1
|
Liu Z, Ling J, Wang N, Ouyang XK. Redox homeostasis disruptors enhanced cuproptosis effect for synergistic photothermal/chemodynamic therapy. J Colloid Interface Sci 2025; 678:1060-1074. [PMID: 39236435 DOI: 10.1016/j.jcis.2024.08.234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024]
Abstract
The combination of chemodynamic therapy (CDT) with photothermal therapy (PTT) is a promising approach to enhance antitumor efficacy of chemotherapeutics. In this paper, we developed novel copper-chelated polydopamine (PDA) nanoparticles (NPs) functionalized with hyaluronic acid (HA) (Cu-PDA-HA NPs) to induce apoptosis and cuproptosis-induced cell death, synergistically combining PTT and CDT. Experimental results revealed that Cu-PDA-HA NPs can respond to excessive glutathione (GSH) and hydrogen peroxide (H2O2) in the tumor microenvironment (TME), which will enable their specific degradation, thereby leading to efficient accumulation of Cu2+ within tumor cells. The released Cu2+ ions were reduced by GSH to generate Cu+, which catalyzed in situ Fenton-like reactions to produce cytotoxic hydroxyl radicals (·OH), disrupting cellular redox homeostasis and promoting apoptosis-related CDT. Meanwhile, the photothermal effect of the Cu-PDA-HA NPs could enhance oxidative stress within the tumor by elevating the temperature and subsequent ·OH production. The enhanced oxidative stress made tumor cells more vulnerable to cuproptosis-induced toxicity. Furthermore, in vivo experiments demonstrated that Cu-PDA-HA NPs can still undergo a temperature increase of 18.9°C following 808 nm near-infrared irradiation (1.0 W/cm2, 5 min). Meanwhile, Cu-PDA-HA NPs were able to induce oligomerization of dihydrolipoamide S-acetyltransferase (DLAT) and down-regulate Fe-S cluster proteins such as ferredoxin (FDX1), thereby activating cuproptosis. Therefore, this study provides a novel approach for designing multifunctional nanoparticles with on-demand Cu2+ release and offers a fresh perspective for exploring synergistic therapeutic strategies involving CDT/PTT/apoptosis/cuproptosis.
Collapse
Affiliation(s)
- Zhen Liu
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Junhong Ling
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Nan Wang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Xiao-Kun Ouyang
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
2
|
Ren L, Zhang J, Nie L, Shavandi A, Yunusov KE, Aharodnikau UE, Solomevich SO, Sun Y, Jiang G. Platelet Membrane-Camouflaged Copper Doped CaO 2 Biomimetic Nanomedicines for Breast Cancer Combination Treatment. ACS Biomater Sci Eng 2024; 10:7492-7506. [PMID: 39491550 DOI: 10.1021/acsbiomaterials.4c01362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women worldwide. Chemodynamic therapy (CDT), photothermal therapy (PTT), and ion interference therapy (IIT), used in combination, represent a common treatment. In this study, platelet membrane-camouflaged copper-doped CaO2 biomimetic nanomedicines have been developed for breast cancer treatments. Copper-doped CaO2 nanoparticles were first coated by polydopamine (PDA) and subsequently camouflaged by platelet membrane (PM) to form platelet membrane-camouflaged copper doped CaO2 biomimetic nanomedicines (Cu-CaO2@PDA/PM). The as-fabricated Cu-CaO2@PDA/PM multifunctional nanomedicines could decompose within the tumor microenvironment to release Ca2+ for ion interference therapy, and the generated H2O2 could perform a Fenton-like reaction with the assistance of loaded copper ions to produce ·OH, thus realizing chemodynamic therapy. In addition, the copper ions could also consume glutathione and weaken its ability to scavenge reactive oxygen species, which was conducive to amplifying the effect of oxidative stress. The coating of the polydopamine layer could achieve local hyperthermia of the tumor site, and the surface modification of the platelet membrane could enhance the targeting and biocompatibility of nanomedicines. In vivo and in vitro tests demonstrated that the developed Cu-CaO2@PDA/PM biomimetic nanomedicines offer a promising biomimetic nanoplatform for efficient multimodal combination therapy for breast cancer.
Collapse
Affiliation(s)
- Luping Ren
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
| | - Junhao Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Armin Shavandi
- Université libre de Bruxelles (ULB), École Polytechnique de Bruxelles, 3BIO10 BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent, 100128, Uzbekistan
| | - Uladzislau E Aharodnikau
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220030, Belarus
| | - Sergey O Solomevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220030, Belarus
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
- Zhejiang-Mauritius Joint Research Center for Biomaterials and Tissue Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
3
|
Rezaei B, Harun A, Wu X, Iyer PR, Mostufa S, Ciannella S, Karampelas IH, Chalmers J, Srivastava I, Gómez-Pastora J, Wu K. Effect of Polymer and Cell Membrane Coatings on Theranostic Applications of Nanoparticles: A Review. Adv Healthc Mater 2024; 13:e2401213. [PMID: 38856313 DOI: 10.1002/adhm.202401213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The recent decade has witnessed a remarkable surge in the field of nanoparticles, from their synthesis, characterization, and functionalization to diverse applications. At the nanoscale, these particles exhibit distinct physicochemical properties compared to their bulk counterparts, enabling a multitude of applications spanning energy, catalysis, environmental remediation, biomedicine, and beyond. This review focuses on specific nanoparticle categories, including magnetic, gold, silver, and quantum dots (QDs), as well as hybrid variants, specifically tailored for biomedical applications. A comprehensive review and comparison of prevalent chemical, physical, and biological synthesis methods are presented. To enhance biocompatibility and colloidal stability, and facilitate surface modification and cargo/agent loading, nanoparticle surfaces are coated with different synthetic polymers and very recently, cell membrane coatings. The utilization of polymer- or cell membrane-coated nanoparticles opens a wide variety of biomedical applications such as magnetic resonance imaging (MRI), hyperthermia, photothermia, sample enrichment, bioassays, drug delivery, etc. With this review, the goal is to provide a comprehensive toolbox of insights into polymer or cell membrane-coated nanoparticles and their biomedical applications, while also addressing the challenges involved in translating such nanoparticles from laboratory benchtops to in vitro and in vivo applications. Furthermore, perspectives on future trends and developments in this rapidly evolving domain are provided.
