1
|
Wu X, Sun L, Wang T, Wang Y, Zhao J, Fu Y. Functionalized nano cellulose double-template imprinted aerogel microsphere for the targeted enrichment of taxanes. Int J Biol Macromol 2024; 273:132998. [PMID: 38866290 DOI: 10.1016/j.ijbiomac.2024.132998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/25/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
Paclitaxel, a diterpenoid isolated from the bark of Taxus wallichiana var. chinensis (Pilger) Florin, is currently showing significant therapeutic effects against a variety of cancers. Baccatin III (Bac) and 10-Deacetylbaccatin III (10-DAB) are in great demand as important precursors for the synthesis of paclitaxel. This work aims to develop a simple, rapid and highly selective, safe, and non-polluting molecularly imprinted material for 10-DAB and Bac enrichment. In this study, we innovatively prepared molecularly imprinted materials with nanocellulose aerogel microspheres and 2-vinylpyridine (2-VP) as a bifunctional monomer, and 10-DAB and Bac as bis-template molecules. In particular, functionalized nanocellulose dual-template molecularly imprinted aerogel microsphere (FNCAG-DMIM) were successfully synthesized by the bifunctional introduction of functional nanocellulose aerogel microsphere (FNCAG) modified with Polyethyleneimine (PEI) as a carrier and functional monomer, which provided a large number of recognition sites for bimodal molecules. FNCAG-DMIM showed high specificity for 10-DAB and Bac specific assays. Under the optimal experimental conditions, the adsorption capacities of FNCAG-DMIM for 10-DAB and Bac reached 52.27 mg g-1 and 53.81 mg g-1, respectively. In addition, it showed good reliability and practicality in the determination of real samples. The present study extends the research on the synthesis of natural functional monomers by molecularly imprinted materials and opens up new horizons for the targeted isolation of plant compounds by dual-template molecularly imprinted materials.
Collapse
Affiliation(s)
- Xiaodan Wu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Linan Sun
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Tao Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Ying Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Jingru Zhao
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, 150040 Harbin, PR China; Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; The College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040 Harbin, PR China
| | - Yujie Fu
- The College of Forestry, Beijing Forestry University, 100083 Beijing, PR China.
| |
Collapse
|
2
|
Breusa S, Zilio S, Catania G, Bakrin N, Kryza D, Lollo G. Localized chemotherapy approaches and advanced drug delivery strategies: a step forward in the treatment of peritoneal carcinomatosis from ovarian cancer. Front Oncol 2023; 13:1125868. [PMID: 37287910 PMCID: PMC10242058 DOI: 10.3389/fonc.2023.1125868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/04/2023] [Indexed: 06/09/2023] Open
Abstract
Peritoneal carcinomatosis (PC) is a common outcome of epithelial ovarian carcinoma and is the leading cause of death for these patients. Tumor location, extent, peculiarities of the microenvironment, and the development of drug resistance are the main challenges that need to be addressed to improve therapeutic outcome. The development of new procedures such as HIPEC (Hyperthermic Intraperitoneal Chemotherapy) and PIPAC (Pressurized Intraperitoneal Aerosol Chemotherapy) have enabled locoregional delivery of chemotherapeutics, while the increasingly efficient design and development of advanced drug delivery micro and nanosystems are helping to promote tumor targeting and penetration and to reduce the side effects associated with systemic chemotherapy administration. The possibility of combining drug-loaded carriers with delivery via HIPEC and PIPAC represents a powerful tool to improve treatment efficacy, and this possibility has recently begun to be explored. This review will discuss the latest advances in the treatment of PC derived from ovarian cancer, with a focus on the potential of PIPAC and nanoparticles in terms of their application to develop new therapeutic strategies and future prospects.
