1
|
Xu S, Hu Z, Zheng W, Qin C, Bai X, Yang Q, Zeng T, Mo D, Zhou B, Lu C, Chen X, Tan B, Zhao J, Zheng L. GSH-responsive Pt-based nanomotor with improved doxorubicin delivery for synergistic osteosarcoma chemotherapy. Acta Biomater 2025; 195:390-405. [PMID: 39921180 DOI: 10.1016/j.actbio.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/27/2024] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Osteosarcoma (OS), a highly malignant primary tumor, poses significant threats. Chemotherapy remains the main treatment approach but is limited by low drug bioavailability, poor permeability, and notable side effects. Herein, a near-infrared light (NIR)-driven and GSH-responsive poly(ethylene glycol)-SS-polystyrene-doxorubicin and platinum nanoparticles (PSPDP) nanomotor, wherein disulfide bonds served as GSH sponsors and platinum nanoparticles as producers of reactive oxygen species (ROS) to induce cell apoptosis, combined with NIR-driven propulsion to enhance the inhibitory effect of encapsulated doxorubicin (DOX). The results demonstrated that the PSPDP nanomotor can be effectively driven due to its good photothermal properties, with its movement speed increased 2.10 times under NIR laser exposure. Additionally, the efficiency of DOX release increased with the increase in GSH concentration, demonstrating favorable GSH responsiveness. Pt-NPs also exhibited good photothermal properties, enabling self-thermophoresis to drive. Minimal cytotoxic effects of PSPDP were observed on a series of cell lines compared with DOX solution and Pt-NPs. Notably, the Pt-NPs generated a significant amount of ROS, synergistically enhancing the therapeutic effect of DOX, as evidenced by a 5.53-fold increase in OS cell growth inhibition and evident osteosarcoma growth inhibition in the nude mice model. Thus, the NIR-driven, localized, and low-toxic nanomotor may offer a promising therapeutic strategy for OS intervention. STATEMENT OF SIGNIFICANCE: Enhancing drug penetration efficiency and developing delivery systems that respond to the tumor microenvironment to release drugs are effective strategies for treating osteosarcoma (OS). Here, a near-infrared (NIR) light-driven and glutathione (GSH)-responsive nanomotor, integrating poly(ethylene glycol)-SS-polystyrene-doxorubicin and platinum nanoparticles (PSPDP), was produced and used for OS treatment. This PSPDP nanomotor exhibits significant advancements in photothermal activation and self-thermophoresis, enabling a 2.10-fold increase in movement speed under NIR exposure. Such enhanced motility improves the localized delivery and controlled release of doxorubicin, thus increasing drug bioavailability and minimizing systemic toxicity. Additionally, the nanomotor's ability to generate reactive oxygen species significantly amplifies its therapeutic impact, evidenced by a remarkable 5.53-fold increase in tumor growth inhibition. These features make the PSPDP nanomotor a promising candidate for effective and targeted OS treatment strategies.
Collapse
Affiliation(s)
- Sheng Xu
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Ziwei Hu
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Weihao Zheng
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Chaozhen Qin
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Xiaoyu Bai
- Terr Wildlife Rescue & Epidem Dis Surveillance Ctr, Nanning 530003, China
| | - Qinghua Yang
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Tao Zeng
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Dandan Mo
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Bo Zhou
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Chun Lu
- School of Materials and Environment, Guangxi Minzu University, Nanning, Guangxi, 5, 30006, China
| | - Xiaomin Chen
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Biying Tan
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Life Sciences Institute, Guangxi Medical University, Nanning 530021, China
| | - Jinmin Zhao
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Department of Orthopedics, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Li Zheng
- Collaborative Innovation Centre of Regenerative Medicine and Medical Bioresource Development and Application Co-constructed by the Province and Ministry, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China; Life Sciences Institute, Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
2
|
Singh P, Pandit S, Balusamy SR, Madhusudanan M, Singh H, Amsath Haseef HM, Mijakovic I. Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications. Adv Healthc Mater 2025; 14:e2403059. [PMID: 39501968 PMCID: PMC11804848 DOI: 10.1002/adhm.202403059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/07/2024] [Indexed: 01/05/2025]
Abstract
Cancer remains one of the most challenging health issues globally, demanding innovative therapeutic approaches for effective treatment. Nanoparticles, particularly those composed of gold, silver, and iron oxide, have emerged as promising candidates for changing cancer therapy. This comprehensive review demonstrates the landscape of nanoparticle-based oncological interventions, focusing on the remarkable advancements and therapeutic potentials of gold, silver, and iron oxide nanoparticles. Gold nanoparticles have garnered significant attention for their exceptional biocompatibility, tunable surface chemistry, and distinctive optical properties, rendering them ideal candidates for various cancer diagnostic and therapeutic strategies. Silver nanoparticles, renowned for their antimicrobial properties, exhibit remarkable potential in cancer therapy through multiple mechanisms, including apoptosis induction, angiogenesis inhibition, and drug delivery enhancement. With their magnetic properties and biocompatibility, iron oxide nanoparticles offer unique cancer diagnosis and targeted therapy opportunities. This review critically examines the recent advancements in the synthesis, functionalization, and biomedical applications of these nanoparticles in cancer therapy. Moreover, the challenges are discussed, including toxicity concerns, immunogenicity, and translational barriers, and ongoing efforts to overcome these hurdles are highlighted. Finally, insights into the future directions of nanoparticle-based cancer therapy and regulatory considerations, are provided aiming to accelerate the translation of these promising technologies from bench to bedside.
Collapse
Affiliation(s)
- Priyanka Singh
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
| | - Santosh Pandit
- Systems and Synthetic Biology DivisionDepartment of Life SciencesChalmers University of TechnologyGothenburgSE‐412 96Sweden
| | - Sri Renukadevi Balusamy
- Department of Food Science and BiotechnologySejong UniversityGwangjin‐GuSeoul05006Republic of Korea
| | - Mukil Madhusudanan
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
| | - Hina Singh
- Division of Biomedical SciencesSchool of MedicineUniversity of CaliforniaRiversideCA92521USA
| | | | - Ivan Mijakovic
- The Novo Nordisk FoundationCenter for BiosustainabilityTechnical University of DenmarkKogens LyngbyDK‐2800Denmark
- Systems and Synthetic Biology DivisionDepartment of Life SciencesChalmers University of TechnologyGothenburgSE‐412 96Sweden
| |
Collapse
|
3
|
Yin B, Ren J, Liu X, Zhang Y, Zuo J, Wen R, Pei H, Lu M, Zhu S, Zhang Z, Wang Z, Zhai Y, Ma Y. Astaxanthin mitigates doxorubicin-induced cardiotoxicity via inhibiting ferroptosis and autophagy: a study based on bioinformatic analysis and in vivo/ vitro experiments. Front Pharmacol 2025; 16:1524448. [PMID: 39906141 PMCID: PMC11790656 DOI: 10.3389/fphar.2025.1524448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/02/2025] [Indexed: 02/06/2025] Open
Abstract
Background Doxorubicin (DOX), a widely employed chemotherapeutic agent in cancer treatment, has seen restricted use in recent years owing to its associated cardiotoxicity. Current reports indicate that doxorubicin-induced cardiotoxicity (DIC) is a complex phenomenon involving various modes of cell death. Astaxanthin (ASX), a natural carotenoid pigment, has garnered significant attention for its numerous health benefits. Recent studies have shown that ASX has a broad and effective cardiovascular protective effect. Our study aims to investigate the protective effects of ASX against DIC and elucidate its underlying mechanisms. This has substantial practical significance for the clinical application of DOX. Methods Bioinformatic analyses were conducted using transcriptomic data from the gene expression omnibus (GEO) database to identify key mechanisms underlying DIC. Network pharmacology was employed to predict the potential pathways and targets through which ASX exerts its effects on DIC. In vitro experiments, following pretreatment with ASX, H9C2 cells were exposed to DOX. Cell viability, injury and the protein expression levels associated with ferroptosis and autophagy were assessed. In the animal experiments, rats underwent 4 weeks of gavage treatment with various doses of ASX, followed by intraperitoneal injections of DOX every 2 days during the final week. Histological, serum, and protein analyses were conducted to evaluate the effects of ASX on DIC. Results The bioinformatics analysis revealed that ferroptosis and autophagy are closely associated with the development of DIC. ASX may exert an anti-DIC effect by modulating ferroptosis and autophagy. The experimental results show that ASX significantly mitigates DOX-induced myocardial tissue damage, inflammatory response, oxidative stress, and damage to H9C2 cells. Mechanistically, ASX markedly ameliorates levels of ferroptosis and autophagy both in vitro and in vivo. Specifically, ASX upregulates solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), while downregulating the expression of transferrin receptor 1 (TFRC), ferritin heavy chain (FTH1) and ferritin light chain (FTL). Additionally, ASX enhances the expression of P62 and decreases levels of Beclin1 and microtubule-associated proteins light chain 3 (LC3). Conclusion Our results indicate that ferroptosis and autophagy are critical factors influencing the occurrence and progression of DOX-induced cardiotoxicity. ASX can alleviate DIC by inhibiting ferroptosis and autophagy.