Collapse
Affiliation(s)
- Bahareh Rezaei
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Asma Harun
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Xian Wu
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Poornima Ramesh Iyer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Shahriar Mostufa
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Stefano Ciannella
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | | | - Jeffrey Chalmers
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, United States
| | - Indrajit Srivastava
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, Texas, 79106, United States
| | - Jenifer Gómez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| | - Kai Wu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, 79409, United States
| |
Collapse
|
4
|
Zhao C, Liu H, Huang S, Guo Y, Xu L. Metal-Organic Framework-Capped Gold Nanorod Hybrids for Combinatorial Cancer Therapy. Molecules 2024; 29:2384. [PMID: 38792244 PMCID: PMC11124105 DOI: 10.3390/molecules29102384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Recently, nanomaterials have attracted extensive attention in cancer-targeting therapy and as drug delivery vehicles owing to their unique surface and size properties. Multifunctional combinations of nanomaterials have become a research hotspot as researchers aim to provide a full understanding of their nanomaterial characteristics. In this study, metal-organic framework-capped gold nanorod hybrids were synthesized. Our research explored their ability to kill tumor cells by locally increasing the temperature via photothermal conclusion. The specific peroxidase-like activity endows the hybrids with the ability to disrupt the oxidative balance in vitro. Simultaneously, chemotherapeutic drugs are administered and delivered by loading and transportation for effective combinatorial cancer treatment, thereby enhancing the curative effect and reducing the unpredictable toxicity and side effects of large doses of chemotherapeutic drugs. These studies can improve combinatorial cancer therapy and enhance cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Yi Guo
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (C.Z.); (H.L.); (S.H.)
| | - Li Xu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (C.Z.); (H.L.); (S.H.)
| |
Collapse
|
5
|
Hu X, Zhao W, Li R, Chai K, Shang F, Shi S, Dong C. A cascade nanoplatform for the regulation of the tumor microenvironment and combined cancer therapy. NANOSCALE 2023; 15:16314-16322. [PMID: 37786260 DOI: 10.1039/d3nr03199c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Recently, disulfiram (DSF), an anti-alcoholism drug, has attracted increasing biomedical interest due to its anticancer effects. However, the anticancer activity of DSF is Cu(II)-dependent and it is extremely unstable, which severely hinders its clinical translation. Herein, we report the fabrication of a multifunctional nanoplatform (MCDGF) that can improve the stability of diethyldithiocarbamate (DTC), a main metabolite of DSF, by modifying the aryl boronic ester group to form a prodrug (DQ), and also realize the in situ generation of Cu(DTC)2, which relies on a cascade reaction. The delivered Cu/DQ induces immunogenic cell death (ICD) and powerfully enhances immune responses of cytotoxic T lymphocytes (CTLs) and the infiltration of dendritic cells as well as T cells. Furthermore, the grafted glucose oxidase (GOx) decomposes glucose, thus "starving" the cancer cells and providing H2O2 for the production of Cu(DTC)2. More importantly, H2O2 significantly promotes the polarization of macrophages to the anti-tumor subtype. The nano-carrier "mesoporous polydopamine (MPDA)" also displays a good photothermal therapeutic effect. The nanoplatform-integrated chemotherapy, starvation therapy, photothermal therapy, and immunotherapy synergistically stimulated CTL activation and M1 macrophage polarization. Taken together, the as-prepared nanoplatform could regulate the tumor immune microenvironment and eliminate cancer with combined cancer therapy, which will offer a promising strategy for cancer treatment and promote the clinical application of DSF in breast cancer.
Collapse
Affiliation(s)
- Xiaochun Hu
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Wenrong Zhao
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Ruihao Li
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Keke Chai
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Fangjian Shang
- College of Aeronautical Engineering, Binzhou University, Binzhou 256603, China
| | - Shuo Shi
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Chunyan Dong
- Department of Comprehensive Cancer Therapy, Shanghai East Hospital, School of Medicine, Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
6
|
Kumar M, Kulkarni P, Liu S, Chemuturi N, Shah DK. Nanoparticle biodistribution coefficients: A quantitative approach for understanding the tissue distribution of nanoparticles. Adv Drug Deliv Rev 2023; 194:114708. [PMID: 36682420 DOI: 10.1016/j.addr.2023.114708] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/26/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
The objective of this manuscript is to provide quantitative insights into the tissue distribution of nanoparticles. Published pharmacokinetics of nanoparticles in plasma, tumor and 13 different tissues of mice were collected from literature. A total of 2018 datasets were analyzed and biodistribution of graphene oxide, lipid, polymeric, silica, iron oxide and gold nanoparticles in different tissues was quantitatively characterized using Nanoparticle Biodistribution Coefficients (NBC). It was observed that typically after intravenous administration most of the nanoparticles are accumulated in the liver (NBC = 17.56 %ID/g) and spleen (NBC = 12.1 %ID/g), while other tissues received less than 5 %ID/g. NBC values for kidney, lungs, heart, bones, brain, stomach, intestine, pancreas, skin, muscle and tumor were found to be 3.1 %ID/g, 2.8 %ID/g, 1.8 %ID/g, 0.9 %ID/g, 0.3 %ID/g, 1.2 %ID/g, 1.8 %ID/g, 1.2 %ID/g, 1.0 %ID/g, 0.6 %ID/g and 3.4 %ID/g, respectively. Significant variability in nanoparticle distribution was observed in certain organs such as liver, spleen and lungs. A large fraction of this variability could be explained by accounting for the differences in nanoparticle physicochemical properties such as size and material. A critical overview of published nanoparticle physiologically-based pharmacokinetic (PBPK) models is provided, and limitations in our current knowledge about in vitro and in vivo pharmacokinetics of nanoparticles that restrict the development of robust PBPK models is also discussed. It is hypothesized that robust quantitative assessment of whole-body pharmacokinetics of nanoparticles and development of mathematical models that can predict their disposition can improve the probability of successful clinical translation of these modalities.
Collapse
Affiliation(s)
- Mokshada Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States
| | - Priyanka Kulkarni
- Drug Metabolism and Pharmacokinetics, R&D, Takeda Pharmaceuticals, Cambridge, MA, United States
| | - Shufang Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States
| | - Nagendra Chemuturi
- Drug Metabolism and Pharmacokinetics, R&D, Takeda Pharmaceuticals, Cambridge, MA, United States.
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, The State University of New York at Buffalo, United States.
| |
Collapse
|
7
|
Pham TTD, Phan LMT, Cho S, Park J. Enhancement approaches for photothermal conversion of donor–acceptor conjugated polymer for photothermal therapy: a review. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2022; 23:707-734. [DOI: 10.1080/14686996.2022.2134976] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 05/14/2025]
Affiliation(s)
- Thi-Thuy Duong Pham
- Department of Intelligence Energy and Industry, School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, Republic of Korea
| | - Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Juhyun Park
- Department of Intelligence Energy and Industry, School of Chemical Engineering and Materials Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Shi Y, Zeng L, Pan Y, Zhang H, Wang Z, Shi Y, Wu A. Endo/exo-genous dual-stimuli responsive gold nanotetrapod-based nanoprobe for magnetic resonance imaging and enhanced multimodal therapeutics by amplifying·OH generation. Acta Biomater 2022; 154:549-558. [PMID: 36243375 DOI: 10.1016/j.actbio.2022.10.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/28/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
Tumor microenvironment (TME) responsive chemodynamic therapy (CDT) can produce high-toxic hydroxyl radicals (·OH) to kill cancer cells, but the limited concentration of endogenous hydrogen peroxide (H2O2) seriously restricted its application. Herein, using endo/exo-genous dual-stimuli, a novel nanoprobe with enhanced ·OH generation was developed for magnetic resonance (MR) imaging and multimodal therapeutics, in which gold nanotetrapod (AuNTP) with photothermal therapy (PTT) performance was coated with mesoporous silica (mSiO2) and loaded with cisplatin (CDDP), then a thin layer of manganese dioxide (MnO2) was deposited to construct AuNTP@mSiO2@CDDP@MnO2 nanoprobes. In TME, endogenous H2O2, CDDP-triggered self-supplying H2O2 produced via cascade reaction and the exogenous photothermal effect of AuNTPs together enhanced the ·OH generation of Mn2+ induced by glutathione (GSH) responsive degradation of MnO2. The prepared AuNTP@mSiO2@CDDP@MnO2 nanoprobes possessed perfect core@shell structure, good biocompatibility and GSH-dependent MR performance, in which the relaxation rates increased from 0.717 mM-1·s-1 to 8.12 mM-1·s-1. Under the multimodal therapeutics of CDT/PTT/chemotherapy, the developed AuNTP@mSiO2@CDDP@MnO2 nanoprobes demonstrated good antitumor efficacy. Our work provided a promising strategy for constructing TME-responsive nanoprobes with endo/exo-genous stimuli, achieving enhanced visualized theranostics of tumors. STATEMENT OF SIGNIFICANCE: Tumor microenvironment (TME) responsive chemodynamic therapy (CDT) can produce high-toxic hydroxyl radicals (·OH) to kill cancer cells, but the limited concentration of endogenous hydrogen peroxide (H2O2) seriously restricted its application. Using endo/exo-genous dual-stimuli, AuNTP@mSiO2@CDDP@MnO2 (AMCM) nanoprobe was constructed, in which endogenous H2O2, CDDP-triggered self-supplying H2O2 and the exogenous photothermal effect of AuNTPs together enhanced the ·OH generation. Under the multimodal therapeutics of CDT/PTT/chemotherapy, the developed AuNTP@mSiO2@CDDP@MnO2 nanoprobe demonstrated good antitumor efficacy, and provided a promising strategy for constructing TME-responsive nanoprobes with endo/exo-genous stimuli, achieving enhanced CDT of tumors.
