Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
27
|
Sun SK, Wu JC, Wang H, Zhou L, Zhang C, Cheng R, Kan D, Zhang X, Yu C. Turning solid into gel for high-efficient persistent luminescence-sensitized photodynamic therapy. Biomaterials 2019; 218:119328. [PMID: 31299457 DOI: 10.1016/j.biomaterials.2019.119328] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 06/29/2019] [Accepted: 06/30/2019] [Indexed: 01/31/2023]
Abstract
Bioavailable persistent luminescence material is an ideal internal light source for long-term photodynamic therapy, but inevitably suffers from low utilization efficiency and weak persistent luminescence due to corrosion and screening processes. Herein, we show a facile and smart "turning solid into gel" strategy to fabricate persistent luminescence hydrogel for high-efficient persistent luminescence-sensitized photodynamic therapy. The homogeneous persistent luminescence hydrogel was synthesized via dispersing high-temperature calcined persistent luminescence material without corrosion and screening into a biocompatible alginate-Ca2+ hydrogel. The simple synthesis strategy allows 100% of utilization efficiency and intact persistent luminescence of persistent luminescence material. The persistent luminescence hydrogel possesses favorable biocompatibility, bright persistent luminescence, red light renewability, good syringeability, and strong fixing ability in tumors. The persistent luminescence hydrogel can be easily injected in vivo as a powerful localized light source for superior persistent luminescence-sensitized photodynamic therapy of tumors. The "turning solid into gel" strategy enables taking full advantages of persistent luminescence for biological applications, and shows great potential in utilizing diverse theranostic agents regardless of hydrophilicity and hydrophobicity.
Collapse
Affiliation(s)
- Shao-Kai Sun
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China.
| | - Jian-Cheng Wu
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Haoyu Wang
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Li Zhou
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Cai Zhang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071, China
| | - Ran Cheng
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Di Kan
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Xuejun Zhang
- School of Medical Imaging, Tianjin Medical University, Tianjin, 300203, China
| | - Chunshui Yu
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
28
|
Gao Y, Li R, Zheng W, Shang X, Wei J, Zhang M, Xu J, You W, Chen Z, Chen X. Broadband NIR photostimulated luminescence nanoprobes based on CaS:Eu 2+,Sm 3+ nanocrystals. Chem Sci 2019; 10:5452-5460. [PMID: 31293727 PMCID: PMC6552487 DOI: 10.1039/c9sc01321k] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022] Open
Abstract
Near-infrared (NIR) photostimulated luminescence (PSL) nanocrystals (NCs) have recently evoked considerable interest in the field of biomedicine, but are currently limited by the controlled synthesis of efficient PSL NCs. Herein, we report for the first time the controlled synthesis of CaS:Eu2+,Sm3+ NIR PSL NCs through a high-temperature co-precipitation method. The role of Sm3+ co-doping and the effect of thermal annealing on the optical properties of the NCs as well as the charging and discharging processes, the trap depth distribution, and the underlying PSL mechanism are comprehensively surveyed by means of photoluminescence, persistent luminescence, thermoluminescence, and PSL spectroscopies. The as-prepared NCs exhibit intense PSL of Eu2+ at 650 nm with a fast response to stimulation in a broad NIR region from 800 nm to 1600 nm, a duration time longer than 2 h, and an extremely low power density threshold down to 10 mW cm-2 at 980 nm. Furthermore, by taking advantage of the intense NIR PSL, we demonstrate the application of CaS:Eu2+,Sm3+ NCs as sensitive luminescent nanoprobes for biotin receptor-targeted cancer cell imaging. These results reveal the great promise of CaS:Eu2+,Sm3+ nanoprobes for autofluorescence-free bioimaging, and also lay the foundation for future design of efficient NIR PSL nanoprobes towards versatile bioapplications.
Collapse
Affiliation(s)
- Yu Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures , Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China . ; ; ; Tel: +86 591 63179421
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures , Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures , Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China . ; ; ; Tel: +86 591 63179421
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures , Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China . ; ; ; Tel: +86 591 63179421
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xiaoying Shang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures , Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China . ; ; ; Tel: +86 591 63179421
| | - Jiaojiao Wei
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures , Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China . ; ; ; Tel: +86 591 63179421
| | - Meiran Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures , Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China . ; ; ; Tel: +86 591 63179421
| | - Jin Xu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures , Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China . ; ; ; Tel: +86 591 63179421
| | - Wenwu You
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures , Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China . ; ; ; Tel: +86 591 63179421
| | - Zhuo Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures , Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China . ; ; ; Tel: +86 591 63179421
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures , Fujian Key Laboratory of Nanomaterials , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , Fujian 350002 , China . ; ; ; Tel: +86 591 63179421
- School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
29
|
Qiu X, Zhu X, Su X, Xu M, Yuan W, Liu Q, Xue M, Liu Y, Feng W, Li F. Near-Infrared Upconversion Luminescence and Bioimaging In Vivo Based on Quantum Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801834. [PMID: 30886806 PMCID: PMC6402406 DOI: 10.1002/advs.201801834] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/14/2018] [Indexed: 05/28/2023]
Abstract
Recently, upconversion luminescence (UCL) has been widely applied in bioimaging due to its low autofluorescence and high contrast. However, a relatively high power density is still needed in conventional UCL bioimaging. In the present study, an ultralow power density light, as low as 0.06 mW cm-2, is applied as an excitation source for UCL bioimaging with PbS/CdS/ZnS quantum dots (UCL-QDs) as probes. The speculated UCL mechanism is a phonon-assisted single-photon process, and the relative quantum yield is up to 4.6%. As determined by continuous irradiation with a 980 nm laser, the UCL-QDs show excellent photostability. Furthermore, UCL-QDs-based probe is applied in tumor, blood vessel, and lymph node bioimaging excited with an eye-safe low-power light-emitting diode light in a nude mouse with few heat effects.
