1
|
Song Q, Chi B, Gao H, Wang J, Wu M, Xu Y, Wang Y, Xu Z, Li L, Wang J, Zhang R. Functionalized nanozyme with drug loading for enhanced tumour combination treatment of catalytic therapy and chemotherapy. J Mater Chem B 2023; 11:6889-6895. [PMID: 37377123 DOI: 10.1039/d3tb01002c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Nanozyme-based tumour catalytic therapy has attracted widespread attention in recent years, but the therapeutic efficacy is limited due to the trapping of hydroxyl radicals (˙OH) by endogenous glutathione (GSH) in the tumour microenvironment (TME). Zr/Ce-MOFs/DOX/MnO2 is constructed in this work to serve as a new kind of nanozyme for combination chemotherapy and catalytic treatment. Zr/Ce-MOFs can produce ˙OH in a mimic TME, and the MnO2 on the surface could deplete the GSH, further promoting the ˙OH generation. The pH/GSH dual stimulation accelerates the release of anticancer drug doxorubicin (DOX) in tumour tissue for enhanced tumour chemotherapy. Moreover, Mn2+ produced by the reaction of Zr/Ce-MOFs/DOX/MnO2 and GSH can be used as the contrast agent for T1-MRI. The potential antitumour effect of Zr/Ce-MOFs/DOX/MnO2 is demonstrated by in vitro and in vivo cancer treatment tests. This work thus provides a new nanozyme-based platform for enhanced combination chemotherapy and catalytic treatment for tumours.
Collapse
Affiliation(s)
- Qian Song
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China.
| | - Bin Chi
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Haiqing Gao
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China.
| | - Junke Wang
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China.
| | - Miaomiao Wu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Yi Xu
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China.
| | - Yingxi Wang
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China.
| | - Zushun Xu
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China.
| | - Ling Li
- Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Function Molecules, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei University, Wuhan 430062, China.
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Run Zhang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
2
|
Wang S, Zhang P, Li Y, Li J, Li X, Yang J, Ji M, Li F, Zhang C. Recent advances and future challenges of the starch-based bio-composites for engineering applications. Carbohydr Polym 2023; 307:120627. [PMID: 36781278 DOI: 10.1016/j.carbpol.2023.120627] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
Starch is regarded as one of the most promising sustainable materials due to its abundant yield and excellent biodegradability. From the perspective of practical engineering applications, this paper systematically describes the development of starch-based bio-composites in the past decade. Packaging properties, processing characteristics, and current challenges for the efficient processing of starch-based bio-composites are reviewed in industrial packaging. Green coatings, binders, adsorbents, flocculants, flame retardants, and emulsifiers are used as examples to illustrate the versatility of starch-based bio-composites in chemical agent applications. In addition, the work compares the application of starch-based bio-composites in conventional spinning with emerging spinning technologies and describes the challenges of electrostatic spinning for preparing nanoscale starch-based fibers. In terms of flexible electronics, the starch-based bio-composites are regard as a solid polymer electrolyte and easily modified porous material. Moreover, we describe the applications of the starch-based gels in tissue engineering, controlled drug release, and medical dressings. Finally, the theoretical input and technical guidance in the advanced sustainable engineering application of the starch-based bio-composites are provided in the work.
Collapse
Affiliation(s)
- Shen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Pengfei Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Junru Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Xinlin Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Jihua Yang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Maocheng Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (M of E), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Fangyi Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (M of E), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Chuanwei Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
3
|
Cavallaro G, Lazzara G, Milioto S. Nanocomposites based on halloysite nanotubes and sulphated galactan from red seaweed Gloiopeltis: Properties and delivery capacity of sodium diclofenac. Int J Biol Macromol 2023; 234:123645. [PMID: 36791935 DOI: 10.1016/j.ijbiomac.2023.123645] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/17/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023]
Abstract
We developed novel composite films based on biocompatible components, such as halloysite clay nanotubes and sulphated galactan (Funori) from red seaweed Gloiopeltis. The filling of the nanotubes within the sulphated galactan matrix was carried out by a green protocol (aqueous casting method) assuring that Funori/halloysite nanocomposites can be totally considered as sustainable materials. The amount of halloysite in the composites was systematically changed to explore the effects of the nanofiller concentration on the mesoscopic properties of the films. We observed that the halloysite content significantly affects the initial water contact angle and the light attenuation coefficient of the Funori based films. These results were interpreted according to SEM images, which showed that the surface morphologies of the nanocomposites depend on the halloysite amounts filled within the polymeric matrix. The mechanical characterization of the nanocomposites was conducted by tensile experiments performed using a linear stress ramp. Moreover, tensile tests were conducted in oscillatory regime at variable temperature to investigate the viscoelastic properties of the nanocomposites. Finally, we filled the biopolymeric matrix with halloysite nanotubes containing sodium diclofenac. The drug release kinetics from the nanocomposites at variable halloysite contents were studied to evaluate their suitability as oral dissolving films for pharmaceutical applications.
Collapse
Affiliation(s)
- Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy.
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| | - Stefana Milioto
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| |
Collapse
|
4
|
Yu J, Mateos J, Carraro M. Halloysite Nanotubes as Bimodal Lewis/Brønsted Acid Heterogeneous Catalysts for the Synthesis of Heterocyclic Compounds. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:394. [PMID: 36770356 PMCID: PMC9919349 DOI: 10.3390/nano13030394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Halloysite nanotubes can be used for the preparation of solid catalysts. Owing to their natural availability at low-cost as well as to their large and easy-to-functionalize surface, they can be conveniently activated with mineral acids or derivatized with acidic groups. Nevertheless, the use of HNTs as catalysts in complex transformations is still limited. Herein, we report two strategies to utilize HNT-based materials as solid acidic catalysts for the Biginelli reaction. To this aim, two methods for increasing the number of acidic sites on the HNTs were explored: (i) the treatment with piranha solution (Pir-HNTs) and (ii) the functionalization with phenylboronic acid (in particular with benzene-1,4-diboronic acid: the sample is denoted as HNT-BOA). Interestingly, both strategies enhance the performance of the multicomponent reaction. Pir-HNTs and HNT-BOA show an increased reactivity (72% and 89% yield, respectively) in comparison with pristine HNTs (52%). Additionally, Pir-HNTs can be reused up to five times without significant performance loss. Moreover, the method also displays good reaction scope, as demonstrated by the preparation of 12 different 3,4-dihydropyrimidinones in up to 71% yield. Therefore, the described strategies are promising for enhancing the acidity of the HNTs as catalysts for the organic reaction.