Collapse
Affiliation(s)
- Silvia Breusa
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Apoptosis, Cancer and Development Laboratory- Equipe labellisée ‘La Ligue’, LabEx DEVweCAN, Institut PLAsCAN, Centre de Recherche en Cancérologie de Lyon, Institut national de santé et de la recherche médicale (INSERM) U1052-Centre National de la Recherche Scientifique - Unité Mixte de Recherche (CNRS UMR)5286, Université de Lyon, Centre Léon Bérard, Lyon, France
| | - Serena Zilio
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Sociétés d'Accélération du Transfert de Technologies (SATT) Ouest Valorisation, Rennes, France
| | - Giuseppina Catania
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
| | - Naoual Bakrin
- Department of Surgical Oncology, Hospices Civils de Lyon, Centre Hospitalier Lyon-Sud, Lyon, France
- Centre pour l'Innovation en Cancérologie de Lyon (CICLY), Claude Bernard University Lyon 1, Lyon, France
| | - David Kryza
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
- Imthernat Plateform, Hospices Civils de Lyon, Lyon, France
| | - Giovanna Lollo
- Univ Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique (CNRS), LAGEPP Unité Mixte de Recherche (UMR) 5007, Villeurbanne, France
| |
Collapse
|
3
|
Huang Y, Li C, Zhang X, Zhang M, Ma Y, Qin D, Tang S, Fei W, Qin J. Nanotechnology-integrated ovarian cancer metastasis therapy: Insights from the metastatic mechanisms into administration routes and therapy strategies. Int J Pharm 2023; 636:122827. [PMID: 36925023 DOI: 10.1016/j.ijpharm.2023.122827] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
Ovarian cancer is a kind of malignant tumour which locates in the pelvic cavity without typical clinical symptoms in the early stages. Most patients are diagnosed in the late stage while about 60 % of them have suffered from the cancer cells spreading in the abdominal cavity. The high recurrence rate and mortality seriously damage the reproductive needs and health of women. Although recent advances in therapeutic regimes and other adjuvant therapies improved the overall survival of ovarian cancer, overcoming metastasis has still been a challenge and is necessary for achieving cure of ovarian cancer. To present potential targets and new strategies for curbing the occurrence of ovarian metastasis and the treatment of ovarian cancer after metastasis, the first section of this paper explained the metastatic mechanisms of ovarian cancer comprehensively. Nanomedicine, not limited to drug delivery, offers opportunities for metastatic ovarian cancer therapy. The second section of this paper emphasized the advantages of various administration routes of nanodrugs in metastatic ovarian cancer therapy. Furthermore, the third section of this paper focused on advances in nanotechnology-integrated strategies for targeting metastatic ovarian cancer based on the metastatic mechanisms of ovarian cancer. Finally, the challenges and prospects of nanotherapeutics for ovarian cancer metastasis therapy were evaluated. In general, the greatest emphasis on using nanotechnology-based strategies provides avenues for improving metastatic ovarian cancer outcomes in the future.
Collapse
Affiliation(s)
- Yu Huang
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chaoqun Li
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Xiao Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Meng Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Yidan Ma
- Department of Pharmacy, Yipeng Medical Care Center, Hangzhou 311225, China
| | - Dongxu Qin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Sangsang Tang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Weidong Fei
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| | - Jiale Qin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China.
| |
Collapse
|
4
|
Viral Vectors in Gene Therapy: Where Do We Stand in 2023? Viruses 2023; 15:v15030698. [PMID: 36992407 PMCID: PMC10059137 DOI: 10.3390/v15030698] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Viral vectors have been used for a broad spectrum of gene therapy for both acute and chronic diseases. In the context of cancer gene therapy, viral vectors expressing anti-tumor, toxic, suicide and immunostimulatory genes, such as cytokines and chemokines, have been applied. Oncolytic viruses, which specifically replicate in and kill tumor cells, have provided tumor eradication, and even cure of cancers in animal models. In a broader meaning, vaccine development against infectious diseases and various cancers has been considered as a type of gene therapy. Especially in the case of COVID-19 vaccines, adenovirus-based vaccines such as ChAdOx1 nCoV-19 and Ad26.COV2.S have demonstrated excellent safety and vaccine efficacy in clinical trials, leading to Emergency Use Authorization in many countries. Viral vectors have shown great promise in the treatment of chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, hemophilia, β-thalassemia, and sickle cell disease (SCD). Proof-of-concept has been established in preclinical studies in various animal models. Clinical gene therapy trials have confirmed good safety, tolerability, and therapeutic efficacy. Viral-based drugs have been approved for cancer, hematological, metabolic, neurological, and ophthalmological diseases as well as for vaccines. For example, the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, the oncolytic HSV T-VEC for melanoma, lentivirus-based treatment of ADA-SCID disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease have been approved for human use.