Collapse
Affiliation(s)
- Bowen Yin
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Jingyi Ren
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Xuanyi Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Yadong Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Jinshi Zuo
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Rui Wen
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Huanting Pei
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Miaomiao Lu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Siqi Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Zhenao Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| | - Ziyi Wang
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yanyi Zhai
- Undergraduate of College of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
| |
Collapse
|
4
|
Nuti S, Fernández-Lodeiro J, Palomo JM, Capelo-Martinez JL, Lodeiro C, Fernández-Lodeiro A. Synthesis, Structural Analysis, and Peroxidase-Mimicking Activity of AuPt Branched Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1166. [PMID: 38998771 PMCID: PMC11243270 DOI: 10.3390/nano14131166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
Bimetallic nanomaterials have generated significant interest across diverse scientific disciplines, due to their unique and tunable properties arising from the synergistic combination of two distinct metallic elements. This study presents a novel approach for synthesizing branched gold-platinum nanoparticles by utilizing poly(allylamine hydrochloride) (PAH)-stabilized branched gold nanoparticles, with a localized surface plasmon resonance (LSPR) response of around 1000 nm, as a template for platinum deposition. This approach allows precise control over nanoparticle size, the LSPR band, and the branching degree at an ambient temperature, without the need for high temperatures or organic solvents. The resulting AuPt branched nanoparticles not only demonstrate optical activity but also enhanced catalytic properties. To evaluate their catalytic potential, we compared the enzymatic capabilities of gold and gold-platinum nanoparticles by examining their peroxidase-like activity in the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Our findings revealed that the incorporation of platinum onto the gold surface substantially enhanced the catalytic efficiency, highlighting the potential of these bimetallic nanoparticles in catalytic applications.
Collapse
Affiliation(s)
- Silvia Nuti
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Javier Fernández-Lodeiro
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Praceta Jerónimo Dias, Num. 12, 2A, Sto António de Caparica, 2825-466 Costa de Caparica, Portugal
| | - Jose M Palomo
- Instituto de Catalisis y Petroleoquimica (ICP), Consejo Superior de Investigaciones Científicas (CSIC) Marie Curie 2, 28049 Madrid, Spain
| | - José-Luis Capelo-Martinez
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Praceta Jerónimo Dias, Num. 12, 2A, Sto António de Caparica, 2825-466 Costa de Caparica, Portugal
| | - Carlos Lodeiro
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Praceta Jerónimo Dias, Num. 12, 2A, Sto António de Caparica, 2825-466 Costa de Caparica, Portugal
| | - Adrián Fernández-Lodeiro
- BIOSCOPE Research Group, LAQV-REQUIMTE, Chemistry Department, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- PROTEOMASS Scientific Society, Praceta Jerónimo Dias, Num. 12, 2A, Sto António de Caparica, 2825-466 Costa de Caparica, Portugal
| |
Collapse
|
5
|
Zhang J, Guo B, Jiang Y, Hu C, Kim J, Debnath S, Shi X, Zhang C, Kim JS, Wang F. Luciferase-Decorated Gold Nanorods as Dual-Modal Contrast Agents for Tumor-Targeted High-Performance Bioluminescence/Photoacoustic Imaging. Anal Chem 2024; 96:9132-9140. [PMID: 38764163 DOI: 10.1021/acs.analchem.4c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Gold nanorods (AuNRs) have been considered highly compelling materials for early cancer diagnosis and have aroused a burgeoning fascination among the biomedical sectors. By leveraging the versatile tunable optical properties of AuNRs, herein, we have developed a novel tumor-targeted dual-modal nanoprobe (FFA) that exhibits excellent bioluminescence and photoacoustic imaging performance for early tumor diagnosis. FFA has been synthesized by anchoring the recombinant bioluminescent firefly luciferase protein (Fluc) on the folate-conjugated AuNRs via the PEG linker. TEM images and UV-vis studies confirm the nanorod morphology and successful conjugation of the biomolecules to AuNRs. The nanoprobe FFA relies on the ability of the folate module to target the folate receptor-positive tumor cells actively, and simultaneously, the Fluc module facilitates excellent bioluminescent properties in physiological conditions. The success of chemical engineering in the present study enables stronger bioluminescent signals in the folate receptor-positive cells (Skov3, Hela, and MCF-7) than in folate receptor-negative cells (A549, 293T, MCF-10A, and HepG2). Additionally, the AuNRs induced strong photoacoustic conversion performance, enhancing the resolution of tumor imaging. No apparent toxicity was detected at the cellular and mouse tissue levels, manifesting the biocompatibility nature of the nanoprobe. Prompted by the positive merits of FFA, the in vivo animal studies were performed, and a notable enhancement was observed in the bioluminescent/photoacoustic intensity of the nanoprobe in the tumor region compared to that in the folate-blocking region. Therefore, this synergistic dual-modal bioluminescent and photoacoustic imaging platform holds great potential as a tumor-targeted contrast agent for early tumor diagnosis with high-performance imaging information.
Collapse
Affiliation(s)
- Jingyu Zhang
- Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong Universityy, Xi'an 710004, China
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Bin Guo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yiyi Jiang
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Chong Hu
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | | | - Xiaorui Shi
- School of Life Science and Technology, Xidian University, Xi'an 710071, China
| | - Chuanxian Zhang
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Fu Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong Universityy, Xi'an 710004, China
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an 710061, China
- Xianyang Key Laboratory of Molecular Imaging and Drug Synthesis, School of Pharmacy, Shaanxi University of International Trade & Commerce, Xianyang 712046, Shaanxi, China
| |
Collapse
|
6
|
Sarkar A, Singh K, Bhardwaj K, Jaiswal A. NIR-Active Gold Dogbone Nanorattles Impregnated in Cationic Dextrin Nanoparticles for Cancer Nanotheranostics. ACS Biomater Sci Eng 2024; 10:2510-2522. [PMID: 38466622 DOI: 10.1021/acsbiomaterials.3c01176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Theranostic systems, which integrate therapy and diagnosis into a single platform, have gained significant attention as a promising approach for noninvasive cancer treatment. The field of image-guided therapy has revolutionized real-time tumor detection, and within this domain, plasmonic nanostructures have garnered significant attention. These structures possess unique localized surface plasmon resonance (LSPR), allowing for enhanced absorption in the near-infrared (NIR) range. By leveraging the heat generated from plasmonic nanoparticles upon NIR irradiation, target cancer cells can be effectively eradicated. This study introduces a plasmonic gold dogbone-nanorattle (AuDB NRT) structure that exhibits broad absorption in the NIR region and demonstrates a photothermal conversion efficiency of 35.29%. When exposed to an NIR laser, the AuDB NRTs generate heat, achieving a maximum temperature rise of 38 °C at a concentration of 200 μg/mL and a laser power density of 3 W/cm2. Additionally, the AuDB NRTs possess intrinsic electromagnetic hotspots that amplify the signal of a Raman reporter molecule, making them an excellent probe for surface-enhanced Raman scattering-based bioimaging of cancer cells. To improve the biocompatibility of the nanorattles, the AuDB NRTs were conjugated with mPEG-thiol and successfully encapsulated into cationic dextrin nanoparticles (CD NPs). Biocompatibility tests were performed on HEK 293 A and MCF-7 cell lines, revealing high cell viability when exposed to AuDB NRT-CD NPs. Remarkably, even at a low laser power density of 1 W/cm2, the application of the NIR laser resulted in a remarkable 80% cell death in cells treated with a nanocomposite concentration of 100 μg/mL. Further investigation elucidated that the cell death induced by photothermal heat followed an apoptotic mechanism. Overall, our findings highlight the significant potential of the prepared nanocomposite for cancer theranostics, combining effective photothermal therapy along with the ability to image cancer cells.