Collapse
Affiliation(s)
- Jiaying Yu
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
- College of Chemistry and Environmental Engineering, Shenzhen University, 3688 Nanhai Ave, Shenzhen 518060, China
| | - Javier Mateos
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| | - Mauro Carraro
- Department of Chemical Sciences, University of Padova, Via F. Marzolo 1, 35131 Padova, Italy
- ITM-CNR, UoS of Padova, Via F. Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
5
|
Dube S, Rawtani D, Khatri N, Parikh G. A deep delve into the chemistry and biocompatibility of halloysite nanotubes: A new perspective on an idiosyncratic nanocarrier for delivering drugs and biologics. Adv Colloid Interface Sci 2022; 309:102776. [DOI: 10.1016/j.cis.2022.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022]
|
6
|
Cavallaro G, Caruso MR, Milioto S, Fakhrullin R, Lazzara G. Keratin/alginate hybrid hydrogels filled with halloysite clay nanotubes for protective treatment of human hair. Int J Biol Macromol 2022; 222:228-238. [PMID: 36155783 DOI: 10.1016/j.ijbiomac.2022.09.170] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/02/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
Abstract
Keratin/alginate hydrogels filled with halloysite nanotubes (HNTs) have been tested for the protective coating of human hair. Preliminary studies have been conducted on the aqueous colloidal systems and the corresponding hydrogels obtained by using Ca2+ ions as crosslinkers. Firstly, we have investigated the colloidal properties of keratin/alginate/HNTs dispersions to explore the specific interactions occurring between the biomacromolecules and the nanotubes. Then, the rheological properties of the hydrogels have been studied highlighting that the keratin/alginate interactions and the subsequent addition of HNTs facilitate the biopolymer crosslinking. Finally, human hair samples have been treated with the hydrogel systems by the dipping procedure. The protection efficiency of the hydrogels has been evaluated by studying the tensile properties of hair fibers exposed to UV irradiation. In conclusion, keratin/alginate hydrogel filled with halloysite represents a promising formulation for hair protective treatments due to the peculiar structural and rheological characteristics.
Collapse
Affiliation(s)
- Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy.
| | - Maria Rita Caruso
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy
| | - Stefana Milioto
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan, 420008, Russian Federation
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| |
Collapse
|
7
|
Zhang B, Li S, Wang Y, Wu Y, Zhang H. Halloysite nanotube-based self-healing fluorescence hydrogels in fabricating 3D cube containing UV-sensitive QR code information. J Colloid Interface Sci 2022; 617:353-362. [DOI: 10.1016/j.jcis.2022.03.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 12/13/2022]
|
8
|
Recent Studies on Hydrogels Based on H 2O 2-Responsive Moieties: Mechanism, Preparation and Application. Gels 2022; 8:gels8060361. [PMID: 35735705 PMCID: PMC9222492 DOI: 10.3390/gels8060361] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 01/04/2023] Open
Abstract
H2O2 is essential for cellular processes and plays a vital role in the regulation of cell signaling pathways, which can be viewed as a warning signal for many kinds of disease including cancer, cardiovascular disease, reproductive abnormalities, diabetes, and renal failure. A H2O2-responsive hydrogel (H2O2-Gel) is a promising candidate for biomedical applications because of its good biocompatibility, similarity to soft biological tissues, ease of preparation, and its ability to respond to H2O2. In this study, the H2O2-responsive moieties used to fabricate H2O2-Gels were reviewed, including thioethers, disulfide bonds, selenides, diselenium bonds, diketones, boronic, and others. Next, the preparation method of H2O2-Gel was divided into two major categories according to their reaction mechanisms: either self-crosslinking or mechanisms entailing the addition of difunctional crosslinkers. Last, the applications of H2O2-Gels were emphasized, which have been viewed as desirable candidates in the fields of drug delivery, the detection of H2O2, glucose-responsive systems, ROS scavengers, tissue engineering, and cell-encapsulation.
Collapse
|
9
|
Calvino MM, Cavallaro G, Lisuzzo L, Milioto S, Lazzara G. Separation of halloysite/kaolinite mixtures in water controlled by sucrose addition: The influence of the attractive forces on the sedimentation behavior. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Shevtsova T, Cavallaro G, Lazzara G, Milioto S, Donchak V, Harhay K, Korolko S, Budkowski A, Stetsyshyn Y. Temperature-responsive hybrid nanomaterials based on modified halloysite nanotubes uploaded with silver nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128525] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
11
|
Lisuzzo L, Cavallaro G, Milioto S, Lazzara G. Halloysite nanotubes as nanoreactors for heterogeneous micellar catalysis. J Colloid Interface Sci 2022; 608:424-434. [PMID: 34626986 DOI: 10.1016/j.jcis.2021.09.146] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 02/08/2023]
Abstract
HYPOTHESIS Electrostatic attractions between the anionic head group of sodium alkylsulphates and the positively charged inner surface of halloysite nanotubes (HNTs) drive to the formation of tubular inorganic micelles, which might be employed as nanoreactors for the confinement of non polar compounds in aqueous media. On this basis, sodium alkylsulphates/halloysite hybrids could be efficient nanocatalysts for organic reactions occurring in water. EXPERIMENTS Sodium decylsulphate (NaDeS) and sodium dodecylsulphate (NaDS) were selected for the functionalization of the halloysite cavity. The composition, the structure and the surface charge properties of the hybrid nanotubes were determined. The actual formation of inorganic micelles was explored by studying the microviscosity and polarity characteristics of the surfactant modified nanotubes through fluorescence spectroscopy experiments using DiPyme as probe. The performances of the sodium alkylsulphates/halloysite composites as micellar catalysts for the Belousov-Zhabotinsky (BZ) reaction were investigated. FINDINGS The halloysite functionalization with sodium alkylsulphates generated the formation of hydrophobic microdomains with an enhanced microviscosity. Compared to the surfactant conventional micelles, the functionalized nanotubes induced larger enhancements on the rate constant of the BZ reaction. This is the first report on the surfactant/halloysite hybrids showing their efficiencies as reusable nanocatalysts, which are dependent on their peculiar microviscosity and polarity properties.
Collapse
Affiliation(s)
- Lorenzo Lisuzzo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
| | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy.
| | - Stefana Milioto
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
| |
Collapse
|
12
|
The development and application of nanocomposites with pH-sensitive “gates” to control the release of active agents: Extending the shelf-life of fresh wheat noodles. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Liao J, Wang D, Tang A, Fu L, Ouyang J, Yang H. Surface modified halloysite nanotubes with different lumen diameters as drug carriers for cancer therapy. Chem Commun (Camb) 2021; 57:9470-9473. [PMID: 34528970 DOI: 10.1039/d1cc01879e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Paclitaxel (PTX) is successfully loaded by surface modification of distearoyl phosphoethanolamine (DSPE) on halloysite nanotubes (HNTs) with different inner lumen diameters. Drug loading of DSPE-HNTs-PTX attains 18.44% of DSPE content with a nearly complete release (near 100%) achieved. The anticancer efficacy (cell viability less than 52%) of DSPE-HNTs15-PTX increased and is attributed to the lower interfacial energy both inside and outside the tubes that improves tube loading.
Collapse
Affiliation(s)
- Juan Liao
- Hunan Key Lab of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Dongyue Wang
- Hunan Key Lab of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China.
| | - Aidong Tang
- School of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Liangjie Fu
- Hunan Key Lab of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China. .,Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.,Hunan International Joint Lab of Mineral Materials, Central South University, Changsha 410083, China
| | - Jing Ouyang
- Hunan Key Lab of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China. .,Hunan International Joint Lab of Mineral Materials, Central South University, Changsha 410083, China
| | - Huaming Yang
- Hunan Key Lab of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China. .,Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China.,Hunan International Joint Lab of Mineral Materials, Central South University, Changsha 410083, China
| |
Collapse
|
14
|
Halloysite nanotubes/carbohydrate-based hydrogels for biomedical applications: from drug delivery to tissue engineering. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03784-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Stuart-Walker W, Mahon CS. Glycomacromolecules: Addressing challenges in drug delivery and therapeutic development. Adv Drug Deliv Rev 2021; 171:77-93. [PMID: 33539854 DOI: 10.1016/j.addr.2021.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/15/2021] [Accepted: 01/23/2021] [Indexed: 12/18/2022]
Abstract
Carbohydrate-based materials offer exciting opportunities for drug delivery. They present readily available, biocompatible components for the construction of macromolecular systems which can be loaded with cargo, and can enable targeting of a payload to particular cell types through carbohydrate recognition events established in biological systems. These systems can additionally be engineered to respond to environmental stimuli, enabling triggered release of payload, to encompass multiple modes of therapeutic action, or to simultaneously fulfil a secondary function such as enabling imaging of target tissue. Here, we will explore the use of glycomacromolecules to deliver therapeutic benefits to address key health challenges, and suggest future directions for development of next-generation systems.