Collapse
|
5
|
Wu Y, Yang Y, Lv X, Gao M, Gong X, Yao Q, Liu Y. Nanoparticle-Based Combination Therapy for Ovarian Cancer. Int J Nanomedicine 2023; 18:1965-1987. [PMID: 37077941 PMCID: PMC10106804 DOI: 10.2147/ijn.s394383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/19/2023] [Indexed: 04/21/2023] Open
Abstract
Ovarian cancer is one of the most common malignant tumors in gynecology with a high incidence. Combination therapy, eg, administration of paclitaxel followed by a platinum anticancer drug is recommended to treat ovarian cancer due to its advantages in, eg, reducing side effects and reversing (multi)drug-resistance compared to single treatment. However, the benefits of combination therapy are often compromised. In chemo and chemo/gene combinations, co-deposition of the combined therapeutics in the tumor cells is required, which is difficult to achieve due to dramatic pharmacokinetic differences between combinational agents in free forms. Moreover, some undesired properties such as the low-water solubility of chemodrugs and the difficulty of cellular internalization of gene therapeutics also hinder the therapeutic potential. Delivery of dual or multiple agents by nanoparticles provides opportunities to tackle these limits. Nanoparticles encapsulate hydrophobic drug(s) to yield aqueous dispersions facilitating its administration and/or to accommodate hydrophilic genes facilitating its access to cells. Moreover, nanoparticle-based therapeutics can not only improve drug properties (eg, in vivo stability) and ensure the same drug disposition behavior with controlled drug ratios but also can minimize drug exposure of the normal tissues and increase drug co-accumulation at targeted tissues via passive and/or active targeting strategies. Herein, this work summarizes nanoparticle-based combination therapies, mainly including anticancer drug-based combinations and chemo/gene combinations, and emphasizes the advantageous outcomes of nanocarriers in the combination treatment of ovarian cancer. In addition, we also review mechanisms of synergetic effects resulting from different combinations.
Collapse
Affiliation(s)
- Yingli Wu
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
| | - Yu Yang
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
| | - Xiaolin Lv
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
| | - Menghan Gao
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
| | - Xujin Gong
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
| | - Qingqiang Yao
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
- Jining Medical University, Jining, Shandong, 272067, People’s Republic of China
- Correspondence: Qingqiang Yao, Jining Medical University, No. 133 HeHua Road, Jinan, Shandong, 272067, People’s Republic of China, Email
| | - Yanna Liu
- School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, People’s Republic of China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Jinan, Shandong, 250117, People’s Republic of China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong, 250117, People’s Republic of China
- Yanna Liu, Shandong First Medical University, No. 6699 Qingdao Road, HuaiYin District, Jinan, Shandong, 250117, People’s Republic of China, Email
| |
Collapse
|
6
|
Lundstrom K. Therapeutic Applications for Oncolytic Self-Replicating RNA Viruses. Int J Mol Sci 2022; 23:ijms232415622. [PMID: 36555262 PMCID: PMC9779410 DOI: 10.3390/ijms232415622] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Self-replicating RNA viruses have become attractive delivery vehicles for therapeutic applications. They are easy to handle, can be rapidly produced in large quantities, and can be delivered as recombinant viral particles, naked or nanoparticle-encapsulated RNA, or plasmid DNA-based vectors. The self-replication of RNA in infected host cells provides the means for generating much higher transgene expression levels and the possibility to apply substantially reduced amounts of RNA to achieve similar expression levels or immune responses compared to conventional synthetic mRNA. Alphaviruses and flaviviruses, possessing a single-stranded RNA genome of positive polarity, as well as measles viruses and rhabdoviruses with a negative-stranded RNA genome, have frequently been utilized for therapeutic applications. Both naturally and engineered oncolytic self-replicating RNA viruses providing specific replication in tumor cells have been evaluated for cancer therapy. Therapeutic efficacy has been demonstrated in animal models. Furthermore, the safe application of oncolytic viruses has been confirmed in clinical trials. Multiple myeloma patients treated with an oncolytic measles virus (MV-NIS) resulted in increased T-cell responses against the measles virus and several tumor-associated antigen responses and complete remission in one patient. Furthermore, MV-CEA administration to patients with ovarian cancer resulted in a stable disease and more than doubled the median overall survival.