Collapse
Affiliation(s)
- Ankita Sarkar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India
| | - Khushal Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India
| | - Keshav Bhardwaj
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi 175075, Himachal Pradesh, India
| |
Collapse
|
7
|
Sarma K, Akther MH, Ahmad I, Afzal O, Altamimi ASA, Alossaimi MA, Jaremko M, Emwas AH, Gautam P. Adjuvant Novel Nanocarrier-Based Targeted Therapy for Lung Cancer. Molecules 2024; 29:1076. [PMID: 38474590 DOI: 10.3390/molecules29051076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 03/14/2024] Open
Abstract
Lung cancer has the lowest survival rate due to its late-stage diagnosis, poor prognosis, and intra-tumoral heterogeneity. These factors decrease the effectiveness of treatment. They release chemokines and cytokines from the tumor microenvironment (TME). To improve the effectiveness of treatment, researchers emphasize personalized adjuvant therapies along with conventional ones. Targeted chemotherapeutic drug delivery systems and specific pathway-blocking agents using nanocarriers are a few of them. This study explored the nanocarrier roles and strategies to improve the treatment profile's effectiveness by striving for TME. A biofunctionalized nanocarrier stimulates biosystem interaction, cellular uptake, immune system escape, and vascular changes for penetration into the TME. Inorganic metal compounds scavenge reactive oxygen species (ROS) through their photothermal effect. Stroma, hypoxia, pH, and immunity-modulating agents conjugated or modified nanocarriers co-administered with pathway-blocking or condition-modulating agents can regulate extracellular matrix (ECM), Cancer-associated fibroblasts (CAF),Tyro3, Axl, and Mertk receptors (TAM) regulation, regulatory T-cell (Treg) inhibition, and myeloid-derived suppressor cells (MDSC) inhibition. Again, biomimetic conjugation or the surface modification of nanocarriers using ligands can enhance active targeting efficacy by bypassing the TME. A carrier system with biofunctionalized inorganic metal compounds and organic compound complex-loaded drugs is convenient for NSCLC-targeted therapy.
Collapse
Affiliation(s)
- Kangkan Sarma
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Md Habban Akther
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 62521, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik S A Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Preety Gautam
- School of Pharmaceutical and Population Health Informatics (SoPPHI), DIT University, Dehradun 248009, India
| |
Collapse
|
8
|
Mi X, Lou Y, Wang Y, Dong M, Xue H, Li S, Lu J, Chen X. Glycyrrhetinic Acid Receptor-Mediated Zeolitic Imidazolate Framework-8 Loaded Doxorubicin as a Nanotherapeutic System for Liver Cancer Treatment. Molecules 2023; 28:8131. [PMID: 38138618 PMCID: PMC10745904 DOI: 10.3390/molecules28248131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
In this study, we designed and developed a DOX nanodrug delivery system (PEG-GA@ZIF-8@DOX) using ZIF-8 as the carrier and glycyrrhetinic acid (GA) as the targeting ligand. We confirmed that DOX was loaded and PEG-GA was successfully modified on the surface of the nanoparticles. The in vitro release profile of the system was investigated at pH 5.0 and 7.4. The cellular uptake, in vitro cytotoxicity, and lysosomal escape characteristics were examined using HepG2 cells. We established an H22 tumor-bearing mouse model and evaluated the in vivo antitumor activity. The results showed that the system had a uniform nanomorphology. The drug loading capacity was 11.22 ± 0.87%. In acidic conditions (pH 5.0), the final release rate of DOX was 57.73%, while at pH 7.4, it was 25.12%. GA-mediated targeting facilitated the uptake of DOX by the HepG2 cells. PEG-GA@ZIF-8@DOX could escape from the lysosomes and release the drug in the cytoplasm, thus exerting its antitumor effect. When the in vivo efficacy was analyzed, we found that the tumor inhibition rate of PEG-GA@ZIF-8@DOX was 67.64%; it also alleviated the loss of the body weight of the treated mice. This drug delivery system significantly enhanced the antitumor effect of doxorubicin in vitro and in vivo, while mitigating its toxic side effects.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juan Lu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (X.M.); (Y.L.); (Y.W.); (M.D.); (H.X.); (S.L.)
| | - Xi Chen
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; (X.M.); (Y.L.); (Y.W.); (M.D.); (H.X.); (S.L.)
| |
Collapse
|
9
|
Garcia-Peiro JI, Bonet-Aleta J, Tamayo-Fraile ML, Hueso JL, Santamaria J. Platinum-based nanodendrites as glucose oxidase-mimicking surrogates. NANOSCALE 2023; 15:14399-14408. [PMID: 37609926 PMCID: PMC10500625 DOI: 10.1039/d3nr02026f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/29/2023] [Indexed: 08/24/2023]
Abstract
Catalytic conversion of glucose represents an interesting field of research with multiple applications. From the biotechnology point of view, glucose conversion leads to the fabrication of different added-value by-products. In the field of nanocatalytic medicine, the reduction of glucose levels within the tumor microenvironment (TME) represents an appealing approach based on the starvation of cancer cells. Glucose typically achieves high conversion rates with the aid of glucose oxidase (GOx) enzymes or by fermentation. GOx is subjected to degradation, possesses poor recyclability and operates under very specific reaction conditions. Gold-based materials have been typically explored as inorganic catalytic alternatives to GOx in order to convert glucose into building block chemicals of interest. Still, the lack of sufficient selectivity towards certain products such as gluconolactone, the requirement of high fluxes of oxygen or the critical size dependency hinder their full potential, especially in liquid phase reactions. The present work describes the synthesis of platinum-based nanodendrites as novel enzyme-mimicking inorganic surrogates able to convert glucose into gluconolactone with outstanding selectivity values above 85%. We have also studied the enzymatic behavior of these Pt-based nanozymes using the Michaelis-Menten and Lineweaver-Burk models and used the main calculation approaches available in the literature to determine highly competitive glucose turnover rates for Pt or Pt-Au nanodendrites.
Collapse
Affiliation(s)
- Jose I Garcia-Peiro
- Instituto de Nanociencia y Materiales de Aragon (INMA); CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain.
- Department of Chemical and Environmental Engineering; University of Zaragoza, Spain, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Javier Bonet-Aleta
- Instituto de Nanociencia y Materiales de Aragon (INMA); CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain.
- Department of Chemical and Environmental Engineering; University of Zaragoza, Spain, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Maria L Tamayo-Fraile
- Instituto de Nanociencia y Materiales de Aragon (INMA); CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain.
- Department of Chemical and Environmental Engineering; University of Zaragoza, Spain, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
| | - Jose L Hueso
- Instituto de Nanociencia y Materiales de Aragon (INMA); CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain.
- Department of Chemical and Environmental Engineering; University of Zaragoza, Spain, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| | - Jesus Santamaria
- Instituto de Nanociencia y Materiales de Aragon (INMA); CSIC-Universidad de Zaragoza, Campus Rio Ebro, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018, Zaragoza, Spain.