Collapse
|
16
|
Sun Y, Yin X, Zhang L, Cao M. Preparation and evaluation of photo-responsive hollow SnO 2 molecularly imprinted polymers for the selective recognition of kaempferol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:925-932. [PMID: 33527101 DOI: 10.1039/d0ay02202k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Novel photo-responsive hollow structured molecularly imprinted polymers (PHMIPs) were developed as a selective sorbent to recognize and separate analytes in complex samples. The PHMIPs were prepared using kaempferol (KAE) as the template, 4-[(4-methacryloyloxy) phenylazo] benzenesulfonic acid as a photo-responsive functional monomer, and hollow SnO2 (Ho-SnO2) as the support via free radical polymerization. The structure and physical properties of the developed polymers were characterized using different nano structural techniques and spectroscopy. Under alternating irradiation at 365 and 440 nm, the PHMIPs could release and uptake KAE, indicating that the template molecules can be easily bound to recognition sites and released back into solution. From adsorption experiments, the binding properties were evaluated, and the maximal adsorption capacity of the PHMIPs was 11.04 mg g-1. Furthermore, the developed PHMIPs showed high selectivity towards KAE compared to other compounds. Subsequently, the materials were successfully applied to the photo-controlled extraction of KAE from sea buckthorn leaves. The recoveries for KAE were higher than 90% and relative standard deviation values were between 1.81% and 2.53%, indicating the potential of the developed materials for use in extracting KAE from complex samples.
Collapse
Affiliation(s)
- Yun Sun
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | | | | | | |
Collapse
|
17
|
Lisuzzo L, Caruso MR, Cavallaro G, Milioto S, Lazzara G. Hydroxypropyl Cellulose Films Filled with Halloysite Nanotubes/Wax Hybrid Microspheres. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05148] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Lorenzo Lisuzzo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo, 90128, Italy
| | - Maria Rita Caruso
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo, 90128, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze, I-50121, Italy
| | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo, 90128, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze, I-50121, Italy
| | - Stefana Milioto
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo, 90128, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze, I-50121, Italy
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo, 90128, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze, I-50121, Italy
| |
Collapse
|
18
|
Massaro M, Noto R, Riela S. Past, Present and Future Perspectives on Halloysite Clay Minerals. Molecules 2020; 25:E4863. [PMID: 33096852 PMCID: PMC7587942 DOI: 10.3390/molecules25204863] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/16/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023] Open
Abstract
Halloysite nanotubes (HNTs), clay minerals belonging to the kaolin groups, are emerging nanomaterials which have attracted the attention of the scientific community due to their interesting features, such as low-cost, availability and biocompatibility. In addition, their large surface area and tubular structure have led to HNTs' application in different industrial purposes. This review reports a comprehensive overview of the historical background of HNT utilization in the last 20 years. In particular it will focus on the functionalization of the surfaces, both supramolecular and covalent, following applications in several fields, including biomedicine, environmental science and catalysis.
Collapse
Affiliation(s)
- Marina Massaro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo Viale delle Scienze, Ed. 17, 90128 Palermo, Italy;
| | | | - Serena Riela
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo Viale delle Scienze, Ed. 17, 90128 Palermo, Italy;
| |
Collapse
|
19
|
Polysaccharides/Halloysite nanotubes for smart bionanocomposite materials. Carbohydr Polym 2020; 245:116502. [DOI: 10.1016/j.carbpol.2020.116502] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/19/2020] [Accepted: 05/20/2020] [Indexed: 01/03/2023]
|
20
|
Bionanocomposite Films Containing Halloysite Nanotubes and Natural Antioxidants with Enhanced Performance and Durability as Promising Materials for Cultural Heritage Protection. Polymers (Basel) 2020; 12:polym12091973. [PMID: 32878027 PMCID: PMC7564337 DOI: 10.3390/polym12091973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/30/2022] Open
Abstract
In the last decade, the interest toward the formulation of polymer films for cultural heritage protection continuously grew, and these films must be imperatively transparent, removable, and should not react/interact with surface of the artworks. In this research, bionanocomposite films, based on chitosan (Ch) and pectin (P) and containing naturally occurring fillers and antioxidants, were formulated by solvent casting methods and were accurately characterized. The natural halloysite nanotubes (HNT) have a two-fold role, specifically, physical compatibilizer and antioxidant carrier. Therefore, the theoretical solubility between Ch and P was estimated considering Hoy’s method for solubility of polymers, while the optimum ratio between biopolymer constituents was assessed by ζ-potential measurements. The transparency, wettability, and mechanical behavior of Ch:P films, also in presence of HNT without and with antioxidants, were investigated. The beneficial effects of natural antioxidants, such as vanillic acid (VA) and quercetin (Q), on Ch:P/HNT durability were found.
Collapse
|
21
|
Lisuzzo L, Cavallaro G, Milioto S, Lazzara G. Halloysite Nanotubes Coated by Chitosan for the Controlled Release of Khellin. Polymers (Basel) 2020; 12:E1766. [PMID: 32784604 PMCID: PMC7464246 DOI: 10.3390/polym12081766] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023] Open
Abstract
In this work, we have developed a novel strategy to prepare hybrid nanostructures with controlled release properties towards khellin by exploiting the electrostatic interactions between chitosan and halloysite nanotubes (HNT). Firstly, khellin was loaded into the HNT lumen by the vacuum-assisted procedure. The drug confinement within the halloysite cavity has been proved by water contact angle experiments on the HNT/khellin tablets. Therefore, the loaded nanotubes were coated with chitosan as a consequence of the attractions between the cationic biopolymer and the halloysite outer surface, which is negatively charged in a wide pH range. The effect of the ionic strength of the aqueous medium on the coating efficiency of the clay nanotubes was investigated. The surface charge properties of HNT/khellin and chitosan/HNT/khellin nanomaterials were determined by ζ potential experiments, while their morphology was explored through Scanning Electron Microscopy (SEM). Water contact angle experiments were conducted to explore the influence of the chitosan coating on the hydrophilic/hydrophobic character of halloysite external surface. Thermogravimetry (TG) experiments were conducted to study the thermal behavior of the composite nanomaterials. The amounts of loaded khellin and coated chitosan in the hybrid nanostructures were estimated by a quantitative analysis of the TG curves. The release kinetics of khellin were studied in aqueous solvents at different pH conditions (acidic, neutral and basic) and the obtained data were analyzed by the Korsmeyer-Peppas model. The release properties were interpreted on the basis of the TG and ζ potential results. In conclusion, this study demonstrates that halloysite nanotubes wrapped by chitosan layers can be effective as drug delivery systems.