Collapse
|
7
|
Lundstrom K. Self-replicating vehicles based on negative strand RNA viruses. Cancer Gene Ther 2022:10.1038/s41417-022-00436-7. [PMID: 35169298 PMCID: PMC8853047 DOI: 10.1038/s41417-022-00436-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 11/10/2022]
Abstract
Self-replicating RNA viruses have been engineered as efficient expression vectors for vaccine development for infectious diseases and cancers. Moreover, self-replicating RNA viral vectors, particularly oncolytic viruses, have been applied for cancer therapy and immunotherapy. Among negative strand RNA viruses, measles viruses and rhabdoviruses have been frequently applied for vaccine development against viruses such as Chikungunya virus, Lassa virus, Ebola virus, influenza virus, HIV, Zika virus, and coronaviruses. Immunization of rodents and primates has elicited strong neutralizing antibody responses and provided protection against lethal challenges with pathogenic viruses. Several clinical trials have been conducted. Ervebo, a vaccine based on a vesicular stomatitis virus (VSV) vector has been approved for immunization of humans against Ebola virus. Different types of cancers such as brain, breast, cervical, lung, leukemia/lymphoma, ovarian, prostate, pancreatic, and melanoma, have been the targets for cancer vaccine development, cancer gene therapy, and cancer immunotherapy. Administration of measles virus and VSV vectors have demonstrated immune responses, tumor regression, and tumor eradication in various animal models. A limited number of clinical trials have shown well-tolerated treatment, good safety profiles, and dose-dependent activity in cancer patients.
Collapse
|
8
|
Wang P, Qu X, Che X, Luo Q, Tang X, Liu Y. Pharmaceutical strategies in improving anti-tumour efficacy and safety of intraperitoneal therapy for peritoneal metastasis. Expert Opin Drug Deliv 2021; 18:1193-1210. [PMID: 33682562 DOI: 10.1080/17425247.2021.1896493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Introduction: In selected patients with limited peritoneal metastasis (PM), favorable tumor biology, and a good clinical condition, there is an indication for combination of cytoreductive surgery (CRS) and subsequent intravenous (IV) or intraperitoneal (IP) chemotherapy. Compared with IV injection, IP therapy can achieve a high drug concentration within the peritoneal cavity with low systemic toxicity, however, the clinical application of IP chemotherapy is limited by the related abdominal pain, infection, and intolerance.Areas covered:To improve the anti-tumor efficacy and safety of IP therapy, various pharmaceutical strategies have been developed and show promising potential. This review discusses the specialized modification of traditional drug delivery systems and demonstrates the preparation of customized drug carriers for IP therapy, including chemotherapy and gene therapy. IP therapy has important clinical significance in the treatment of PM using novel anti-tumor agents as well as conventional drugs in new applications.Expert opinion: Although IP therapy exhibits good performance both in mouse models and in patients with PM in clinical trials, its clinical application remains limited due to the serious side effects and low acceptability. Further investigations, including pharmaceutical strategies, are needed to develop potential IP therapy, focusing on the efficacy and safety thereof.
Collapse
Affiliation(s)
- Puxiu Wang
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China.,Liaoning Province Clinical Research Center for Cancer, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China.,Liaoning Province Clinical Research Center for Cancer, China
| | - Qiuhua Luo
- Department of Pharmacy, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, College of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, China.,Liaoning Province Clinical Research Center for Cancer, China
| |
Collapse
|
9
|
Novel Bi-Functional 14-mer Peptides with Both Ovarian Carcinoma Cells Targeting and Magnetic Fe₃O₄Nanoparticles Affinity. MATERIALS 2019; 12:ma12050755. [PMID: 30841597 PMCID: PMC6427814 DOI: 10.3390/ma12050755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 11/17/2022]
Abstract