- Department of Chemical and Environmental Engineering; University of Zaragoza, Spain, Campus Rio Ebro, C/María de Luna, 3, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria (IIS) de Aragón, Avenida San Juan Bosco, 13, 50009 Zaragoza, Spain
| |
Collapse
|
10
|
Singh P, Haloi P, Singh K, Roy S, Sarkar A, B SL, Choudhary R, Mohite C, Chawla S, Konkimalla VB, Sanpui P, Jaiswal A. Palladium Nanocapsules for Photothermal Therapy in the Near-Infrared II Biological Window. ACS APPLIED MATERIALS & INTERFACES 2023; 15:39081-39098. [PMID: 37566573 DOI: 10.1021/acsami.3c06186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Recent developments in nanomaterials with programmable optical responses and their capacity to modulate the photothermal effect induced by an extrinsic source of light have elevated plasmonic photothermal therapy (PPTT) to the status of a favored treatment for a variety of malignancies. However, the low penetration depth of near-infrared-I (NIR-I) lights and the need to expose the human body to a high laser power density in PPTT have restricted its clinical translation for cancer therapy. Most nanostructures reported to date exhibit limited performance due to (i) activity only in the NIR-I region, (ii) the use of intense laser, (iii) need of large concentration of nanomaterials, or (iv) prolonged exposure times to achieve the optimal hyperthermia state for cancer phototherapy. To overcome these shortcomings in plasmonic nanomaterials, we report a bimetallic palladium nanocapsule (Pd Ncap)─with a solid gold bead as its core and a thin, perforated palladium shell─with extinction both in the NIR-I as well as the NIR-II region for PPTT applications toward cancer therapy. The Pd Ncap demonstrated exceptional photothermal stability with a photothermal conversion efficiency of ∼49% at the NIR-II (1064 nm) wavelength region at a very low laser power density of 0.5 W/cm2. The nanocapsules were further surface-functionalized with Herceptin (Pd Ncap-Her) to target the breast cancer cell line SK-BR-3 and exploited for in vitro PPTT applications using NIR-II light. Pd Ncap-Her caused more than 98% cell death at a concentration of just 50 μg/mL and a laser power density of 0.5 W/cm2 with an output power of only 100 mW. Flow cytometric and microscopic analyses revealed that Pd Ncap-Her-induced apoptosis in the treated cancer cells during PPTT. Additionally, Pd Ncaps were found to have reactive oxygen species (ROS) scavenging ability, which can potentially reduce the damage to cells or tissues from ROS produced during PPTT. Also, Pd Ncap demonstrated excellent in vivo biocompatibility and was highly efficient in photothermally ablating tumors in mice. With a high photothermal conversion and killing efficiency at very low nanoparticle concentrations and laser power densities, the current nanostructure can operate as an effective phototherapeutic agent for the treatment of different cancers with ROS-protecting ability.
Collapse
Affiliation(s)
- Prem Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Prakash Haloi
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Khushal Singh
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Shounak Roy
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Ankita Sarkar
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| | - Siva Lokesh B
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Rajat Choudhary
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Chandrasen Mohite
- Department of Biotechnology, Birla Institute of Technology and Science Pilani, Dubai Campus, Dubai International Academic City, Dubai 345055, United Arab Emirates
| | - Saurabh Chawla
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - V Badireenath Konkimalla
- School of Biological Sciences, National Institute of Science Education and Research, Homi Bhabha National Institute, Jatni, Odisha 752050, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Pallab Sanpui
- Department of Biotechnology, Birla Institute of Technology and Science Pilani, Dubai Campus, Dubai International Academic City, Dubai 345055, United Arab Emirates
| | - Amit Jaiswal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Kamand, Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
11
|
Zhang R, Xu S, Yuan M, Guo L, Xie L, Liao Y, Xu Y, Fu X. An ultrasmall PVP-Fe-Cu-Ni-S nano-agent for synergistic cancer therapy through triggering ferroptosis and autophagy. NANOSCALE 2023; 15:12598-12611. [PMID: 37462439 DOI: 10.1039/d3nr02708b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Photothermal therapy (PTT) is an emerging field where photothermal agents could convert visible or near-infrared (NIR) radiation into heat to kill tumor cells. However, the low photothermal conversion efficiency of photothermal agents and their limited antitumor activities hinder the development of these agents into monotherapies for cancer. Herein, we have fabricated an ultrasmall polyvinylpyrrolidone (PVP)-Fe-Cu-Ni-S (PVP-NP) nano-agent via a simple hot injection method with excellent photothermal conversion efficiency (∼96%). Photothermal therapy with this nano-agent effectively inhibits tumor growth without apparent toxic side-effects. Mechanistically, our results demonstrated that, after NIR irradiation, PVP-NPs can induce ROS/singlet oxygen generation, decrease the mitochondrial membrane potential, release extracellular Fe2+, and consume glutathione, triggering autophagy and ferroptosis of cancer cells. Moreover, PVP-NPs exhibit excellent contrast enhancement according to magnetic resonance imaging (MRI) analysis. In summary, PVP-NPs have a high photothermal conversion efficiency and can be applied for MRI-guided synergistic photothermal/photodynamic/chemodynamic cancer therapy, resolving the bottleneck of existing phototherapeutic agents.
Collapse
Affiliation(s)
- Rongjun Zhang
- Institute of Molecular Medicine (IMM), Renji Hospital, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China
| | - Shuxiang Xu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
- Binjiang Research Institute of Zhejiang University, Hangzhou, Zhejiang 310052, China
| | - Miaomiao Yuan
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Lihao Guo
- Precision Research Center for Refractory Diseases in Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Luoyijun Xie
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Yingying Liao
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong 518033, China
| | - Yang Xu
- Department of Cardiology, Cardiovascular Key Lab of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, China.
- Binjiang Research Institute of Zhejiang University, Hangzhou, Zhejiang 310052, China
| | - Xuemei Fu
- International Peace Maternity and Child Health Hospital of China Welfare Institution, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
12
|
Boltman T, Meyer M, Ekpo O. Diagnostic and Therapeutic Approaches for Glioblastoma and Neuroblastoma Cancers Using Chlorotoxin Nanoparticles. Cancers (Basel) 2023; 15:3388. [PMID: 37444498 DOI: 10.3390/cancers15133388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 07/15/2023] Open
Abstract
Glioblastoma multiforme (GB) and high-risk neuroblastoma (NB) are known to have poor therapeutic outcomes. As for most cancers, chemotherapy and radiotherapy are the current mainstay treatments for GB and NB. However, the known limitations of systemic toxicity, drug resistance, poor targeted delivery, and inability to access the blood-brain barrier (BBB), make these treatments less satisfactory. Other treatment options have been investigated in many studies in the literature, especially nutraceutical and naturopathic products, most of which have also been reported to be poorly effective against these cancer types. This necessitates the development of treatment strategies with the potential to cross the BBB and specifically target cancer cells. Compounds that target the endopeptidase, matrix metalloproteinase 2 (MMP-2), have been reported to offer therapeutic insights for GB and NB since MMP-2 is known to be over-expressed in these cancers and plays significant roles in such physiological processes as angiogenesis, metastasis, and cellular invasion. Chlorotoxin (CTX) is a promising 36-amino acid peptide isolated from the venom of the deathstalker scorpion, Leiurus quinquestriatus, demonstrating high selectivity and binding affinity to a broad-spectrum of cancers, especially GB and NB through specific molecular targets, including MMP-2. The favorable characteristics of nanoparticles (NPs) such as their small sizes, large surface area for active targeting, BBB permeability, etc. make CTX-functionalized NPs (CTX-NPs) promising diagnostic and therapeutic applications for addressing the many challenges associated with these cancers. CTX-NPs may function by improving diffusion through the BBB, enabling increased localization of chemotherapeutic and genotherapeutic drugs to diseased cells specifically, enhancing imaging modalities such as magnetic resonance imaging (MRI), single-photon emission computed tomography (SPECT), optical imaging techniques, image-guided surgery, as well as improving the sensitization of radio-resistant cells to radiotherapy treatment. This review discusses the characteristics of GB and NB cancers, related treatment challenges as well as the potential of CTX and its functionalized NP formulations as targeting systems for diagnostic, therapeutic, and theranostic purposes. It also provides insights into the potential mechanisms through which CTX crosses the BBB to bind cancer cells and provides suggestions for the development and application of novel CTX-based formulations for the diagnosis and treatment of GB and NB in the future.