Collapse
Affiliation(s)
- Yu Shi
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of precise imaging of inflammation related tumors, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, PR China; Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Leyong Zeng
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of precise imaging of inflammation related tumors, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, PR China.
| | - Yuanbo Pan
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Hao Zhang
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China
| | - Zhaoyang Wang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of precise imaging of inflammation related tumors, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, PR China
| | - Yuehua Shi
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Institute of Life Science and Green development, Chemical Biology Key Laboratory of Hebei Province, Hebei Key Laboratory of precise imaging of inflammation related tumors, College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, PR China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, PR China.
| |
Collapse
|
9
|
Han Z, Gao M, Wang Z, Peng L, Zhao Y, Sun L. pH/NIR-responsive nanocarriers based on mesoporous polydopamine encapsulated gold nanorods for drug delivery and thermo-chemotherapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Zhang J, Yin X, Li C, Yin X, Xue Q, Ding L, Ju J, Ma J, Zhu Y, Du D, Reis RL, Wang Y. A Multifunctional Photoacoustic/Fluorescence Dual-Mode-Imaging Gold-Based Theranostic Nanoformulation without External Laser Limitations. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110690. [PMID: 35275432 DOI: 10.1002/adma.202110690] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Theranostics is a new type of biomedical technology that organically combines the diagnosis and therapy of diseases. Among molecular imaging techniques, the integration of photoacoustic (PA) and fluorescence (FL) imaging modes with high sensitivity and imaging depth provides precise diagnostic outcomes. Gold nanorods (Au NRs) are well-known contrast agents for PA imaging and photothermal therapy. However, their high toxicity, poor biocompatibility, rapid clearance, and the need for an external laser source limit their application. Therefore, modification of Au NRs with carbon-based nanomaterials (CBNs) is done to obtain a multifunctional dual-mode gold-based nanoformulation (mdGC), which preforms dual-mode imaging of PA and FL. The results show that mdGC promotes tumor cell apoptosis and exhibits good antitumor performance through the mitochondria-mediated apoptotic pathway by increasing the production of intracellular reactive oxygen species, reducing mitochondrial membrane potential, and regulating the expression of apoptosis-related genes. The targeting rate of mdGC to tumor tissue is up to 20.71 ± 1.94% ID g-1 ; the tumor growth inhibition rate is as high as 80.44% without external laser sources. In general, mdGC is a potential multifunctional diagnostic and therapy integrated nanoformulation.
Collapse
Affiliation(s)
- Junfeng Zhang
- School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, P. R. China
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xiaofeng Yin
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Chenchen Li
- School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, P. R. China
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Xuelian Yin
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Qianghua Xue
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Lin Ding
- Translational Medicine Collaborative Innovation Center, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jiale Ju
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Jifei Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 200444, P. R. China
| | - Ying Zhu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 200444, P. R. China
| | - Dongshu Du
- School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Rui L Reis
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
- 3B's Research Group, I3Bs - Research Institute on Biomaterials Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, 4805-017, Portugal
| | - Yanli Wang
- School of Pharmaceutical Sciences, Hainan University, Haikou, 570228, P. R. China
- Tumor Precision Targeting Research Center & Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
11
|
Marcovici I, Coricovac D, Pinzaru I, Macasoi IG, Popescu R, Chioibas R, Zupko I, Dehelean CA. Melanin and Melanin-Functionalized Nanoparticles as Promising Tools in Cancer Research-A Review. Cancers (Basel) 2022; 14:1838. [PMID: 35406610 PMCID: PMC8998143 DOI: 10.3390/cancers14071838] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 12/25/2022] Open
Abstract
Cancer poses an ongoing global challenge, despite the substantial progress made in the prevention, diagnosis, and treatment of the disease. The existing therapeutic methods remain limited by undesirable outcomes such as systemic toxicity and lack of specificity or long-term efficacy, although innovative alternatives are being continuously investigated. By offering a means for the targeted delivery of therapeutics, nanotechnology (NT) has emerged as a state-of-the-art solution for augmenting the efficiency of currently available cancer therapies while combating their drawbacks. Melanin, a polymeric pigment of natural origin that is widely spread among many living organisms, became a promising candidate for NT-based cancer treatment owing to its unique physicochemical properties (e.g., high biocompatibility, redox behavior, light absorption, chelating ability) and innate antioxidant, photoprotective, anti-inflammatory, and antitumor effects. The latest research on melanin and melanin-like nanoparticles has extended considerably on many fronts, allowing not only efficient cancer treatments via both traditional and modern methods, but also early disease detection and diagnosis. The current paper provides an updated insight into the applicability of melanin in cancer therapy as antitumor agent, molecular target, and delivery nanoplatform.
Collapse
Affiliation(s)
- Iasmina Marcovici
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Dorina Coricovac
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Iulia Pinzaru
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Ioana Gabriela Macasoi
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Roxana Popescu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (R.P.); (R.C.)
- Research Center ANAPATMOL, Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| | - Raul Chioibas
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (R.P.); (R.C.)
| | - Istvan Zupko
- Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary;
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania; (I.M.); (D.C.); (I.G.M.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluations, Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy Timisoara, Eftimie Murgu Square No. 2, 300041 Timisoara, Romania
| |
Collapse
|
12
|
Zheng J, Cheng X, Zhang H, Bai X, Ai R, Shao L, Wang J. Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. Chem Rev 2021; 121:13342-13453. [PMID: 34569789 DOI: 10.1021/acs.chemrev.1c00422] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gold nanorods (NRs), pseudo-one-dimensional rod-shaped nanoparticles (NPs), have become one of the burgeoning materials in the recent years due to their anisotropic shape and adjustable plasmonic properties. With the continuous improvement in synthetic methods, a variety of materials have been attached around Au NRs to achieve unexpected or improved plasmonic properties and explore state-of-the-art technologies. In this review, we comprehensively summarize the latest progress on Au NRs, the most versatile anisotropic plasmonic NPs. We present a representative overview of the advances in the synthetic strategies and outline an extensive catalogue of Au-NR-based heterostructures with tailored architectures and special functionalities. The bottom-up assembly of Au NRs into preprogrammed metastructures is then discussed, as well as the design principles. We also provide a systematic elucidation of the different plasmonic properties associated with the Au-NR-based structures, followed by a discussion of the promising applications of Au NRs in various fields. We finally discuss the future research directions and challenges of Au NRs.