Collapse
Affiliation(s)
- Lorenzo Lisuzzo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; (L.L.); (S.M.); (G.L.)
| | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; (L.L.); (S.M.); (G.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| | - Stefana Milioto
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; (L.L.); (S.M.); (G.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; (L.L.); (S.M.); (G.L.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| |
Collapse
|
22
|
Cavallaro G, Milioto S, Konnova S, Fakhrullina G, Akhatova F, Lazzara G, Fakhrullin R, Lvov Y. Halloysite/Keratin Nanocomposite for Human Hair Photoprotection Coating. ACS APPLIED MATERIALS & INTERFACES 2020; 12:24348-24362. [PMID: 32372637 PMCID: PMC8007073 DOI: 10.1021/acsami.0c05252] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We propose a novel keratin treatment of human hair by its aqueous mixtures with natural halloysite clay nanotubes. The loaded clay nanotubes together with free keratin produce micrometer-thick protective coating on hair. First, colloidal and structural properties of halloysite/keratin dispersions and the nanotube loaded with this protein were investigated. Above the keratin isoelectric point (pH = 4), the protein adsorption into the positive halloysite lumen is favored because of the electrostatic attractions. The ζ-potential magnitude of these core-shell particles increased from -35 (in pristine form) to -43 mV allowing for an enhanced colloidal stability (15 h at pH = 6). This keratin-clay tubule nanocomposite was used for the immersion treatment of hair. Three-dimensional-measuring laser scanning microscopy demonstrated that 50-60% of the hair surface coverage can be achieved with 1 wt % suspension application. Hair samples have been exposed to UV irradiation for times up to 72 h to explore the protection capacity of this coating by monitoring the cysteine oxidation products. The nanocomposites of halloysite and keratin prevent the deterioration of human hair as evident by significant inhibition of cysteic acid. The successful hair structure protection was also visually confirmed by atomic force microscopy and dark-field hyperspectral microscopy. The proposed formulation represents a promising strategy for a sustainable medical coating on the hair, which remediates UV irradiation stress.
Collapse
Affiliation(s)
- Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze I-50121, Italy
| | - Stefana Milioto
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze I-50121, Italy
| | - Svetlana Konnova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan 420008, Russian Federation
| | - Gölnur Fakhrullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan 420008, Russian Federation
| | - Farida Akhatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan 420008, Russian Federation
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, Firenze I-50121, Italy
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kreml uramı 18, Kazan, Republic of Tatarstan 420008, Russian Federation
- Institute for Micromanufacturing, Louisiana Tech University, 505 Tech Drive, Ruston, Louisiana 71272, United States
| | - Yuri Lvov
- Institute for Micromanufacturing, Louisiana Tech University, 505 Tech Drive, Ruston, Louisiana 71272, United States
| |
Collapse
|
23
|
Williams GT, Sedgwick AC, Sen S, Gwynne L, Gardiner JE, Brewster JT, Hiscock JR, James TD, Jenkins ATA, Sessler JL. Boronate ester cross-linked PVA hydrogels for the capture and H 2O 2-mediated release of active fluorophores. Chem Commun (Camb) 2020; 56:5516-5519. [PMID: 32296797 PMCID: PMC7497407 DOI: 10.1039/d0cc01904f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/06/2020] [Indexed: 01/01/2023]
Abstract
A new set of PVA hydrogels were formed using the boronate ester fluorescent probe PF1 and the novel boronate fluorescent probe PT1 as the covalent crosslinkers. Treatment with aqueous H2O2 allowed triggered release of the fluorescent dye accompanied by complete dissolution of the hydrogel.
Collapse
Affiliation(s)
- George T Williams
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. and School of Physical Sciences, University of Kent, Canterbury, CT2 7NH, UK.
| | - Adam C Sedgwick
- Department of Chemistry, University of Texas at Austin, 105 E 24th street A5300, Austin, TX 78712-1224, USA.
| | - Sajal Sen
- Department of Chemistry, University of Texas at Austin, 105 E 24th street A5300, Austin, TX 78712-1224, USA.
| | - Lauren Gwynne
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | | | - James T Brewster
- Department of Chemistry, University of Texas at Austin, 105 E 24th street A5300, Austin, TX 78712-1224, USA.
| | - Jennifer R Hiscock
- School of Physical Sciences, University of Kent, Canterbury, CT2 7NH, UK.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | | | - Jonathan L Sessler
- Department of Chemistry, University of Texas at Austin, 105 E 24th street A5300, Austin, TX 78712-1224, USA.
| |
Collapse
|
24
|
Ianchis R, Ninciuleanu CM, Gifu IC, Alexandrescu E, Nistor CL, Nitu S, Petcu C. Hydrogel-clay Nanocomposites as Carriers for Controlled Release. Curr Med Chem 2020; 27:919-954. [PMID: 30182847 DOI: 10.2174/0929867325666180831151055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/12/2018] [Accepted: 07/24/2018] [Indexed: 12/15/2022]
Abstract
The present review aims to summarize the research efforts undertaken in the last few years in the development and testing of hydrogel-clay nanocomposites proposed as carriers for controlled release of diverse drugs. Their advantages, disadvantages and different compositions of polymers/biopolymers with diverse types of clays, as well as their interactions are discussed. Illustrative examples of studies regarding hydrogel-clay nanocomposites are detailed in order to underline the progressive researches on hydrogel-clay-drug pharmaceutical formulations able to respond to a series of demands for the most diverse applications. Brief descriptions of the different techniques used for the characterization of the obtained complex hybrid materials such as: swelling, TGA, DSC, FTIR, XRD, mechanical, SEM, TEM and biology tests, are also included. Enlightened by the presented data, we can suppose that hydrogel-clay nanocomposites will still be a challenging subject of global assiduous researches. We can dare to dream to an efficient drug delivery platform for the treatment of multiple affection concomitantly, these being undoubtedly like "a tree of life" bearing different kinds of fruits and leaves proper for human healing.
Collapse
Affiliation(s)
- Raluca Ianchis
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Claudia Mihaela Ninciuleanu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Ioana Catalina Gifu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Elvira Alexandrescu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Cristina Lavinia Nistor
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Sabina Nitu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| | - Cristian Petcu
- National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM Bucharest, Spl. Independentei 202, 6th District, 0600021 Bucharest, Romania
| |
Collapse
|
25
|
Cavallaro G, Chiappisi L, Gradzielski M, Lazzara G. Effect of the supramolecular interactions on the nanostructure of halloysite/biopolymer hybrids: a comprehensive study by SANS, fluorescence correlation spectroscopy and electric birefringence. Phys Chem Chem Phys 2020; 22:8193-8202. [PMID: 32249883 DOI: 10.1039/d0cp01076f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The structural properties of halloysite/biopolymer aqueous mixtures were firstly investigated by means of combining different techniques, including small-angle neutron scattering (SANS), electric birefringence (EBR) and fluorescence correlation spectroscopy (FCS). Among the biopolymers, non-ionic hydroxypropylcellulose and polyelectrolytes (anionic alginate and cationic chitosan) were selected. On this basis, the specific supramolecular interactions were correlated to the structural behavior of the halloysite/biopolymer mixtures. SANS data were analyzed in order to investigate the influence of the biopolymer adsorption on the halloysite gyration radius. In addition, a morphological description of the biopolymer-coated halloysite nanotubes (HNTs) was obtained by the simulation of SANS curves. EBR experiments evidenced that the orientation dynamics of the nanotubes in the electric field is influenced by the specific interactions with the polymers. Namely, both variations of the polymer charge and/or wrapping mechanisms strongly affected the HNT alignment process and, consequently, the rotational mobility of the nanotubes. FCS measurements with fluorescently labeled biopolymers allowed us to study the aqueous dynamic behavior of ionic biopolymers after their adsorption onto the HNT surfaces. The combination of EBR and FCS results revealed that the adsorption process reduces the mobility in water of both components. These effects are strongly enhanced by HNT/polyelectrolyte electrostatic interactions and wrapping processes occurring in the halloysite/chitosan mixture. The attained findings can be useful for designing halloysite/polymer hybrids with controlled structural properties.