Collapse
Affiliation(s)
- Taahirah Boltman
- Department of Medical Biosciences, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, University of the Western Cape, Robert Sobukwe Road, Bellville, Cape Town 7535, South Africa
| | - Okobi Ekpo
- Department of Anatomy and Cellular Biology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| |
Collapse
|
13
|
Zhang R, Qin X, Lu J, Xu H, Zhao S, Li X, Yang C, Kong L, Guo Y, Zhang Z. Chemodynamic/Photothermal Synergistic Cancer Immunotherapy Based on Yeast Microcapsule-Derived Au/Pt Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:24134-24148. [PMID: 37163695 DOI: 10.1021/acsami.3c02646] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In recent years, microbiota-based tumor immunotherapy has become a hotspot in cancer research. However, the use of microorganisms alone to activate the immune response for antitumor therapy was unsatisfactory. In this study, we biosynthesized gold nanoparticles (AuNPs) and platinum nanoparticles (PtNPs) based on yeast microcapsules to activate the immune response for antitumor treatment in synergy with chemodynamic therapy (CDT) and photothermal therapy (PTT). We generated AuNPs and PtNPs on yeast microcapsules (YAP) and fabricated nanoscale particles (Bre-YAP) by ultrasonic fragmentation and differential centrifugation. Bre-YAP retained the glucan component of yeast as an adjuvant; in the meantime, these two kinds of metal nanoparticles contained were excellent CDT and PTT mediators. By inspection, they could reach a high level of distribution in tumors and tumor-draining lymph nodes (TDLNs). Under the laser irradiation of tumors, this immunological nanomaterial significantly remodeled the microenvironments of tumors and TDLNs. The primary tumors were effectively inhibited or even eradicated, and the overall survival of mice was significantly improved as well. Therefore, yeast microcapsule-based Bre-YAP with immune properties could be used as an effective cancer treatment modality.
Collapse
Affiliation(s)
- Runzan Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xianya Qin
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Junyu Lu
- School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongbo Xu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Siyu Zhao
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Conglian Yang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Kong
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yuanyuan Guo
- Department of Pharmacy, Liyuan Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan 430077, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan 430030, China
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
14
|
Gu M, Zhang L, Hao L, Wang K, Yang W, Liu Z, Lei Z, Zhang Y, Li W, Jiang L, Li X. Upconversion Nanoplatform Enables Multimodal Imaging and Combinatorial Immunotherapy for Synergistic Tumor Treatment and Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21766-21780. [PMID: 37104533 DOI: 10.1021/acsami.2c22420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Designing a novel nanoplatform that integrates multimodal imaging and synergistic therapy for precision tumor nanomedicines is challenging. Herein, we prepared rare-earth ion-doped upconversion hydroxyapatite (FYH) nanoparticles as nanocarriers coated and loaded respectively with polydopamine (PDA) and doxorubicin (DOX), i.e., FYH-PDA-DOX, for tumor theranostics. The developed FYH-PDA-DOX complexes exhibited desirable photothermal conversion, pH/near-infrared-irradiation-responsive DOX release, and multimodal upconversion luminescence/computed tomography/magnetic resonance imaging performance and helped monitor the metabolic distribution process of the complexes and provided feedback to the therapeutic effect. Upon 808 nm laser irradiation, the fast release of DOX facilitated the photothermal-chemotherapy effect, immunogenic cell death, and antitumor immune response. On combining with the anti-programmed cell death 1 ligand 1 antibody, an enhanced tri-mode photothermal-chemo-immunotherapy synergistic treatment against tumors can be realized. Thus, this treatment elicited potent antitumor immunity, producing appreciable T-cell cytotoxicity against tumors, amplifying tumor suppression, and extending the survival of mice. Therefore, the FYH-PDA-DOX complexes are promising as a smart nanoplatform for imaging-guided synergistic cancer treatment.
Collapse
Affiliation(s)
- Mengqin Gu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhenqi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zixue Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yinmo Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Li Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiyu Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
15
|
Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, Li Y, Wang J, Xu H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem Rev 2023. [PMID: 37133878 DOI: 10.1021/acs.chemrev.3c00159] [Citation(s) in RCA: 337] [Impact Index Per Article: 168.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.
Collapse
Affiliation(s)
- Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qifeng Ruan
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System & Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jingtian Hu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Runfang Fu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yang Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Hongxing Xu
- School of Physics and Technology and School of Microelectronics, Wuhan University, Wuhan 430072, Hubei, China
- Henan Academy of Sciences, Zhengzhou 450046, Henan, China
- Wuhan Institute of Quantum Technology, Wuhan 430205, Hubei, China
| |
Collapse
|
16
|
Yin Y, Jiang H, Wang Y, Zhang L, Sun C, Xie P, Zheng K, Wang S, Yang Q. Self-Assembled Nanodelivery System with Rapamycin and Curcumin for Combined Photo-Chemotherapy of Breast Cancer. Pharmaceutics 2023; 15:pharmaceutics15030849. [PMID: 36986711 PMCID: PMC10058775 DOI: 10.3390/pharmaceutics15030849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
Nanodelivery systems combining photothermal therapy (PTT) and chemotherapy (CT), have been widely used to improve the efficacy and biosafety of chemotherapeutic agents in cancer. In this work, we constructed a self-assembled nanodelivery system, formed by the assembling of photosensitizer (IR820), rapamycin (RAPA), and curcumin (CUR) into IR820-RAPA/CUR NPs, to realize photothermal therapy and chemotherapy for breast cancer. The IR820-RAPA/CUR NPs displayed a regular sphere, with a narrow particle size distribution, a high drug loading capacity, and good stability and pH response. Compared with free RAPA or free CUR, the nanoparticles showed a superior inhibitory effect on 4T1 cells in vitro. The IR820-RAPA/CUR NP treatment displayed an enhanced inhibitory effect on tumor growth in 4T1 tumor-bearing mice, compared to free drugs in vivo. In addition, PTT could provide mild hyperthermia (46.0 °C) for 4T1 tumor-bearing mice, and basically achieve tumor ablation, which is beneficial to improving the efficacy of chemotherapeutic drugs and avoiding damage to the surrounding normal tissue. The self-assembled nanodelivery system provides a promising strategy for coordinating photothermal therapy and chemotherapy to treat breast cancer.
Collapse
Affiliation(s)
- Yanlong Yin
- The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Center of Scientific Research, Chengdu Medical College, Chengdu 610500, China
| | - Hong Jiang
- The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Center of Scientific Research, Chengdu Medical College, Chengdu 610500, China
| | - Yue Wang
- The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Center of Scientific Research, Chengdu Medical College, Chengdu 610500, China
| | - Longyao Zhang
- The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Center of Scientific Research, Chengdu Medical College, Chengdu 610500, China
| | - Chunyan Sun
- School of Bioscience and Technology, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, China
| | - Pan Xie
- School of Bioscience and Technology, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, China
| | - Kun Zheng
- School of Bioscience and Technology, Chengdu Medical College, No. 783, Xindu Avenue, Xindu District, Chengdu 610500, China
| | - Shaoqing Wang
- The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Center of Scientific Research, Chengdu Medical College, Chengdu 610500, China
- Correspondence: or (S.W.); or (Q.Y.)
| | - Qian Yang
- The Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital), Center of Scientific Research, Chengdu Medical College, Chengdu 610500, China
- Correspondence: or (S.W.); or (Q.Y.)
| |
Collapse
|
17
|
Wang Y, Jiang H, Zhang L, Yao P, Wang S, Yang Q. Nanosystems for oxidative stress regulation in the anti-inflammatory therapy of acute kidney injury. Front Bioeng Biotechnol 2023; 11:1120148. [PMID: 36845189 PMCID: PMC9949729 DOI: 10.3389/fbioe.2023.1120148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome that results from a rapid decline in renal structure or renal functional impairment with the main pathological feature of sublethal and lethal damage to renal tubular cells. However, many potential therapeutic agents cannot achieve the desired therapeutic effect because of their poor pharmacokinetics and short retention time in the kidneys. With the recent emergence and progress of nanotechnology, nanodrugs with unique physicochemical properties could prolong circulation time, enhance efficient targeted delivery, and elevate the accumulation of therapeutics that can cross the glomerular filtration barrier and indicate comprehensive application prospects in the prevention and treatment of AKI. In this review, various types of nanosystems (such as liposomes, polymeric nanosystems, inorganic nanoparticles and cell-derived extracellular vesicles) are designed and applied to improve the pharmacokinetics of drug formation, which could further relieve the burden on the kidneys caused by the final cumulative dose of drugs in conventional treatments. Moreover, the passive or active targeting effect of nanosystems can also reduce the total therapeutic dose and off-target adverse effects on other organs. Nanodelivery systems for treating AKI that alleviate oxidative stress-induced renal cell damage and regulate the inflammatory kidney microenvironment are summarized.