Collapse
Affiliation(s)
- Jiapeng Zheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xizhe Cheng
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Han Zhang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Ruoqi Ai
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Lei Shao
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
13
|
Yan X, Pan Y, Ji L, Gu J, Hu Y, Xia Y, Li C, Zhou X, Yang D, Yu Y. Multifunctional Metal-Organic Framework as a Versatile Nanoplatform for Aβ Oligomer Imaging and Chemo-Photothermal Treatment in Living Cells. Anal Chem 2021; 93:13823-13834. [PMID: 34609144 DOI: 10.1021/acs.analchem.1c02459] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In view of the close association of β-amyloid oligomers (AβO) with the clinical development of Alzheimer's disease (AD) symptoms, it is urgent to design a promising sensing and therapeutic strategy that can target AβO for preventing or delaying the onset of AD. Herein, a core-shell nanocomposite CeONP-Res-PCM@ZIF-8/polydopamine (PDA) was synthesized through an in situ encapsulated strategy, in which resveratrol (Res), ceria nanoparticles (CeONPs), and PCM (tetradecanol) were embedded into the ZIF-8/PDA matrix via a water-based mild approach. Using the AβO aptamer, the ability of CeONP-Res-PCM@ZIF-8/PDA/Apt as the fluorescent sensing platform for AβO detection and intracellular imaging was demonstrated. The nanocomposite was high in Res loading (27.5%) and could be activated to release the encapsulated Res upon illumination with NIR through PCM regulation. Moreover, due to the synergetic interactions of PDA, CeONPs, and Res in one system, CeONP-Res-PCM@ZIF-8/PDA/Apt nanocomposites exhibited multifunctional effects on inhibiting Aβ aggregation, degrading Aβ fibrils, and alleviating Aβ-induced oxidative stress and neural apoptosis. These therapeutic effects could be enhanced under NIR irradiation by virtue of the excellent photothermal property of PDA. As far as we know, there is no report of using ZIF-8-based materials for simultaneous sensing and therapeutic applications. This work boosted the development of multifunctional nanoagents for biomedical research studies.
Collapse
Affiliation(s)
- Xueyan Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Yixin Pan
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Affiliated with Shanghai Jiao Tong University School of Medicine, Ruijin Hospital, 197 Ruijin Er Road, Shanghai 200025, P. R. China
| | - Liang Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Jinyu Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Yuanyuan Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Yi Xia
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Xinguang Zhou
- Shenzhen NTEK Testing Technology Co., Ltd., Shenzhen 518000, Guangdong, P. R. China
| | - Dongzhi Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu 221004, Xuzhou, China
| |
Collapse
|
14
|
Ding M, Liu J, Yang J, Wang H, Xie X, Yang X, Li Y, Guo N, Ouyang R, Miao Y. How do bismuth-based nanomaterials function as promising theranostic agents for the tumor diagnosis and therapy? Curr Med Chem 2021; 29:1866-1890. [PMID: 34365944 DOI: 10.2174/0929867328666210806123008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
The complexity of tumor microenvironment and the diversity of tumors seriously affect the therapeutic effect, the focus, therefore, has gradually been shifted from monotherapy to combination therapy in clinical research in order to improve the curative effect. The synergistic enhancement interactions among multiple monotherapies majorly contribute to the birth of the multi-mode cooperative therapy, whose effect of the treatment is clearly stronger than that of any single therapy. In addition, the accurate diagnosis of the tumour location is also crucial to the treatment. Bismuth-based nanomaterials (NMs) hold great properties as promising theranostic platforms based on their many unique features that include low toxicity, excellent photothermal conversion efficiency as well as high ability of X-ray computed tomography imaging and photoacoustic imaging. In this review, we will introduce briefly the main features of tumor microenvironment first and its effect on the mechanism of nanomedicine actions and present the recent advances of bismuth-based NMs for diagnosis and photothermal therapy-based combined therapies using bismuth-based NMs are presented, which may provide a new way for overcoming drug resistance and hypoxia. At the end, further challenges and outlooks regarding this promising field are discussed accompanied with some design tips for bismuth-based NMs, hoping to provide researchers some inspirations to design safe and effective nanotherapeutic agents for the clinical treatments of cancers.
Collapse
Affiliation(s)
- Mengkui Ding
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Jinyao Liu
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Junlei Yang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Hui Wang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Xianjin Xie
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Xiaoyu Yang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Yuhao Li
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Ning Guo
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| | - Yuqing Miao
- Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093. China
| |
Collapse
|
15
|
Xin J, Deng C, Aras O, Zhou M, Wu C, An F. Chemodynamic nanomaterials for cancer theranostics. J Nanobiotechnology 2021; 19:192. [PMID: 34183023 PMCID: PMC8240398 DOI: 10.1186/s12951-021-00936-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/13/2021] [Indexed: 12/20/2022] Open
Abstract
It is of utmost urgency to achieve effective and safe anticancer treatment with the increasing mortality rate of cancer. Novel anticancer drugs and strategies need to be designed for enhanced therapeutic efficacy. Fenton- and Fenton-like reaction-based chemodynamic therapy (CDT) are new strategies to enhance anticancer efficacy due to their capacity to generate reactive oxygen species (ROS) and oxygen (O2). On the one hand, the generated ROS can damage the cancer cells directly. On the other hand, the generated O2 can relieve the hypoxic condition in the tumor microenvironment (TME) which hinders efficient photodynamic therapy, radiotherapy, etc. Therefore, CDT can be used together with many other therapeutic strategies for synergistically enhanced combination therapy. The antitumor applications of Fenton- and Fenton-like reaction-based nanomaterials will be discussed in this review, including: (iþ) producing abundant ROS in-situ to kill cancer cells directly, (ii) enhancing therapeutic efficiency indirectly by Fenton reaction-mediated combination therapy, (iii) diagnosis and monitoring of cancer therapy. These strategies exhibit the potential of CDT-based nanomaterials for efficient cancer therapy.
Collapse
Affiliation(s)
- Jingqi Xin
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Caiting Deng
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, People's Republic of China.