Collapse
Affiliation(s)
- Xiaochen Qiu
- Department of Chemistry and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P.R. China
| | - Xingjun Zhu
- Department of Chemistry and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P.R. China
| | - Xianlong Su
- Department of Chemistry and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P.R. China
| | - Ming Xu
- Department of Chemistry and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P.R. China
| | - Wei Yuan
- Department of Chemistry and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P.R. China
| | - Qingyun Liu
- Department of Chemistry and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P.R. China
| | - Meng Xue
- Department of Chemistry and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P.R. China
| | - Yawei Liu
- Department of Chemistry and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P.R. China
| | - Wei Feng
- Department of Chemistry and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P.R. China
| | - Fuyou Li
- Department of Chemistry and State Key Laboratory of Molecular Engineering of PolymersFudan University220 Handan RoadShanghai200433P.R. China
| |
Collapse
|
30
|
Zhou J, Leaño JL, Liu Z, Jin D, Wong KL, Liu RS, Bünzli JCG. Impact of Lanthanide Nanomaterials on Photonic Devices and Smart Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801882. [PMID: 30066496 DOI: 10.1002/smll.201801882] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/16/2018] [Indexed: 05/22/2023]
Abstract
Half a century after its initial emergence, lanthanide photonics is facing a profound remodeling induced by the upsurge of nanomaterials. Lanthanide-doped nanomaterials hold promise for bioapplications and photonic devices because they ally the unmatched advantages of lanthanide photophysical properties with those arising from large surface-to-volume ratios and quantum confinement that are typical of nanoobjects. Cutting-edge technologies and devices have recently arisen from this association and are in turn promoting nanophotonic materials as essential tools for a deeper understanding of biological mechanisms and related medical diagnosis and therapy, and as crucial building blocks for next-generation photonic devices. Here, the recent progress in the development of nanomaterials, nanotechnologies, and nanodevices for clinical uses and commercial exploitation is reviewed. The candidate nanomaterials with mature synthesis protocols and compelling optical uniqueness are surveyed. The specific fields that are directly driven by lanthanide doped nanomaterials are emphasized, spanning from in vivo imaging and theranostics, micro-/nanoscopic techniques, point-of-care medical testing, forensic fingerprints detection, to micro-LED devices.
Collapse
Affiliation(s)
- Jiajia Zhou
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, New South Wales, 2007, Australia
| | - Julius L Leaño
- Department of Chemistry, National Taiwan University Taipei (NTU), Taipei, 106, Taiwan
- Nanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica and NTU, Taipei, 106, Taiwan
- Philippine Textile Research Institute, Department of Science and Technology, Taguig City, 1631, Philippines
| | - Zhenyu Liu
- HKBU Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, 518057, P. R. China
| | - Dayong Jin
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, New South Wales, 2007, Australia
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, P. R. China
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University Taipei (NTU), Taipei, 106, Taiwan
- Department of Mechanical Engineering and Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei, 106, Taiwan
| | - Jean-Claude G Bünzli
- Faculty of Science, Institute for Biomedical Materials and Devices, University of Technology, Sydney, New South Wales, 2007, Australia
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, P. R. China
- Institute of Chemical Sciences & Engineering, Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland
| |
Collapse
|
31
|
Xue B, Wang D, Tu L, Sun D, Jing P, Chang Y, Zhang Y, Liu X, Zuo J, Song J, Qu J, Meijer EJ, Zhang H, Kong X. Ultrastrong Absorption Meets Ultraweak Absorption: Unraveling the Energy-Dissipative Routes for Dye-Sensitized Upconversion Luminescence. J Phys Chem Lett 2018; 9:4625-4631. [PMID: 30066566 DOI: 10.1021/acs.jpclett.8b01931] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dye sensitization is becoming a new dimension to highly improve the upconversion luminescence (UCL) of lanthanide-doped upconversion nanoparticles (UCNPs). However, there is still a lack of general understanding of the dye-UCNPs interactions, especially the confused large mismatch between the inputs and outputs. By taking dye-sensitized NaYF4:Yb/Er@NaYF4:Nd UCNPs as a model system, we not only revealed the in-depth energy-dissipative process for dye-sensitized UCL but also confirmed the first ever experimental observation of the energy back transfer (EBT) in the dye-sensitized UCL. Furthermore, this energy-dissipative EBT restricted the optimal ratio of dyes to UCNP. By unearthing all of the energy loss behind the EBT, energy transfer, and energy migration processes, this paper sheds light on the further design of effective dye-sensitized nanosystems for UCL or even downconversion luminescence.