Collapse
Affiliation(s)
- Yue Wang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Hong Jiang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Longyao Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China
| | - Peng Yao
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China
| | - Shaoqing Wang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,*Correspondence: Shaoqing Wang, ; Qian Yang,
| | - Qian Yang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, Sichuan, China,Center of Scientific Research, Chengdu Medical College, Chengdu, Sichuan, China,*Correspondence: Shaoqing Wang, ; Qian Yang,
| |
Collapse
|
18
|
Teng Y, Bao J, Li Y, Ye H. Effect analysis of neural network robot system in music relaxation training to alleviate adverse reactions of chemotherapy in patients with breast cancer. Front Neurorobot 2023; 17:1120560. [PMID: 36741503 PMCID: PMC9892632 DOI: 10.3389/fnbot.2023.1120560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Music therapy is a common method to relieve anxiety and pain in cancer patients after surgery in recent years, but due to the lack of technical and algorithmic support, this therapy is not particularly stable and the therapeutic effect is not good. In this study, a neural network robotic system based on breast cancer patients was designed to analyze the effect of music relaxation training on alleviating adverse reactions after chemotherapy in breast cancer patients. Firstly, this paper introduces the necessity of neural network robot system research under the background of music therapy, and then summarizes the positive effect of music relaxation therapy on alleviating adverse reactions after chemotherapy in breast cancer patients, finally, uses neural network robot system to construct music therapy system. The experimental results show that the new music therapy proposed in this study has a good effect in alleviating the adverse reactions of breast cancer patients after chemotherapy, and the cure rate is increased by 7.84%. The research results of this paper provide reference for the next development of neural network robot system in the medical field.
Collapse
Affiliation(s)
- Yue Teng
- College of Human and Health Sciences, Swansea University, Swansea, United Kingdom
| | - Jinlei Bao
- College of Nursing, Shandong Xiehe University, Jinan, Shandong, China
| | - Yinfeng Li
- School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Centre, University of Electronic Science and Technology of China, Chengdu, China
| | - Haichun Ye
- Department of Geriatric Services and Management, School of Humanities Education, Ningxia Vocational Technical College of Industry and Commerce, Yinchuan, China
| |
Collapse
|
19
|
Niu G, Gao F, Wang Y, Zhang J, Zhao L, Jiang Y. Bimetallic Nanomaterials: A Promising Nanoplatform for Multimodal Cancer Therapy. Molecules 2022; 27:8712. [PMID: 36557846 PMCID: PMC9783205 DOI: 10.3390/molecules27248712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Bimetallic nanomaterials (BMNs) composed of two different metal elements have certain mixing patterns and geometric structures, and they often have superior properties than monometallic nanomaterials. Bimetallic-based nanomaterials have been widely investigated and extensively used in many biomedical fields especially cancer therapy because of their unique morphology and structure, special physicochemical properties, excellent biocompatibility, and synergistic effect. However, most reviews focused on the application of BMNs in cancer diagnoses (sensing, and imaging) and rarely mentioned the application of the treatment of cancer. The purpose of this review is to provide a comprehensive perspective on the recent progress of BNMs as therapeutic agents. We first introduce and discuss the synthesis methods, intrinsic properties (size, morphology, and structure), and optical and catalytic properties relevant to cancer therapy. Then, we highlight the application of BMNs in cancer therapy (e.g., drug/gene delivery, radiotherapy, photothermal therapy, photodynamic therapy, enzyme-mediated tumor therapy, and multifunctional synergistic therapy). Finally, we put forward insights for the forthcoming in order to make more comprehensive use of BMNs and improve the medical system of cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Jie Zhang
- Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Li Zhao
- Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Yanyan Jiang
- Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| |
Collapse
|
20
|
Yang A, Wen T, Hao B, Meng Y, Zhang X, Wang T, Meng J, Liu J, Wang J, Xu H. Biodistribution and Toxicological Effects of Ultra-Small Pt Nanoparticles Deposited on Au Nanorods (Au@Pt NRs) in Mice with Intravenous Injection. Int J Nanomedicine 2022; 17:5339-5351. [DOI: 10.2147/ijn.s386476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022] Open
|
21
|
Novel gold-platinum nanoparticles serve as broad-spectrum antioxidants for attenuating ischemia reperfusion injury of the kidney. Kidney Int 2022; 102:1057-1072. [PMID: 35870640 DOI: 10.1016/j.kint.2022.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 02/05/2023]
Abstract
Kidney ischemia reperfusion injury (IRI) is a common and inevitable pathological condition in routine urological practices, especially during transplantation. Severe kidney IRI may even induce systemic damage to peripheral organs, and lead to multisystem organ failure. However, no standard clinical treatment option is currently available. It has been reported that kidney IRI is predominantly associated with abnormally increased endogenous reactive oxygen species (ROS). Scavenging excessive ROS may reduce the damage caused by oxidative stress and subsequently alleviate kidney IRI. Here, we reported a simple and efficient one-step synthesis of gold-platinum nanoparticles (AuPt NPs) with a gold core having a loose and branched outer platinum shell with superior ROS scavenging capacity to possibly treat kidney IRI. These AuPt NPs exhibited multiple enzyme-like anti-oxidative properties simultaneously possessing catalase- and peroxidase-like activity. These particles showed excellent cell protective capability, and alleviated kidney IRI both in vitro and in vivo without obvious toxicity, by suppressing cell apoptosis, inflammatory cytokine release, and inflammasome formation. Meanwhile, AuPt NPs also had an effect on inhibiting the transition to chronic kidney disease by reducing kidney fibrosis in the long term. Thus, AuPt NPs might be a good therapeutic agent for kidney IRI management and may be helpful for the development of clinical treatments for kidney IRI.
Collapse
|
22
|
Yang W, Zeng Q, Pan Q, Huang W, Hu H, Shao Z. Application and prospect of ROS-related nanomaterials for orthopaedic related diseases treatment. Front Chem 2022; 10:1035144. [PMID: 36277336 PMCID: PMC9581401 DOI: 10.3389/fchem.2022.1035144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/16/2022] [Indexed: 11/13/2022] Open
Abstract
The importance of reactive oxygen species (ROS) in the occurrence and development of orthopaedic related diseases is becoming increasingly prominent. ROS regulation has become a new method to treat orthopaedic related diseases. In recent years, the application of nanomaterials has become a new hope for precision and efficient treatment. However, there is a lack of reviews on ROS-regulated nanomaterials for orthopaedic related diseases. Based on the key significance of nanomaterials for the treatment of orthopaedic related diseases, we searched the latest related studies and reviewed the nanomaterials that regulate ROS in the treatment of orthopaedic related diseases. According to the function of nanomaterials, we describe the scavenging of ROS related nanomaterials and the generation of ROS related nanomaterials. In this review, we closely integrated nanomaterials with the treatment of orthopaedic related diseases such as arthritis, osteoporosis, wound infection and osteosarcoma, etc., and highlighted the advantages and disadvantages of existing nanomaterials. We also looked forward to the design of ROS-regulated nanomaterials for the treatment of orthopaedic related diseases in the future.