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
16
|
Sun J, Li L, Cai W, Chen A, Zhang R. Multifunctional Hybrid Nanoprobe for Photoacoustic/PET/MR Imaging-Guided Photothermal Therapy of Laryngeal Cancer. ACS APPLIED BIO MATERIALS 2021; 4:5312-5323. [PMID: 35007012 DOI: 10.1021/acsabm.1c00423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Laryngeal cancer is highly aggressive and insensitive to conventional targeted therapies, which often result in poor therapeutic outcomes. Image-guided precision therapy is a promising strategy in oncology that has superior safety and efficacy versus conventional therapies. Here, we present a multifunctional theranostic nanoplatform based on melanin-coated gold nanorod (GNR) that exhibits excellent multimodal imaging ability and photothermal effects. These attributes make the platform applicable for multimodal photoacoustic (PA)/positron emission tomography (PET)/magnetic resonance (MR) image-guided photothermal treatment of laryngeal cancer. The melanin nanoparticles markedly suppress the cytotoxicity of the template cetyltrimethylammonium bromide bilayer and conferred the GNR with excellent PET/MR imaging performances, due to their native biocompatibilities and strong affinities to metal ions. Moreover, the introduction of GNR to the melanin nanoparticles greatly improved the near-infrared absorbances and passive targeting capabilities, leading to exceptional PA imaging and photothermal ablation of tumors. The nanoplatform exhibits high stability and dispersity under physiological conditions. After intravenous injection, the nanoplatform could be precisely tracked in vivo and enabled laryngopharyngeal superficial cancer to be located and imaged. Combined photothermal therapy effectively ablated tumors with negligible side effects. Thus, this work presents a unique and biocompatible nanoplatform that allows multimodal imaging, high anti-tumor PTT efficacy, and negligible side effects in the treatment of laryngeal cancer.
Collapse
Affiliation(s)
- Jinghua Sun
- Imaging Department, The Third Hospital of Shanxi Medical University, Taiyuan 030032, China.,Shanxi Medical University, Taiyuan 030001, China
| | - Liping Li
- Imaging Department, The Third Hospital of Shanxi Medical University, Taiyuan 030032, China.,Shanxi Medical University, Taiyuan 030001, China
| | - Wenwen Cai
- Imaging Department, The Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Anqi Chen
- Imaging Department, The Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| | - Ruiping Zhang
- Imaging Department, The Third Hospital of Shanxi Medical University, Taiyuan 030032, China
| |
Collapse
|
17
|
Nakielski P, Pawłowska S, Rinoldi C, Ziai Y, De Sio L, Urbanek O, Zembrzycki K, Pruchniewski M, Lanzi M, Salatelli E, Calogero A, Kowalewski TA, Yarin AL, Pierini F. Multifunctional Platform Based on Electrospun Nanofibers and Plasmonic Hydrogel: A Smart Nanostructured Pillow for Near-Infrared Light-Driven Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54328-54342. [PMID: 33238095 DOI: 10.1021/acsami.0c13266] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Multifunctional nanomaterials with the ability to respond to near-infrared (NIR) light stimulation are vital for the development of highly efficient biomedical nanoplatforms with a polytherapeutic approach. Inspired by the mesoglea structure of jellyfish bells, a biomimetic multifunctional nanostructured pillow with fast photothermal responsiveness for NIR light-controlled on-demand drug delivery is developed. We fabricate a nanoplatform with several hierarchical levels designed to generate a series of controlled, rapid, and reversible cascade-like structural changes upon NIR light irradiation. The mechanical contraction of the nanostructured platform, resulting from the increase of temperature to 42 °C due to plasmonic hydrogel-light interaction, causes a rapid expulsion of water from the inner structure, passing through an electrospun membrane anchored onto the hydrogel core. The mutual effects of the rise in temperature and water flow stimulate the release of molecules from the nanofibers. To expand the potential applications of the biomimetic platform, the photothermal responsiveness to reach the typical temperature level for performing photothermal therapy (PTT) is designed. The on-demand drug model penetration into pig tissue demonstrates the efficiency of the nanostructured platform in the rapid and controlled release of molecules, while the high biocompatibility confirms the pillow potential for biomedical applications based on the NIR light-driven multitherapy strategy.
Collapse
Affiliation(s)
- Paweł Nakielski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Sylwia Pawłowska
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Chiara Rinoldi
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Yasamin Ziai
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Luciano De Sio
- Research Center for Biophotonics and Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina 04100, Italy
| | - Olga Urbanek
- Laboratory of Polymers and Biomaterials, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Krzysztof Zembrzycki
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Michał Pruchniewski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Massimiliano Lanzi
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna, Bologna 40136, Italy
| | - Elisabetta Salatelli
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum - University of Bologna, Bologna 40136, Italy
| | - Antonella Calogero
- Research Center for Biophotonics and Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Repubblica 79, Latina 04100, Italy
| | - Tomasz A Kowalewski
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Alexander L Yarin
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, 842 W. Taylor Street, Chicago, Illinois 60607-7022, United States
| | - Filippo Pierini
- Department of Biosystems and Soft Matter, Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
18
|
Hu K, Xie L, Zhang Y, Hanyu M, Yang Z, Nagatsu K, Suzuki H, Ouyang J, Ji X, Wei J, Xu H, Farokhzad OC, Liang SH, Wang L, Tao W, Zhang MR. Marriage of black phosphorus and Cu 2+ as effective photothermal agents for PET-guided combination cancer therapy. Nat Commun 2020; 11:2778. [PMID: 32513979 PMCID: PMC7280494 DOI: 10.1038/s41467-020-16513-0] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
The use of photothermal agents (PTAs) in cancer photothermal therapy (PTT) has shown promising results in clinical studies. The rapid degradation of PTAs may address safety concerns but usually limits the photothermal stability required for efficacious treatment. Conversely, PTAs with high photothermal stability usually degrade slowly. The solutions that address the balance between the high photothermal stability and rapid degradation of PTAs are rare. Here, we report that the inherent Cu2+-capturing ability of black phosphorus (BP) can accelerate the degradation of BP, while also enhancing photothermal stability. The incorporation of Cu2+ into BP@Cu nanostructures further enables chemodynamic therapy (CDT)-enhanced PTT. Moreover, by employing 64Cu2+, positron emission tomography (PET) imaging can be achieved for in vivo real-time and quantitative tracking. Therefore, our study not only introduces an "ideal" PTA that bypasses the limitations of PTAs, but also provides the proof-of-concept application of BP-based materials in PET-guided, CDT-enhanced combination cancer therapy.
Collapse
Affiliation(s)
- Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 2638555, Japan
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 2638555, Japan
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 2638555, Japan
| | - Masayuki Hanyu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 2638555, Japan
| | - Zhimin Yang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 2638555, Japan
- Department of Nuclear Medicine, PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Kotaro Nagatsu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 2638555, Japan
| | - Hisashi Suzuki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 2638555, Japan
| | - Jiang Ouyang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Xiaoyuan Ji
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Junjie Wei
- Department of Nuclear Medicine, PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Hao Xu
- Department of Nuclear Medicine, PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Steven H Liang
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA.
| | - Lu Wang
- Department of Nuclear Medicine, PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China.
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, 02114, MA, USA.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA.
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba, 2638555, Japan.
| |
Collapse
|
19
|
Wang Z, Zou Y, Li Y, Cheng Y. Metal-Containing Polydopamine Nanomaterials: Catalysis, Energy, and Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907042. [PMID: 32220006 DOI: 10.1002/smll.201907042] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/10/2020] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
Polydopamine (PDA) is a major type of artificial melanin material with many interesting properties such as antioxidant activity, free-radical scavenging, high photothermal conversion efficiency, and strong metal-ion chelation. The high affinity of PDA to a wide range of metals/metal ions has offered a new class of functional metal-containing polydopamine (MPDA) nanomaterials with promising functions and extensive applications. Understanding and controlling the metal coordination environment is vital to achieve desirable functions for which such materials can be exploited. MPDA nanomaterials with metal/metal ions as the active functions are reviewed, including their synthesis and metal coordination environment and their applications in catalysis, batteries, solar cells, capacitors, medical imaging, cancer therapy, antifouling, and antibacterial coating. The current trends, limitations, and future directions of this area are also explored.