Fe3O4 magnetic nanoparticles (Fe3O4-MNPs) have attracted much interest for their potential medical applications due to their desirable magnetic properties. However, their potential cytotoxicity, high RES clearance in circulation, and nonspecific distribution in tissue might be the main obstacles in practice. In the present study, a novel bi-functional 14-mer peptide with both ovarian carcinoma cells targeting and magnetic Fe3O4 nanoparticles affinity was designed and synthesized, and then a facile and effective modification method was developed to bestow the Fe3O4-MNPs with tumor-targeting capability via modification, using the bi-functional peptides. First, on the basis of a tumor-targeting 7-mer peptide QQTNWSL (Q-L) and another Fe3O4-MNPs-targeting 7-mer peptide TVNFKLY (T-Y)—screened by phage-displayed peptide libraries—two bi-functional 14-mer peptides sequenced as LSWNTQQ-YLKFNVT (abbreviated as LQ-YT) and QQTNWSL-YLKFNVT (QL-YT) were synthesized through combining the Q-L peptide and T-Y peptide in predetermined configurations. Their specificity for bonding with A2780 tumor cells and affinity for Fe3O4-MNPs were verified. Then the bi-functional 14-mer peptides were applied to modify the Fe3O4-MNPs. Results showed that both bi-functional 14-mer peptides could be conjugated to the Fe3O4-MNPs surface with high affinity. Immunofluorescence and Prussian blue staining assays indicated that the LQ-YT-modified Fe3O4-MNPs could specifically bond to A2780 tumor cells. In addition to our findings suggesting that more β-turns and random coils are conducive to increasing polypeptide surface area for binding and exposing the target group and bonding sites on LQ-YT to external targets, we demonstrated that the bi-functional 14-mer peptide has affinity for Fe3O4-MNPs, and that Fe3O4-MNPs, which was modified with a 14-mer peptide, could be bestowed with a targeting affinity for ovarian carcinoma cells.
Collapse
|
10
|
Di Lorenzo G, Ricci G, Severini GM, Romano F, Biffi S. Imaging and therapy of ovarian cancer: clinical application of nanoparticles and future perspectives. Theranostics 2018; 8:4279-4294. [PMID: 30214620 PMCID: PMC6134923 DOI: 10.7150/thno.26345] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022] Open
Abstract
Despite significant advances in cancer diagnostics and treatment, ovarian cancers (OC) continue to kill more than 150,000 women every year worldwide. Due to the relatively asymptomatic nature and the advanced stage of the disease at the time of diagnosis, OC is the most lethal gynecologic malignancy. The current treatment for advanced OC relies on the synergistic effect of combining surgical cytoreduction and chemotherapy; however, beside the fact that chemotherapy resistance is a major challenge in OC management, new imaging strategies are needed to target microscopic lesions and improve both cytoreductive surgery and patient outcomes. In this context, nanostructured probes are emerging as a new class of medical tool that can simultaneously provide imaging contrast, target tumor cells, and carry a wide range of medicines resulting in better diagnosis and therapeutic precision. Herein we summarize several exemplary efforts in nanomedicine for addressing unmet clinical needs.
Collapse
Affiliation(s)
| | | | | | | | - Stefania Biffi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
11
|
Áyen Á, Jiménez Martínez Y, Marchal JA, Boulaiz H. Recent Progress in Gene Therapy for Ovarian Cancer. Int J Mol Sci 2018; 19:ijms19071930. [PMID: 29966369 PMCID: PMC6073662 DOI: 10.3390/ijms19071930] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023] Open
Abstract
Ovarian cancer is the most lethal gynecological malignancy in developed countries. This is due to the lack of specific symptoms that hinder early diagnosis and to the high relapse rate after treatment with radical surgery and chemotherapy. Hence, novel therapeutic modalities to improve clinical outcomes in ovarian malignancy are needed. Progress in gene therapy has allowed the development of several strategies against ovarian cancer. Most are focused on the design of improved vectors to enhance gene delivery on the one hand, and, on the other hand, on the development of new therapeutic tools based on the restoration or destruction of a deregulated gene, the use of suicide genes, genetic immunopotentiation, the inhibition of tumour angiogenesis, the alteration of pharmacological resistance, and oncolytic virotherapy. In the present manuscript, we review the recent advances made in gene therapy for ovarian cancer, highlighting the latest clinical trials experience, the current challenges and future perspectives.
Collapse
Affiliation(s)
- Ángela Áyen
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
| | - Yaiza Jiménez Martínez
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
| | - Juan A Marchal
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| | - Houria Boulaiz
- Department of Human Anatomy and Embryology, University of Granada, 18016 Granada, Spain.
- Biopathology and Medicine Regenerative Institute (IBIMER), University of Granada, 18016 Granada, Spain.
- Biosanitary Institute of Granada (ibs.GRANADA), SAS-Universidad de Granada, 18016 Granada, Spain.
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
| |
Collapse
|