Collapse
Affiliation(s)
- Wenbo Yang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianwen Zeng
- School of Nursing, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Pan
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Huang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zengwu Shao, ; Hongzhi Hu, ; Wei Huang,
| | - Hongzhi Hu
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zengwu Shao, ; Hongzhi Hu, ; Wei Huang,
| | - Zengwu Shao
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Zengwu Shao, ; Hongzhi Hu, ; Wei Huang,
| |
Collapse
|
23
|
Zhang M, Guo X. Gold/platinum bimetallic nanomaterials for immunoassay and immunosensing. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214578] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Li SS, Wang AJ, Yuan PX, Mei LP, Zhang L, Feng JJ. Heterometallic nanomaterials: activity modulation, sensing, imaging and therapy. Chem Sci 2022; 13:5505-5530. [PMID: 35694355 PMCID: PMC9116289 DOI: 10.1039/d2sc00460g] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
Abstract
Heterometallic nanomaterials (HMNMs) display superior physicochemical properties and stability to monometallic counterparts, accompanied by wider applications in the fields of catalysis, sensing, imaging, and therapy due to synergistic effects between multi-metals in HMNMs. So far, most reviews have mainly concentrated on introduction of their preparation approaches, morphology control and applications in catalysis, assay of heavy metal ions, and antimicrobial activity. Therefore, it is very important to summarize the latest investigations of activity modulation of HMNMs and their recent applications in sensing, imaging and therapy. Taking the above into consideration, we briefly underline appealing chemical/physical properties of HMNMs chiefly tailored through the sizes, shapes, compositions, structures and surface modification. Then, we particularly emphasize their widespread applications in sensing of targets (e.g. metal ions, small molecules, proteins, nucleic acids, and cancer cells), imaging (frequently involving photoluminescence, fluorescence, Raman, electrochemiluminescence, magnetic resonance, X-ray computed tomography, photoacoustic imaging, etc.), and therapy (e.g. radiotherapy, chemotherapy, photothermal therapy, photodynamic therapy, and chemodynamic therapy). Finally, we present an outlook on their forthcoming directions. This timely review would be of great significance for attracting researchers from different disciplines in developing novel HMNMs.
Collapse
Affiliation(s)
- Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University 308 Ningxia Road Qingdao 266071 China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Li-Ping Mei
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Lu Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
25
|
Kumar D, Lee JY, Moon MJ, Kim W, Jeong YY, Park CH, Kim CS. Nanogap-containing thermo-plasmonic nano-heaters for amplified photo-triggered tumor ablation at low laser power density. Biomater Sci 2022; 10:2394-2408. [PMID: 35384951 DOI: 10.1039/d2bm00129b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Herein, nanogap amplified plasmonic heat-generators are fabricated by decorating Pt nanodots on gold nanospheres (GNSs@Pt@mPEG) by maintaining strategic nano-gaps (1-2 nm) and studied precisely for plasmonic photothermal therapy (PPTT) of colon cancer by passive tumor targeting. The surface modification of GNSs@Pt with poly(ethylene glycol) methyl ether thiol (mPEG) increases their accumulation in tumor cells and hence the GNSs@Pt@mPEG stay at the tumor site for a longer time. The nanogap amplified GNSs@Pt@mPEG (O.D. = 4.0) generated high plasmonic photothermal hyperthermia and utilized a low NIR power density (0.36 W cm-2) for the elimination of tumor cells in only 150 s of irradiation time and shows excellent colloidal and photo-stability. The predominant distribution of GNSs@Pt@mPEG caused effective tumor cell death and promoted uniform treatment on tumor sites. In vivo studies demonstrated that the GNSs@Pt@mPEG have very low toxicity, high biocompatibility, and thermal stability, stay longer at the tumor site, induce tumor cell death without side effects, and show significantly less uptake in other organs except for the spleen. The significant accumulations and longer stay suggested that they are favorable for tumor passive uptake and the possibility of enhanced PPTT after intravenous administration. The nano-particles were stable up to O.D. 200 and have at least 12 months shelf-life without losing colloidal stability or photothermal efficacy. These findings lay the groundwork for using GNSs@Pt@mPEG as a NIR light-responsive PPTT agent and demonstrated their potential for further use in clinical applications.
Collapse
Affiliation(s)
- Dinesh Kumar
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea.,Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
| | - Ji Yeon Lee
- Department of Materials Science & Engineering, Korea Advanced Institute of Science and Technology - KAIST, Daejeon 34141, South Korea
| | - Myeong Ju Moon
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, 58128, South Korea.
| | - Wooju Kim
- Eco-Friendly Machine Parts Design Research Center, Jeonbuk National University, Jeonju 54896, South Korea.
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun, 58128, South Korea.
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea
| | - Cheol Sang Kim
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, South Korea.,Department of Materials Science & Engineering, Korea Advanced Institute of Science and Technology - KAIST, Daejeon 34141, South Korea
| |
Collapse
|
26
|
Bonet-Aleta J, Garcia-Peiro JI, Irusta S, Hueso JL. Gold-Platinum Nanoparticles with Core-Shell Configuration as Efficient Oxidase-like Nanosensors for Glutathione Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:755. [PMID: 35269243 PMCID: PMC8911670 DOI: 10.3390/nano12050755] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 12/20/2022]
Abstract
Nanozymes, defined as nanomaterials that can mimic the catalytic activity of natural enzymes, have been widely used to develop analytical tools for biosensing. In this regard, the monitoring of glutathione (GSH), a key antioxidant biomolecule intervening in the regulation of the oxidative stress level of cells or related with Parkinson's or mitochondrial diseases can be of great interest from the biomedical point of view. In this work, we have synthetized a gold-platinum Au@Pt nanoparticle with core-shell configuration exhibiting a remarkable oxidase-like mimicking activity towards the substrates 3,3',5,5'-tetramethylbenzidine (TMB) and o-phenylenediamine (OPD). The presence of a thiol group (-SH) in the chemical structure of GSH can bind to the Au@Pt nanozyme surface to hamper the activation of O2 and reducing its oxidase-like activity as a function of the concentration of GSH. Herein, we exploit the loss of activity to develop an analytical methodology able to detect and quantify GSH up to µM levels. The system composed by Au@Pt and TMB demonstrates a good linear range between 0.1-1.0 µM to detect GSH levels with a limit of detection (LoD) of 34 nM.
Collapse
Affiliation(s)
- Javier Bonet-Aleta
- Institute of Nanoscience and Materials of Aragon (INMA), Campus Rio Ebro, CSIC-Universidad de Zaragoza, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Chemical and Environmental Engineering, Campus Rio Ebro, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain
| | - Jose I Garcia-Peiro
- Institute of Nanoscience and Materials of Aragon (INMA), Campus Rio Ebro, CSIC-Universidad de Zaragoza, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Chemical and Environmental Engineering, Campus Rio Ebro, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain
| | - Silvia Irusta
- Institute of Nanoscience and Materials of Aragon (INMA), Campus Rio Ebro, CSIC-Universidad de Zaragoza, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Chemical and Environmental Engineering, Campus Rio Ebro, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain
| | - Jose L Hueso
- Institute of Nanoscience and Materials of Aragon (INMA), Campus Rio Ebro, CSIC-Universidad de Zaragoza, Edificio I+D, C/Poeta Mariano Esquillor, s/n, 50018 Zaragoza, Spain
- Networking Research Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Chemical and Environmental Engineering, Campus Rio Ebro, University of Zaragoza, C/María de Luna, 3, 50018 Zaragoza, Spain
| |
Collapse
|
27
|
He X, Chen S, Mao X. Utilization of metal or non-metal-based functional materials as efficient composites in cancer therapies. RSC Adv 2022; 12:6540-6551. [PMID: 35424648 PMCID: PMC8982229 DOI: 10.1039/d1ra08335j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/30/2022] [Indexed: 12/03/2022] Open
Abstract
There has been great progress in cancer treatment through traditional approaches, even though some of them are still trapped in relative complications such as certain side effects and prospective chances of full recovery. As a conventional method, the immunotherapy approach is regarded as an effective approach to cure cancer. It is mainly promoted by immune checkpoint blocking and adoptive cell therapy, which can utilize the human immune system to attack tumor cells and make them necrose completely or stop proliferating cancer cells. Currently however, immunotherapy shows limited success due to the limitation of real applicable cases of targeted tumor environments and immune systems. Considering the urgent need to construct suitable strategies towards cancer therapy, metallic materials can be used as delivery systems for immunotherapeutic agents in the human body. Metallic materials exhibit a high degree of specificity, effectiveness, diagnostic ability, imaging ability and therapeutic effects with different biomolecules or polymers, which is an effective option for cancer treatment. In addition, these modified metallic materials contain immune-modulators, which can activate immune cells to regulate tumor microenvironments and enhance anti-cancer immunity. Additionally, they can be used as adjuvants with immunomodulatory activities, or as carriers for molecular transport to specific targets, which results in the loading of specific ligands to facilitate specific uptake. Here, we provide an overview of the different types of metallic materials used as efficient composites in cancer immunotherapy. We elaborate on the advancements using metallic materials with functional agents as effective composites in synergistic cancer treatment. Some nonmetallic functional composites also appear as a common phenomenon. Ascribed to the design of the composites themselves, the materials' surface structural characteristics are introduced as the drug-loading substrate. The physical and chemical properties of the functional materials emphasize that further research is required to fully characterize their mechanism, showing appropriate relevance for material toxicology and biomedical applications.