Collapse
Affiliation(s)
- Zhao Wang
- Institute for Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yuan Zou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
20
|
Jin A, Wang Y, Lin K, Jiang L. Nanoparticles modified by polydopamine: Working as "drug" carriers. Bioact Mater 2020; 5:522-541. [PMID: 32322763 PMCID: PMC7170807 DOI: 10.1016/j.bioactmat.2020.04.003] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/18/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Inspired by the mechanism of mussel adhesion, polydopamine (PDA), a versatile polymer for surface modification has been discovered. Owing to its unique properties like extraordinary adhesiveness, excellent biocompatibility, mild synthesis requirements, as well as distinctive drug loading approach, strong photothermal conversion capacity and reactive oxygen species (ROS) scavenging facility, various PDA-modified nanoparticles have been desired as drug carriers. These nanoparticles with diverse nanostructures are exploited in multifunctions, consisting of targeting, imaging, chemical treatment (CT), photodynamic therapy (PDT), photothermal therapy (PTT), tissue regeneration ability, therefore have attracted great attentions in plenty biomedical applications. Herein, recent progress of PDA-modified nanoparticle drug carriers in cancer therapy, antibiosis, prevention of inflammation, theranostics, vaccine delivery and adjuvant, tissue repair and implant materials are reviewed, including preparation of PDA-modified nanoparticle drug carriers with various nanostructures and their drug loading strategies, basic roles of PDA surface modification, etc. The advantages of PDA modification in overcoming the existing limitations of cancer therapy, antibiosis, tissue repair and the developing trends in the future of PDA-modified nanoparticle drug carriers are also discussed. Multifunctional PDA-modified drug systems are introduced in terms of classification, synthesis and drug loading strategies. Basic roles of PDA surface modification in the drug systems are discussed. Biomedical applications and unique advantages of the PDA-modified nanoparticle working as drug carriers are illustrated. Challenges and perspectives for future development are proposed.
Collapse
Affiliation(s)
- Anting Jin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Yitong Wang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| | - Lingyong Jiang
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, PR China
| |
Collapse
|
21
|
Hauser D, Septiadi D, Turner J, Petri-Fink A, Rothen-Rutishauser B. From Bioinspired Glue to Medicine: Polydopamine as a Biomedical Material. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1730. [PMID: 32272786 PMCID: PMC7178714 DOI: 10.3390/ma13071730] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Biological structures have emerged through millennia of evolution, and nature has fine-tuned the material properties in order to optimise the structure-function relationship. Following this paradigm, polydopamine (PDA), which was found to be crucial for the adhesion of mussels to wet surfaces, was hence initially introduced as a coating substance to increase the chemical reactivity and surface adhesion properties. Structurally, polydopamine is very similar to melanin, which is a pigment of human skin responsible for the protection of underlying skin layers by efficiently absorbing light with potentially harmful wavelengths. Recent findings have shown the subsequent release of the energy (in the form of heat) upon light excitation, presenting it as an ideal candidate for photothermal applications. Thus, polydopamine can both be used to (i) coat nanoparticle surfaces and to (ii) form capsules and ultra-small (nano)particles/nanocomposites while retaining bulk characteristics (i.e., biocompatibility, stability under UV irradiation, heat conversion, and activity during photoacoustic imaging). Due to the aforementioned properties, polydopamine-based materials have since been tested in adhesive and in energy-related as well as in a range of medical applications such as for tumour ablation, imaging, and drug delivery. In this review, we focus upon how different forms of the material can be synthesised and the use of polydopamine in biological and biomedical applications.
Collapse
Affiliation(s)
- Daniel Hauser
- Division of Surgery & Interventional Science, Royal Free Hospital, University College London, London NW3 2PS, UK;
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland; (D.S.); (A.P.-F.)
| | - Dedy Septiadi
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland; (D.S.); (A.P.-F.)
| | - Joel Turner
- Division of Surgery & Interventional Science, Royal Free Hospital, University College London, London NW3 2PS, UK;
| | - Alke Petri-Fink
- Adolphe Merkle Institute, University of Fribourg, 1700 Fribourg, Switzerland; (D.S.); (A.P.-F.)
| | | |
Collapse
|
22
|
Rasekholghol A, Fazaeli Y, Moradi Dehaghi S, Ashtari P. Grafting of CdTe quantum dots on thiol functionalized MCM-41 mesoporous silica for 68Ga radiolabeling: introducing a novel PET agent. J Radioanal Nucl Chem 2020. [DOI: 10.1007/s10967-020-07102-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Liu S, Wang L, Zhao B, Wang Z, Wang Y, Sun B, Liu Y. Doxorubicin-loaded Cu 2S/Tween-20 nanocomposites for light-triggered tumor photothermal therapy and chemotherapy. RSC Adv 2020; 10:26059-26066. [PMID: 35519742 PMCID: PMC9055350 DOI: 10.1039/d0ra03069d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 05/08/2020] [Indexed: 12/19/2022] Open
Abstract
In clinical tumor therapy, traditional treatments such as surgery, radiotherapy and chemotherapy all have their own limitations. With the development of nanotechnology, new therapeutic methods based on nanomaterials such as photothermal therapy (PTT) have also emerged. PTT takes advantage of the poor thermal tolerance of tumor cells and uses the heat generated by photothermal reagents to kill tumor cells. A transition metal sulfide represented as Cu2S is an ideal photothermal reagent because of its easy preparation, high extinction coefficient and photothermal conversion efficiency. Surface modification of nanoparticles (NPs) is also necessary, which not only can reduce toxicity and improve colloidal stability, but also can provide the possibility of further chemotherapeutic drug loading. In this work, we report the fabrication of Tween-20 (Tw20)-modified and doxorubicin (Dox)-loaded Cu2S NPs (Cu2S/Dox@Tw20 NPs), which significantly improves the performance in tumor therapy. Apart from the enhancement of colloidal stability and biocompatibility, the drug loading rate of Dox in Tw20 reaches 11.3%. Because of the loading of Dox, Cu2S/Dox@Tw20 NPs exhibit chemotherapeutic behaviors and the tumor inhibition rate is 76.2%. Further combined with a near-infrared laser, the high temperature directly leads to the apoptosis of a large number of tumor cells, while the release of chemotherapeutic drugs under heat can not only continue to kill residual tumor cells, but also inhibit tumor recurrence. Therefore, with the combination of PTT and chemotherapy, the tumor was completely eliminated. Both hematological analysis and histopathological analysis proved that our experiments are safe. In clinical tumor therapy, traditional treatments such as surgery, radiotherapy and chemotherapy all have their own limitations.![]()
Collapse
Affiliation(s)
- Shuwei Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Lu Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling
- Jilin University
- Changchun
- P. R. China
| | - Bin Zhao
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling
- Jilin University
- Changchun
- P. R. China
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Yinyu Wang
- School of Stomatology
- Baicheng Medical College
- Baicheng
- P. R. China
| | - Bin Sun
- Department of Oral and Maxillofacial Surgery
- School and Hospital of Stomatology
- Jilin University
- Changchun
- P. R. China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
24
|
Tao K, Liu S, Wang L, Qiu H, Li B, Zhang M, Guo M, Liu H, Zhang X, Liu Y, Hou Y, Zhang H. Targeted multifunctional nanomaterials with MRI, chemotherapy and photothermal therapy for the diagnosis and treatment of bladder cancer. Biomater Sci 2020; 8:342-352. [PMID: 31724659 DOI: 10.1039/c9bm01377f] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Folate-modified vincristine-loaded polydopamine-coated Fe3O4 superparticles are designed as multifunctional nanomaterials for the imaging and treatment of bladder cancer.