Collapse
Affiliation(s)
- Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128 Palermo, Italy. and Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy and Stranski Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, 10623 Berlin, Germany
| | - Leonardo Chiappisi
- Stranski Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, 10623 Berlin, Germany and LSS Group, Institut Laue-Langevin, 6 rue Jules Horowitz BP 156, F-38042 Grenoble, Cedex 9, France
| | - Michael Gradzielski
- Stranski Laboratorium für Physikalische und Theoretische Chemie, Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 124, Sekr. TC 7, 10623 Berlin, Germany
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze pad 17, 90128 Palermo, Italy. and Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| |
Collapse
|
26
|
Cavallaro G, Milioto S, Lazzara G. Halloysite Nanotubes: Interfacial Properties and Applications in Cultural Heritage. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3677-3689. [PMID: 32202430 PMCID: PMC7997573 DOI: 10.1021/acs.langmuir.0c00573] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/19/2020] [Indexed: 05/27/2023]
Abstract
The peculiar surfaces of halloysite nanotubes and their biocompatibility are attracting the interest of researchers based on the wide range of attainable applications. The large aspect ratio of this nanotubular material ensures promising properties as a reinforcing agent in polymeric matrixes, such as cellulose and its derivatives, that entail strengthening due to, for instance, aging-induced degradation. The halloysite cavity has a suitable size for hosting a large variety of active species such as deacidifying (calcium hydroxide) and flame retardant agents (fluorinated surfactants) for a controlled and sustained release relevant to the conservation of cultural heritage. Additionally, anionic surfactants can be selectively adsorbed at the inner surface generating inorganic micelles able to solubilize hydrophobic species in a controlled cleaning protocol. We briefly discuss how the natural halloysite nanotubes can be supportive in various conservation processes of cultural heritage and present an outlook for future perspectives.
Collapse
|
27
|
Wang Y, Fan Y, Zhang M, Zhou W, Chai Z, Wang H, Sun C, Huang F. Glycopolypeptide Nanocarriers Based on Dynamic Covalent Bonds for Glucose Dual-Responsiveness and Self-Regulated Release of Insulin in Diabetic Rats. Biomacromolecules 2020; 21:1507-1515. [DOI: 10.1021/acs.biomac.0c00067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yanxia Wang
- Department of Environmental Engineering, North China Institute of Science and Technology, P.O. Box 206, Yanjiao, Beijing 101601, P. R. China
| | - Yiting Fan
- Department of Environmental Engineering, North China Institute of Science and Technology, P.O. Box 206, Yanjiao, Beijing 101601, P. R. China
| | - Minghao Zhang
- Department of Environmental Engineering, North China Institute of Science and Technology, P.O. Box 206, Yanjiao, Beijing 101601, P. R. China
| | - Wen Zhou
- Department of Environmental Engineering, North China Institute of Science and Technology, P.O. Box 206, Yanjiao, Beijing 101601, P. R. China
| | - Zhihua Chai
- Department of Environmental Engineering, North China Institute of Science and Technology, P.O. Box 206, Yanjiao, Beijing 101601, P. R. China
| | - Hao Wang
- Department of Environmental Engineering, North China Institute of Science and Technology, P.O. Box 206, Yanjiao, Beijing 101601, P. R. China
| | - Chunfeng Sun
- Department of Environmental Engineering, North China Institute of Science and Technology, P.O. Box 206, Yanjiao, Beijing 101601, P. R. China
| | - Fan Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192, P. R. China
| |
Collapse
|
28
|
Patenall BL, Williams GT, Gwynne L, Stephens LJ, Lampard EV, Hathaway HJ, Thet NT, Young AE, Sutton MJ, Short RD, Bull SD, James TD, Sedgwick AC, Jenkins ATA. Reaction-based indicator displacement assay (RIA) for the development of a triggered release system capable of biofilm inhibition. Chem Commun (Camb) 2019; 55:15129-15132. [PMID: 31788680 DOI: 10.1039/c9cc07759f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Here, a reaction-based indicator displacement hydrogel assay (RIA) was developed for the detection of hydrogen peroxide (H2O2) via the oxidative release of the optical reporter Alizarin Red S (ARS). In the presence of H2O2, the RIA system displayed potent biofilm inhibition for Methicillin-resistant Staphylococcus aureus (MRSA), as shown through an in vitro assay quantifying antimicrobial efficacy. This work demonstrated the potential of H2O2-responsive hydrogels containing a covalently bound diol-based drug for controlled drug release.
Collapse
|
29
|
Lisuzzo L, Wicklein B, Lo Dico G, Lazzara G, Del Real G, Aranda P, Ruiz-Hitzky E. Functional biohybrid materials based on halloysite, sepiolite and cellulose nanofibers for health applications. Dalton Trans 2019; 49:3830-3840. [PMID: 31834335 DOI: 10.1039/c9dt03804c] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biohybrid materials were prepared by co-assembling the three following components: nanotubular halloysite, microfibrous sepiolite, and cellulose nanofibers dispersed in water, in order to exploit the most salient features of each individual component and to render homogeneous, flexible, yet strong films. Indeed, the incorporation of halloysite improves the mechanical performance of the resulting hybrid nanopapers and the assembly of the three components modifies the surface features concerning wetting properties compared to pristine materials, so that the main characteristics of the resulting materials become tunable with regard to certain properties. Owing to their hierarchical porosity together with their diverse surface characteristics, these hybrids can be used in diverse biomedical/pharmaceutical applications. Herein, for instance, loading with two model drugs, salicylic acid and ibuprofen, allows controlled and sustained release as deduced from antimicrobial assays, opening a versatile path for developing other related organic-inorganic materials of potential interest in diverse application fields.
Collapse
Affiliation(s)
- Lorenzo Lisuzzo
- Department of Physics and Chemistry, University of Palermo, Viale delle Scienze, pad. 17, Palermo 90128, Italy
| | | | | | | | | | | | | |
Collapse
|
30
|
Varini E, Sánchez-Salcedo S, Malavasi G, Lusvardi G, Vallet-Regí M, Salinas A. Cerium (III) and (IV) containing mesoporous glasses/alginate beads for bone regeneration: bioactivity, biocompatibility and reactive oxygen species activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:109971. [PMID: 31507308 PMCID: PMC6736678 DOI: 10.1016/j.msec.2019.109971] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/03/2019] [Accepted: 07/12/2019] [Indexed: 11/15/2022]
Abstract
A very small number of biomaterials investigated for bone regeneration was reported as able to prevent the oxidative stress. In this study beads based on alginate hydrogel and mesoporous glasses (MG) containing different amounts of cerium oxides (Ce3+/Ce4+) exhibiting antioxidant properties were investigated as a good approach to mimic the action of antioxidant enzymes in our organism. The effect of cerium contents on the bioactivity and biocompatibility of beads were investigated. Moreover, the potential capability of Ce-containing MG to prevent the oxidative stress caused by the activity of reactive oxygen species (ROS) was here investigated for the first time. The increment of cerium oxide from 1.2, to 3.6 and 5.3 mol-% decreases the surface area and porosity of MG and increases the catalase mimetic activity after 168 h. Swelling tests in different cell culture media (D- and α-MEM) demonstrated the rehydration capability of beads. The presence of beads with the highest Ce-contents (3.6 and 5.3 %) improved the proliferation of pre-osteoblastic cells MC3T3-Cl cells. However, the cell differentiation decreased when increased the cerium content. Lactate dehydrogenase assays showed beads are cytocompatible materials. Moreover, oxidative stress tests with H2O2 showed a better response related to cell viability and the elimination of oxidant species when increased cerium content. Beads of glasses with 1.2 and 3.6 % of CeO2 are excellent candidates as bioactive scaffolds for bone regeneration capable of counteract the oxidative stress.