Collapse
Affiliation(s)
- Bin Xue
- Key Lab of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province , Shenzhen University , 518060 Shenzhen , China
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics , Chinese Academy of Sciences , Changchun 130033 , China
| | - Dan Wang
- Key Lab of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province , Shenzhen University , 518060 Shenzhen , China
| | - Langping Tu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics , Chinese Academy of Sciences , Changchun 130033 , China
- Van't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| | - Dapeng Sun
- Van't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| | - Pengtao Jing
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics , Chinese Academy of Sciences , Changchun 130033 , China
| | - Yulei Chang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics , Chinese Academy of Sciences , Changchun 130033 , China
| | - Youlin Zhang
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics , Chinese Academy of Sciences , Changchun 130033 , China
| | - Xiaomin Liu
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics , Chinese Academy of Sciences , Changchun 130033 , China
| | - Jing Zuo
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics , Chinese Academy of Sciences , Changchun 130033 , China
- Graduate University of the Chinese Academy of Sciences , Beijing 100049 , China
- Van't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| | - Jun Song
- Key Lab of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province , Shenzhen University , 518060 Shenzhen , China
| | - Junle Qu
- Key Lab of Optoelectronics Devices and Systems of Ministry of Education/Guangdong Province , Shenzhen University , 518060 Shenzhen , China
| | - Evert Jan Meijer
- Van't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| | - Hong Zhang
- Van't Hoff Institute for Molecular Sciences , University of Amsterdam , Science Park 904 , 1098 XH Amsterdam , The Netherlands
| | - Xianggui Kong
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics , Chinese Academy of Sciences , Changchun 130033 , China
| |
Collapse
|
32
|
Zhang T, Wang X, An Z, Fang Z, Zhang Y, Yuan WZ. Pure Organic Persistent Room‐Temperature Phosphorescence at both Crystalline and Amorphous States. Chemphyschem 2018; 19:2389-2396. [DOI: 10.1002/cphc.201800310] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Tingting Zhang
- School of Materials Science and EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xuan Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University 30 South Puzhu Road Nanjing 211800 China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)Nanjing Tech University 30 South Puzhu Road Nanjing 211800 China
| | - Zhiwei Fang
- School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Yongming Zhang
- School of Materials Science and EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Wang Zhang Yuan
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
33
|
Zheng B, Bai Y, Chen H, Pan H, Ji W, Gong X, Wu X, Wang H, Chang J. Near-Infrared Light-Excited Upconverting Persistent Nanophosphors in Vivo for Imaging-Guided Cell Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19514-19522. [PMID: 29757597 DOI: 10.1021/acsami.8b05706] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Optical imaging for biological applications is in need of more sensitive tool. Persistent luminescent nanophosphors enable highly sensitive in vivo optical detection and almost completely avoid tissue autofluorescence. Nevertheless, the actual persistent luminescent nanophosphors necessitate ex vivo activation before systemic operation, which severely restricted the use of long-term imaging in vivo. Hence, we introduced a novel generation of optical nanophosphors, based on (Zn2SiO4:Mn):Y3+, Yb3+, Tm3+ upconverting persistent luminescent nanophosphors; these nanophosphors can be excited in vivo through living tissues by highly penetrating near-infrared light. We can trace labeled tumor therapeutic macrophages in vivo after endocytosing these nanophosphors in vitro and follow macrophages biodistribution by a simple whole animal optical detection. These nanophosphors will open novel potentials for cell therapy research and for a variety of applications in diagnosis in vivo.
Collapse
Affiliation(s)
- Bin Zheng
- School of Life Sciences , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Yang Bai
- Department of Stomatology , Tianjin Medical University General Hospital , 154 Anshan Road , Heping District, Tianjin 300052 , P. R. China
| | - Hongbin Chen
- School of Life Sciences , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Huizhuo Pan
- School of Life Sciences , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Wanying Ji
- School of Life Sciences , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Xiaoqun Gong
- School of Life Sciences , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Xiaoli Wu
- School of Life Sciences , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Hanjie Wang
- School of Life Sciences , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| | - Jin Chang
- School of Life Sciences , Tianjin University , 92 Weijin Road , Nankai District, Tianjin 300072 , P. R. China
| |
Collapse
|
34
|
|