Collapse
|
25
|
Cheng W, Zeng X, Chen H, Li Z, Zeng W, Mei L, Zhao Y. Versatile Polydopamine Platforms: Synthesis and Promising Applications for Surface Modification and Advanced Nanomedicine. ACS NANO 2019; 13:8537-8565. [PMID: 31369230 DOI: 10.1021/acsnano.9b04436] [Citation(s) in RCA: 543] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As a mussel-inspired material, polydopamine (PDA), possesses many properties, such as a simple preparation process, good biocompatibility, strong adhesive property, easy functionalization, outstanding photothermal conversion efficiency, and strong quenching effect. PDA has attracted increasingly considerable attention because it provides a simple and versatile approach to functionalize material surfaces for obtaining a variety of multifunctional nanomaterials. In this review, recent significant research developments of PDA including its synthesis and polymerization mechanism, physicochemical properties, different nano/microstructures, and diverse applications are summarized and discussed. For the sections of its applications in surface modification and biomedicine, we mainly highlight the achievements in the past few years (2016-2019). The remaining challenges and future perspectives of PDA-based nanoplatforms are discussed rationally at the end. This timely and overall review should be desirable for a wide range of scientists and facilitate further development of surface coating methods and the production of PDA-based materials.
Collapse
Affiliation(s)
- Wei Cheng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Xiaowei Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
| | - Zimu Li
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Wenfeng Zeng
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Lin Mei
- Institute of Pharmaceutics, School of Pharmaceutical Sciences (Shenzhen) , Sun Yat-sen University , Guangzhou 510275 , China
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences , Nanyang Technological University , 21 Nanyang Link , 637371 Singapore
- School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 Singapore
| |
Collapse
|
26
|
You YH, Lin YF, Nirosha B, Chang HT, Huang YF. Polydopamine-coated gold nanostar for combined antitumor and antiangiogenic therapy in multidrug-resistant breast cancer. Nanotheranostics 2019; 3:266-283. [PMID: 31263658 PMCID: PMC6584135 DOI: 10.7150/ntno.36842] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 05/25/2019] [Indexed: 01/19/2023] Open
Abstract
Cancer combination therapy can improve treatment efficacy and is widely utilized in the biomedical field. In this paper, we propose a facile strategy to develop a polydopamine (PDA)-coated Au nanostar (NS@PPFA) as a multifunctional nanoplatform for cancer targeting and combination therapy. The Au nanostar demonstrated high photothermal conversion efficiency because of the tip-enhanced plasmonic effect. Modification of PDA and folic acid on the NS surface improved its drug-loading efficiency and targeting capability. In vitro, compared with nontargeted cells, targeted breast cancer MCF-7 cells demonstrated efficient uptake of chemodrug-loaded NS-D@PPFA through the receptor-mediated endocytosis pathway. In combination with the photothermal effect induced by near-infrared laser irradiation, controlled payload release could be activated in response to both internal (acid) and external (photothermal) stimuli, leading to an efficient chemo-photothermal action against MCF-7 cells and drug-resistant MCF-7/ADR cells. By contrast, cellular damage was less obvious in normal HaCaT (human skin keratinocytes) and NIH-3T3 cells (murine fibroblasts). In addition, payload-free NS@PPFA exhibited a high binding affinity (Kd = 2.68 × 10-10 M) toward vascular endothelial growth factor (VEGF-A165), which was at least two orders of magnitude stronger than that of highly abundant plasma proteins, such as human serum albumin. Furthermore, in vitro study showed that NS@PPFA could effectively inhibit VEGF-A165-induced proliferation, migration, and tube formation of human umbilical vein endothelial cells, resulting in additional therapeutic benefits for eradicating tumors through a simultaneous antiangiogenic action in chemo-photothermal treatment. The combined treatment also exhibited the lowest microvessel density, leading to a potent antitumor effect in vivo. Overall, our “all-in-one” nanoplatform is highly promising for tumor therapy, enabling effective treatment against multidrug-resistant cancers.
Collapse
Affiliation(s)
- You-Hong You
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Yu-Feng Lin
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC.,Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Bhanu Nirosha
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Yu-Fen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| |
Collapse
|
27
|
Zhao T, Qin S, Peng L, Li P, Feng T, Wan J, Yuan P, Zhang L. Novel hyaluronic acid-modified temperature-sensitive nanoparticles for synergistic chemo-photothermal therapy. Carbohydr Polym 2019; 214:221-233. [DOI: 10.1016/j.carbpol.2019.03.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023]
|
28
|
Dai Q, Geng H, Yu Q, Hao J, Cui J. Polyphenol-Based Particles for Theranostics. Theranostics 2019; 9:3170-3190. [PMID: 31244948 PMCID: PMC6567970 DOI: 10.7150/thno.31847] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
Polyphenols, due to their high biocompatibility and wide occurrence in nature, have attracted increasing attention in the engineering of functional materials ranging from films, particles, to bulk hydrogels. Colloidal particles, such as nanogels, hollow capsules, mesoporous particles and core-shell structures, have been fabricated from polyphenols or their derivatives with a series of polymeric or biomolecular compounds through various covalent and non-covalent interactions. These particles can be designed with specific properties or functionalities, including multi-responsiveness, radical scavenging capabilities, and targeting abilities. Moreover, a range of cargos (e.g., imaging agents, anticancer drugs, therapeutic peptides or proteins, and nucleic acid fragments) can be incorporated into these particles. These cargo-loaded carriers have shown their advantages in the diagnosis and treatment of diseases, especially of cancer. In this review, we summarize the assembly of polyphenol-based particles, including polydopamine (PDA) particles, metal-phenolic network (MPN)-based particles, and polymer-phenol particles, and their potential biomedical applications in various diagnostic and therapeutic applications.
Collapse
Affiliation(s)
- Qiong Dai
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Qun Yu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
29
|
Navyatha B, Nara S. Gold nanostructures as cancer theranostic probe: promises and hurdles. Nanomedicine (Lond) 2019; 14:766-796. [DOI: 10.2217/nnm-2018-0170] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gold nanostructures (GNSts) have emerged as substitute for conventional contrast agents in imaging techniques and therapeutic probes due to their tunable surface plasmon resonance and optical properties in near-infrared region. Thus GNSts provide platform for the amalgamation of diagnosis and treatment (theranostics) into a single molecule for a more precise treatment. Hence, the article talks about the application of GNSts in imaging techniques and provide a holistic view on differently shaped GNSts in cancer theranostics. However, with promises GNSts also face various hurdles for their use as theranostic probe which are primarily associated with toxicity. Finally, the article attempts to discuss the challenges faced by GNSts and the way ahead that need to be traversed to place them in nanomedicine.