Collapse
Affiliation(s)
- E. Varini
- Dpt. Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - S. Sánchez-Salcedo
- Dpt. Quimica en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid; lnstituto de lnvestigación Hospital 12 de Octubre, imas12, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Madrid, Spain
| | - G. Malavasi
- Dpt. Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - G. Lusvardi
- Dpt. Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy
| | - M. Vallet-Regí
- Dpt. Quimica en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid; lnstituto de lnvestigación Hospital 12 de Octubre, imas12, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Madrid, Spain
| | - A.J. Salinas
- Dpt. Quimica en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid; lnstituto de lnvestigación Hospital 12 de Octubre, imas12, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) Madrid, Spain
| |
Collapse
|
31
|
Kumar A, Matari IAI, Choi H, Kim A, Suk YJ, Kim JY, Han SS. Development of halloysite nanotube/carboxylated-cellulose nanocrystal-reinforced and ionically-crosslinked polysaccharide hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109983. [DOI: 10.1016/j.msec.2019.109983] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022]
|
32
|
Sedimentation of halloysite nanotubes from different deposits in aqueous media at variable ionic strengths. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
Yu Y, Zhang L, Wang M, Yang Z, Lin L, Xiong Y, Xu Z, Wang J. H 2O 2/near-infrared light-responsive nanotheronostics for MRI-guided synergistic chemo/photothermal cancer therapy. Nanomedicine (Lond) 2019; 14:2189-2207. [PMID: 31411542 DOI: 10.2217/nnm-2019-0043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To develop a H2O2/near-infrared (NIR) laser light-responsive nanoplatform (manganese-doped Prussian blue@polypyrrole [MnPB@PPy]) for synergistic chemo/photothermal cancer theranostics. Materials & methods: Doxorubicin (DOX) was loaded onto the surface of polypyrrole shells. The in vitro and in vivo MRI performance and anticancer effects of these nanoparticles (NPs) were evaluated. Results: The MnPB@PPy NPs could not only generate heat under NIR laser irradiation for cancer photothermal therapy but also act as an excellent MRI contrast agent. The loaded DOX could be triggered to release by both NIR light and H2O2 to enhance synergistic therapeutic efficacy. The antitumor effects were confirmed by in vitro cellular cytotoxicity assays and in vivo treatment in a xenograft tumor model. Conclusion: The designed H2O2/NIR light-responsive MnPB@PPy-DOX NPs hold great potential for future biomedical applications.
Collapse
Affiliation(s)
- Yiming Yu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation & Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Li Zhang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation & Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China.,Department of Chemistry, City University of Hong Kong, Hong Kong SAR, PR China
| | - Miao Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, PR China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, PR China
| | - Zhe Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation & Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Leping Lin
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation & Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Yuxuan Xiong
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation & Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Zushun Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Green Preparation & Application of Functional Materials, Hubei University, Wuhan, Hubei 430062, PR China
| | - Jing Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei 430022, PR China.,Hubei Province Key Laboratory of Molecular Imaging, Wuhan, Hubei 430022, PR China
| |
Collapse
|
34
|
Anh HTP, Huang CM, Huang CJ. Intelligent Metal-Phenolic Metallogels as Dressings for Infected Wounds. Sci Rep 2019; 9:11562. [PMID: 31399620 PMCID: PMC6688990 DOI: 10.1038/s41598-019-47978-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/26/2019] [Indexed: 12/20/2022] Open
Abstract
In this study, we report a metallogel developed based on metal-phenolic coordination of natural low-cost polyphenolic molecule and metal ions. Gelation occurs by mixing tannic acid (TA) and group (IV) titanium ions (TiIV) to form TA-TiIV gel. The TA-TiIV gel exhibits good capability to incorporate diverse metal ions by in situ co-gelation. Herein, five antimicrobial metal ions, i.e. ferric (FeIII), copper (CuII), zinc (ZnII), cobalt (CoII) and nickel (NiII) ions, were employed to include in TA-TiIV gels for developing intelligent dressings for infected wounds. The chemical and coordinative structures of TA-TiIV metallogels were characterized by UV-Vis and Fourier-transform infrared (FT-IR) spectroscopies. Cytotoxicity of antimicrobial metallogels was explored by MTT assay with NIH 3T3 fibroblasts. The release of metal ions was evaluated by inductively coupled plasma mass spectrometry (ICP-MS), indicating the different releasing profiles upon the coordinative interactions of metal ions with TA. The formation and disassembly of metallogels are sensitive to the presence of acid and an oxidizer, H2O2, which are substances spontaneously generated in infected wounds due to the metabolic activity of bacteria and the intrinsic immune response. The CuII releasing rates of TA-TiIV-CuII metallogels at different pH values of 5.5, 7.4 and 8.5 have been studied. In addition, addition of H2O2 trigger fast release of CuII as a result of oxidation of galloyl groups in TA. Consequently, the antimicrobial potency of TA-TiIV-CuII metallogels can be simultaneously activated while the wounds are infected and healing. The antimicrobial property of metallogels against Gram-negative Escherichia coli, and Gram-positive Methicillin-Resistant Staphylococcus aureus (USA300) and Staphylococcus epidermidis has been investigated by agar diffusion test. In an animal model, the TA-TiIV-CuII metallogels were applied as dressings for infected wounds, indicating faster recovery in the wound area and extremely lower amount of bacteria around the wounds, compared to TA-TiIV gels and gauze. Accordingly, the intelligent nature derived metallogels is a promising and potential materials for medical applications.
Collapse
Affiliation(s)
- Ha Thi Phuong Anh
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan, 320, Taiwan
| | - Chun-Ming Huang
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan, 320, Taiwan
| | - Chun-Jen Huang
- Department of Biomedical Sciences and Engineering, National Central University, Jhong-Li, Taoyuan, 320, Taiwan. .,Department of Chemical and Materials Engineering, National Central University, Jhong-Li, Taoyuan, 320, Taiwan. .,R&D Center for Membrane Technology, Chung Yuan Christian University, 200 Chung Pei Rd., Chung-Li City, 32023, Taiwan.
| |
Collapse
|
35
|
Gianni E, Avgoustakis K, Pšenička M, Pospíšil M, Papoulis D. Halloysite nanotubes as carriers for irinotecan: Synthesis and characterization by experimental and molecular simulation methods. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Qiao H, Jia J, Shen H, Zhao S, Chen E, Chen W, Di B, Hu C. Capping Silica Nanoparticles with Tryptophan-Mediated Cucurbit[8]uril Complex for Targeted Intracellular Drug Delivery Triggered by Tumor-Overexpressed IDO1 Enzyme. Adv Healthc Mater 2019; 8:e1900174. [PMID: 30990966 DOI: 10.1002/adhm.201900174] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/26/2019] [Indexed: 12/28/2022]
Abstract
Nanosystems responsive to tumor-specific enzymes are considered as a highly attractive approach to intracellular drug release for targeted cancer therapy. Mesoporous silica nanoparticles are capped with tryptophan-mediated cucurbit[8]uril complex with Fe3 O4 to minimize the premature drug leakage while being able to deliver the payload on demand at the target tissue. The supramolecular interaction between tryptophan and cucurbit[8]uril is disrupted in the presence of indoleamine 2,3-dioxygenase 1 (IDO1) enzyme (abundant in the tumor intracellular microenvironment), which catalyzes the metabolism of tryptophan into N-formylkynurenine, resulting in the disassembly of the "gate-keeper" of the nanocarriers and intracellular release of therapeutics exclusively in tumor cells. The drug release from the nanocarrier with high selectivity to overexpressed IDO1 enzyme induces significant cytotoxicity against HepG2 cells in vitro, as well as the superior antitumor effects in vivo. This robust supramolecular nanosystem with sophisticated structure and property provides a promising platform for intracellular drug release targeting the intrinsic microenvironmental enzyme inside the tumor cells.