Collapse
Affiliation(s)
- Bankuru Navyatha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Prayagraj, Uttar Pradesh, 211004, India
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology Prayagraj, Uttar Pradesh, 211004, India
| |
Collapse
|
30
|
Khlebtsov BN, Burov AM, Pylaev TE, Khlebtsov NG. Polydopamine-coated Au nanorods for targeted fluorescent cell imaging and photothermal therapy. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:794-803. [PMID: 31019866 PMCID: PMC6466791 DOI: 10.3762/bjnano.10.79] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/07/2019] [Indexed: 05/06/2023]
Abstract
Au nanorods (AuNRs) have attracted a great interest as a platform for constructing various composite core/shell nanoparticles for theranostics applications. However, the development of robust methods for coating AuNRs with a biocompatible shell of high loading capacity and with functional groups still remains challenging. Here, we coated AuNRs with a polydopamine (PDA) shell and functionalized AuNR-PDA particles with folic acid and rhodamine 123 (R123) to fabricate AuNR-PDA-R123-folate nanocomposites. To the best of our knowledge, such AuNR-PDA-based composites combining fluorescent imaging and plasmonic phothothermal abilities have not been reported previously. The multifunctional nanoparticles were stable in cell buffer, nontoxic and suitable for targeted fluorescent imaging and photothermal therapy of cancer cells. We demonstrate the enhanced accumulation of folate-functionalized nanoparticles in folate-positive HeLa cells in contrast to the folate-negative HEK 293 cells using fluorescent microscopy. The replacement of folic acid with polyethylene glycol (PEG) leads to a decrease in nanoparticle uptake by both folate-positive and folate-negative cells. We performed NIR light-mediated targeted phototherapy using AuNR-PDA-R123-folate and obtained a remarkable cancer cell killing efficiency in vitro in comparison with only weak-efficient nontargeted PEGylated nanoparticles. Our work illustrates that AuNR-PDA could be a promising nanoplatform for multifunctional tumor theranostics in the future.
Collapse
Affiliation(s)
- Boris Nikolayevich Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
- Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410026, Russia
| | - Andrey Mikhailovich Burov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Timofey Evgenevich Pylaev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Nikolai G Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 13 Prospekt Entuziastov, Saratov 410049, Russia
- Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410026, Russia
| |
Collapse
|
31
|
Gold Nanorods as Theranostic Nanoparticles for Cancer Therapy. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
32
|
Tumor Photothermal Therapy Employing Photothermal Inorganic Nanoparticles/Polymers Nanocomposites. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2193-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Wang Z, Duan Y, Duan Y. Application of polydopamine in tumor targeted drug delivery system and its drug release behavior. J Control Release 2018; 290:56-74. [PMID: 30312718 DOI: 10.1016/j.jconrel.2018.10.009] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 10/08/2018] [Accepted: 10/08/2018] [Indexed: 12/13/2022]
Abstract
Inspired by the bionics of marine mussels, polydopamine (PDA), a new polymer with unique physicochemical properties was discovered. Due to its simple preparation, good biocompatibility, unique drug-loading methods, PDA has attracted tremendous attentions in field of drug delivery and imaging, and the combination of chemotherapy and other therapies or diagnostic methods, such as photothermotherapy (PTT), photoacoustic imaging (PAI), magnetic resonance imaging (MRI), etc. As an excellent drug carrier in tumor targeted drug delivery system, the drug release behavior of drug-loaded PDA-based nanoparticles is also an important factor to be considered in the establishment of drug delivery systems. Therefore, the purpose of this review is to provide a comprehensive overview of the various applications of PDA in tumor targeted drug delivery systems and to gain insight into the release behavior of the drug-loaded PDA-based nanocarriers. A sufficient understanding and discussion of these aspects is expected to provide a better way to design more rational and effective PDA-based tumor nano-targeted delivery systems. Apart from this, the prospects for the future application of PDA in this field and some unique insights are listed at the end of the article.
Collapse
Affiliation(s)
- Zhe Wang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China.
| | - Yaou Duan
- Moores Cancer Center and Institute for Genomic Medicine, University of California, San Diego, CA 92093, USA
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China; Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410011, China; National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China.
| |
Collapse
|
34
|
Zhao T, Chen L, Li Q, Li X. Near-infrared light triggered drug release from mesoporous silica nanoparticles. J Mater Chem B 2018; 6:7112-7121. [PMID: 32254627 DOI: 10.1039/c8tb01548a] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stimuli triggered drug delivery systems enable controlled release of drugs at the optimal space and time, thus achieving optimal therapeutic effects. As one of the most important stimuli used in bioapplications, near-infrared (NIR) light possesses unique advantages such as deep tissue penetration with minimum auto-fluorescence & tissue scattering and high biosafety. Mesoporous silica nanoparticles (MSNs) are one of the most studied nanocarriers; apart from having a high surface area and large pore volume for loading of drugs, they can be easily functionalized with inorganic nanomaterials and stimuli responsive polymers or organic switch molecules, creating possibilities for designing complex stimuli triggered drug delivery systems. Considering the high tissue penetration depth of NIR light and the unique mesoporous structure of MSNs, NIR responsive inorganic nanoparticle functionalized MSNs can be further combined with stimuli responsive materials to form smart "nano-devices" for controlled drug delivery toward tumors, and to date much progress has been made. In this article, recent advances in the design of NIR triggered mesoporous silica drug delivery systems are systematically summarized and some outstanding studies are highlighted. We will also discuss the shortcomings, challenges and opportunities in the field.
Collapse
Affiliation(s)
- Tiancong Zhao
- Laboratory of Advanced Materials, State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Chemistry for Energy Materials (2011-iChEM), Fudan University, Shanghai 200433, P. R. China.
| | | | | | | |
Collapse
|
35
|
Li J, Wang W, Zhang X, Yao H, Wei Z, Li X, Mu X, Jiang J, Zhang H. Seedless preparation of Au nanorods by hydroquinone assistant and red blood cell membrane camouflage. RSC Adv 2018; 8:21316-21325. [PMID: 35539950 PMCID: PMC9080879 DOI: 10.1039/c8ra03795g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 05/28/2018] [Indexed: 12/27/2022] Open
Abstract
Natural red blood cell membranes camouflaged Au nanorod composites that exhibited an excellent biocompatibility and photothermal ablation effect.
Collapse
Affiliation(s)
- Jing Li
- The Scientific Research Center
- China-Japan Union Hospital
- Jilin University
- Changchun 130033
- P. R. China
| | - Wenjing Wang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Xue Zhang
- College of Resources and Environment
- Jilin Agricultural University
- Changchun 130118
- China
| | - Hua Yao
- The Scientific Research Center
- China-Japan Union Hospital
- Jilin University
- Changchun 130033
- P. R. China
| | - Zhenhong Wei
- The Scientific Research Center
- China-Japan Union Hospital
- Jilin University
- Changchun 130033
- P. R. China
| | - Xiuying Li
- The Scientific Research Center
- China-Japan Union Hospital
- Jilin University
- Changchun 130033
- P. R. China
| | - Xupeng Mu
- The Scientific Research Center
- China-Japan Union Hospital
- Jilin University
- Changchun 130033
- P. R. China
| | - Jinlan Jiang
- The Scientific Research Center
- China-Japan Union Hospital
- Jilin University
- Changchun 130033
- P. R. China
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|