Collapse
Affiliation(s)
- Haishi Qiao
- Department of Pharmaceutical EngineeringSchool of EngineeringChina Pharmaceutical University Nanjing 210009 P. R. China
| | - Jing Jia
- Key Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationChina Pharmaceutical University Nanjing 210009 P. R. China
| | - Haowen Shen
- Key Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationChina Pharmaceutical University Nanjing 210009 P. R. China
| | - Sibo Zhao
- Department of Pharmaceutical EngineeringSchool of EngineeringChina Pharmaceutical University Nanjing 210009 P. R. China
| | - Enping Chen
- Department of Pharmaceutical EngineeringSchool of EngineeringChina Pharmaceutical University Nanjing 210009 P. R. China
| | - Wei Chen
- Department of Pharmaceutical EngineeringSchool of EngineeringChina Pharmaceutical University Nanjing 210009 P. R. China
| | - Bin Di
- Key Laboratory of Drug Quality Control and PharmacovigilanceMinistry of EducationChina Pharmaceutical University Nanjing 210009 P. R. China
| | - Chi Hu
- Department of Pharmaceutical EngineeringSchool of EngineeringChina Pharmaceutical University Nanjing 210009 P. R. China
| |
Collapse
|
37
|
Charge-Dependent Regulation in DNA Adsorption on 2D Clay Minerals. Sci Rep 2019; 9:6808. [PMID: 31048707 PMCID: PMC6497631 DOI: 10.1038/s41598-019-41093-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/27/2019] [Indexed: 01/22/2023] Open
Abstract
DNA purification is essential for the detection of human clinical specimens. A non-destructive, controllable, and low reagent consuming DNA extraction method is described. Negatively charged DNA is absorbed onto a negatively charged montmorillonite to achieve non-destructive DNA extraction based on cation bridge construction and electric double layer formation. Different valence cation modified montmorillonite forms were used to validate the charge-dependent nature of DNA adsorption on montmorillonite. Electric double layer thickness thinning/thickening with the high/lower valence cations exists, and the minerals tended to be sedimentation-stable due to the Van der Waals attraction/electrostatic repulsion. Li-modified montmorillonite with the lowest charge states showed the best DNA adsorption efficiency of 8–10 ng/μg. Charge-dependent regulating research provides a new perspective for controllable DNA extraction and a deep analysis of interface engineering mechanisms.
Collapse
|
38
|
Lisuzzo L, Cavallaro G, Pasbakhsh P, Milioto S, Lazzara G. Why does vacuum drive to the loading of halloysite nanotubes? The key role of water confinement. J Colloid Interface Sci 2019; 547:361-369. [PMID: 30974251 DOI: 10.1016/j.jcis.2019.04.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/28/2019] [Accepted: 04/03/2019] [Indexed: 12/11/2022]
Abstract
The filling of halloysite nanotubes with active compounds solubilized in aqueous solvent was investigated theoretically and experimentally. Based on Knudsen thermogravimetric data, we demonstrated the water confinement within the cavity of halloysite. This process is crucial to properly describe the driving mechanism of halloysite loading. In addition, Knudsen thermogravimetric experiments were conducted on kaolinite nanoplates as well as on halloysite nanotubes modified with an anionic surfactant (sodium dodecanoate) in order to explore the influence of both the nanoparticle morphology and the hydrophobic/hydrophilic character of the lumen on the confinement phenomenon. The analysis of the desorption isotherms allowed us to determine the water adsorption properties of the investigated nanoclays. The pore sizes of the nanotubes' lumen was determined by combining the vapor pressure of the confined water with the nanoparticles wettability, which was studied through contact angle measurements. The thermodynamic description of the water confinement inside the lumen was correlated to the influence of the vacuum pumping in the experimental loading of halloysite. Metoprolol tartrate, salicylic acid and malonic acid were selected as anionic guest molecules for the experimental filling of the positively charged halloysite lumen. According to the filling mechanism induced by the water confinement, the vacuum operation and the reduced pressure enhanced the loading of halloysite nanotubes for all the investigated bioactive compounds. This work represents a further and crucial step for the development of halloysite based nanocarriers being that the filling mechanism of the nanotube's cavity from aqueous dispersions was described according to the water confinement process.
Collapse
Affiliation(s)
- Lorenzo Lisuzzo
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy
| | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| | - Pooria Pasbakhsh
- Mechanical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500 Selangor, Malaysia
| | - Stefana Milioto
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Viale delle Scienze, pad. 17, 90128 Palermo, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| |
Collapse
|
39
|
Core/Shell Gel Beads with Embedded Halloysite Nanotubes for Controlled Drug Release. COATINGS 2019. [DOI: 10.3390/coatings9020070] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of nanocomposites based on biopolymers and nanoparticles for controlled drug release is an attractive notion. We used halloysite nanotubes that were promising candidates for the loading and release of active molecules due to their hollow cavity. Gel beads based on chitosan with uniformly dispersed halloysite nanotubes were obtained by a dropping method. Alginate was used to generate a coating layer over the hybrid gel beads. This proposed procedure succeeded in controlling the morphology at the mesoscale and it had a relevant effect on the release profile of the model drug from the nanotube cavity.
Collapse
|
40
|
Zhang H, Cheng C, Song H, Bai L, Cheng Y, Ba X, Wu Y. A facile one-step grafting of polyphosphonium onto halloysite nanotubes initiated by Ce(iv). Chem Commun (Camb) 2019; 55:1040-1043. [DOI: 10.1039/c8cc08667b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polyphosphonium was facilely grafted onto HNTs in an aqueous phase by a one-step method initiated by Ce(iv) at a mild temperature.
Collapse
Affiliation(s)
- Hailei Zhang
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Cong Cheng
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Hongzan Song
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Libin Bai
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Yongqiang Cheng
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education
| | - Xinwu Ba
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
- Affiliated Hospital of Hebei University
| | - Yonggang Wu
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
| |
Collapse
|
41
|
Lisuzzo L, Cavallaro G, Milioto S, Lazzara G. Layered composite based on halloysite and natural polymers: a carrier for the pH controlled release of drugs. NEW J CHEM 2019. [DOI: 10.1039/c9nj02565k] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have prepared new biohybrid materials based on halloysite nanotubes and natural polymers (alginate and chitosan) for the controlled and sustained release of bioactive species.
Collapse
Affiliation(s)
- Lorenzo Lisuzzo
- Dipartimento di Fisica e Chimica
- Università degli Studi di Palermo
- 90128 Palermo
- Italy
| | - Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica
- Università degli Studi di Palermo
- 90128 Palermo
- Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
| | - Stefana Milioto
- Dipartimento di Fisica e Chimica
- Università degli Studi di Palermo
- 90128 Palermo
- Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica
- Università degli Studi di Palermo
- 90128 Palermo
- Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali
| |
Collapse
|
42
|
Cavallaro G, Milioto S, Parisi F, Lazzara G. Halloysite Nanotubes Loaded with Calcium Hydroxide: Alkaline Fillers for the Deacidification of Waterlogged Archeological Woods. ACS APPLIED MATERIALS & INTERFACES 2018; 10:27355-27364. [PMID: 30028945 DOI: 10.1021/acsami.8b09416] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A novel green protocol for the deacidifying consolidation of waterlogged archaeological woods through aqueous dispersions of polyethylene glycol (PEG) 1500 and halloysite nanotubes containing calcium hydroxide has been designed. First, we prepared functionalized halloysite nanotubes filled with Ca(OH)2 in their lumen. The controlled and sustained release of Ca(OH)2 from the halloysite lumen extended its neutralization action over time, allowing the development of a long-term deacidification of the wood samples. A preliminary thermomechanical characterization of clay/polymer nanocomposites allows us to determine the experimental conditions to maximize the consolidation efficiency of the wood samples. The penetration of the halloysite-Ca(OH)2/PEG composite within the wooden pores conferred the robustness of the archaeological woods based on the clay/polymer composition of the consolidant mixture. Compared to the archeological woods treated with pure PEG 1500, the addition of modified nanotubes in the consolidant induced a remarkable improvement in the mechanical performance in terms of flexural strength and rigidity. The pH measurements of the treated woods showed that the halloysite-Ca(OH)2 are effective alkaline fillers. Accordingly, the modified nanotubes provided a long-term protection for lignin present in the woods that are exposed to artificial aging under acidic atmosphere. The attained knowledge shows that an easy and green protocol for the long-term preservation of wooden artworks can be achieved by the combination of PEG polymers and alkaline tubular nanostructures obtained through the confinement of Ca(OH)2 within the halloysite cavity.
Collapse
Affiliation(s)
- Giuseppe Cavallaro
- Dipartimento di Fisica e Chimica , Università degli Studi di Palermo , Viale delle Scienze, pad. 17 , 90128 Palermo , Italy
| | - Stefana Milioto
- Dipartimento di Fisica e Chimica , Università degli Studi di Palermo , Viale delle Scienze, pad. 17 , 90128 Palermo , Italy
| | - Filippo Parisi
- Dipartimento di Fisica e Chimica , Università degli Studi di Palermo , Viale delle Scienze, pad. 17 , 90128 Palermo , Italy
| | - Giuseppe Lazzara
- Dipartimento di Fisica e Chimica , Università degli Studi di Palermo , Viale delle Scienze, pad. 17 , 90128 Palermo , Italy
| |
Collapse
|
43
|
Zhang Y, Wu M, Chen J, Zhou H, Zhang Y, Shi L, Ran R. Tough, High stretched, Self‐healing C‐dots/Hydrophobically Associated Composited Hydrogels and Their Use for a Fluorescence Sensing Platform. ChemistrySelect 2018. [DOI: 10.1002/slct.201800497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yiyi Zhang
- College of Polymer Science and EngineeringSichuan University Chengdu 610065 China
| | - Meng Wu
- College of Polymer Science and EngineeringSichuan University Chengdu 610065 China
| | - Jing Chen
- College of Polymer Science and EngineeringSichuan University Chengdu 610065 China
| | - Huan Zhou
- College of Polymer Science and EngineeringSichuan University Chengdu 610065 China
| | - Yulin Zhang
- College of Polymer Science and EngineeringSichuan University Chengdu 610065 China
| | - Lingying Shi
- College of Polymer Science and EngineeringSichuan University Chengdu 610065 China
| | - Rong Ran
- College of Polymer Science and EngineeringSichuan University Chengdu 610065 China
| |
Collapse
|
44
|
Massaro M, Cavallaro G, Colletti CG, Lazzara G, Milioto S, Noto R, Riela S. Chemical modification of halloysite nanotubes for controlled loading and release. J Mater Chem B 2018; 6:3415-3433. [PMID: 32254440 DOI: 10.1039/c8tb00543e] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clay minerals have been used for medical purposes from ancient times. Among them, the halloysite nanotube, an aluminosilicate of the kaolin group, is an emerging nanomaterial which possesses peculiar chemical characteristics. By means of suitable modifications, such as supramolecular functionalization or covalent modifications, it is possible to obtain novel nanomaterials with tunable properties for several applications. In this context the covalent grafting of suitable organic moieties on the external surface or in the halloysite lumen has been exploited to improve the loading and release of several biologically active molecules. The resulting hybrid nanomaterials have been applied as drug carrier and delivery systems, as fillers for hydrogels, in tissue regeneration and in the gene delivery field. Furthermore the loading and release of specific molecules have been also investigated for environmental purposes. This review summarizes the main developments in the halloysite modifications in the last 20 years with a particular attention to the development in the past two years.
Collapse
Affiliation(s)
- Marina Massaro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), University of Palermo, Viale delle Scienze, Ed. 17, 90128 Palermo, Italy.
| | | | | | | | | | | | | |
Collapse
|
45
|
Bahri-Laleh N, Sadjadi S, Heravi MM, Malmir M. CuI-functionalized halloysite nanoclay as an efficient heterogeneous catalyst for promoting click reactions: Combination of experimental and computational chemistry. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Naeimeh Bahri-Laleh
- Polymerization Engineering Department; Iran Polymer and Petrochemical Institute; PO Box 14965/115 Tehran Iran
| | - Samaheh Sadjadi
- Gas Conversion Department, Faculty of Petrochemicals; Iran Polymer and Petrochemical Institute; PO Box 14975-112 Tehran Iran
| | - Majid M. Heravi
- Department of Chemistry, School of Science; Alzahra University; Box 1993891176, Vanak Tehran Iran
| | - Masoumeh Malmir
- Department of Chemistry, School of Science; Alzahra University; Box 1993891176, Vanak Tehran Iran
| |
Collapse
|
46
|
Zhang X, Huang B, Shen Y, Yang C, Huang Z, Huang Y, Xu X, Jiang Y, Sun X, Li X, Yan M, Zhao C. Near infrared light triggered reactive oxygen species responsive nanoparticles for chemo-photodynamic combined therapy. J Mater Chem B 2018; 6:2347-2357. [DOI: 10.1039/c8tb00308d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nanoparticles with ROS-responsive properties could realize spatial and temporal drug release under NIR irradiation and the excess ROS could be used for PDT.
Collapse
|
47
|
Dong J, Zhao Z, Liu R, Zhang H, Wu Y, Ba X. Investigation of a halloysite-based fluorescence probe with a highly selective and sensitive “turn-on” response upon hydrogen peroxide. RSC Adv 2017. [DOI: 10.1039/c7ra10210k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inorganic halloysite nanotubes (HNTs) were modified with an organic fluorescein derivative (PA) to prepare HNTs-based hybrid fluorescence probe (HNTs-PA).
Collapse
Affiliation(s)
- Jingwei Dong
- College of Chemistry & Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Zhihang Zhao
- College of Chemistry & Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Rui Liu
- College of Chemistry & Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Hailei Zhang
- College of Chemistry & Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Yonggang Wu
- College of Chemistry & Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Xinwu Ba
- College of Chemistry & Environmental Science
- Hebei University
- Baoding
- P. R. China
| |
Collapse
|