Collapse
Affiliation(s)
- Xiaoxiao He
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| | - Shiyue Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University Chongqing 400016 P. R. China
| |
Collapse
|
28
|
Fathima R, Mujeeb A. Enhanced nonlinear and thermo optical properties of laser synthesized surfactant-free Au-Pt bimetallic nanoparticles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
29
|
Duan Q, Wang J, Zhang B, Wang X, Xue J, Zhang W, Sang S. Polydopamine coated Au-Pt nanorods: Enhanced photothermal properties and efficient reactive oxygen scavengers. Colloids Surf B Biointerfaces 2021; 210:112247. [PMID: 34861542 DOI: 10.1016/j.colsurfb.2021.112247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022]
Abstract
As an emerging cancer treatment strategy, photothermal therapy (PTT) is precise, controllable, minimally invasive, low cost and less toxic side effects, thus photothermal transduction agents have been extensively investigated in recent years. Noble metal nanomaterials with unique localized surface plasmon resonance (LSPR) effects are particularly suitable as photothermal transduction agent, but the currently developed precious noble metal nano photothermal transduction agents face serious problems such as complex synthesis process, poor photothermal performance and high biotoxicity. Moreover, the large amount of reactive oxygen species (ROS) produced during PTT treatment could cause irreversible damage to the healthy tissues surrounding the tumor. In this work, we deposited platinum (Pt) on the tips of gold nanorods (AuNRs) to form dumbbell-shaped Au-Pt bimetallic nanorods (AuPtNRs), and functionalized AuPtNRs with biocompatible polydopamine (PDA) to obtain AuPt@PDA. With 808 nm laser irradiation, the prepared AuPt@PDA exhibited excellent photothermal stability, and its photothermal conversion efficiency (PCE) reached 81.78%, which was significantly higher than that of AuNRs (52.32%) and AuPtNRs (78.76%). With low cytotoxicity, AuPt@PDA decreased cell viability from 91.12% to 39.36% after PTT on cancer cells in vitro, while significantly reducing intracellular ROS levels generated by heat stress. Therefore, the excellent photothermal properties, high cancer cell killing and ROS scavenging activity of AuPt@PDA in PTT could be an ideal candidate for improving therapeutic efficacy while reducing the risk of toxic side effects due to heat stress-induced ROS formation.
Collapse
Affiliation(s)
- Qianqian Duan
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Jialin Wang
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Boye Zhang
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Xiaoyuan Wang
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Juanjuan Xue
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Wendong Zhang
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Shengbo Sang
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| |
Collapse
|
30
|
Zhao Y, Zhao JJ, Guo JX, Liu SQ, Li Y, Wang XY, Li R, Tang HQ, Li ZY, Yang HF, Chen B. Transdermal Photothermal Sterilization and Abscess Elimination Research of BSA-CuS Nanoparticles in vivo. ChemMedChem 2021; 17:e202100570. [PMID: 34719851 DOI: 10.1002/cmdc.202100570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/27/2021] [Indexed: 01/08/2023]
Abstract
The treatment of subcutaneous abscess caused by drug-resistant bacteria is facing great difficulties and receiving more attention. In this work, we employed BSA-CuS nanoparticles as a photothermal reagent to apply photothermal therapy (PTT) to combat drug-resistant bacteria in vitro and subcutaneous abscess in vivo. The BSA-CuS nanoparticles were found to be stable and biocompatible without cytotoxicity toward NIH3T3 and 4T1 cells. In vitro experiments showed that three species of drug-resistant pathogens, including Escherichia coli, Staphylococcus aureus, and Candida albicans, could be effectively sterilized under co-incubation with BSA-CuS nanoparticles and then irradiation with 1064 nm NIR laser via tissue penetration. BSA-CuS nanoparticles together with 1064 nm NIR laser irradiation could also effectively diminish subcutaneous abscesses caused by drug-resistant bacteria on mice under PTT and depth PTT without causing any serious side effects and organic damage in vivo.That is OK, thank you!
Collapse
Affiliation(s)
- Yan Zhao
- The Second Hospital of Tianjin Medical University, Department of Rheumatology and Immunology, Tianjin, 300211, China
| | - Jing-Jing Zhao
- The Second Hospital of Tianjin Medical University, Department of Nephrology, Tianjin, 300211, China
| | - Jia-Xin Guo
- Chu Hsien-I Memorial Hospital of Tianjin Medical University, Department of Endocrinology, Tianjin, 300134, China
| | - Shuang-Qing Liu
- The Second Hospital of Tianjin Medical University, Department of Clinical Laboratory, Tianjin, 300211, China
| | - Yang Li
- The Second Hospital of Tianjin Medical University, Institute of Urology, Tianjin, 300211, China
| | - Xiao-Yi Wang
- The Second Hospital of Tianjin Medical University, Department of Ultrasound, Tianjin, 300211, China
| | - Rong Li
- The Second Hospital of Tianjin Medical University, Department of Nephrology, Tianjin, 300211, China
| | - Hui-Qin Tang
- The Second Hospital of Tianjin Medical University, Institute of Urology, Tianjin, 300211, China
| | - Zhen-Yu Li
- The Second Hospital of Tianjin Medical University, Department of Emergency, Tianjin, 300211, China
| | - Hui-Fen Yang
- The Second Hospital of Tianjin Medical University, Department of Rheumatology and Immunology, Tianjin, 300211, China
| | - Bing Chen
- The Second Hospital of Tianjin Medical University, Department of Emergency, Tianjin, 300211, China
| |
Collapse
|
31
|
Application of Gold Nanoparticle-Based Materials in Cancer Therapy and Diagnostics. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5040069] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Several metal nanoparticles have been developed for medical application. While all have their benefits, gold nanoparticles (AuNPs) are ideal in cancer therapy and diagnosis as they are chemically inert and minimally toxic. Several studies have shown the potential of AuNPs in the therapeutic field, as photosensitizing agents in sonochemical and photothermal therapy and as drug delivery, as well as in diagnostics and theranostics. Although there is a significant number of reviews on the application of AuNPs in cancer medicine, there is no comprehensive review on their application both in therapy and diagnostics. Therefore, considering the high number of studies on AuNPs’ applications, this review summarizes data on the application of AuNPs in cancer therapy and diagnostics. In addition, we looked at the influence of AuNPs’ shape and size on their biological properties. We also present the potential use of hybrid materials based on AuNPs in sonochemical and photothermal therapy and the possibility of their use in diagnostics. Despite their potential, the use of AuNPs and derivatives in cancer medicine still has some limitations. In this review, we provide an overview of the biological, physicochemical, and legal constraints on using AuNPs in cancer medicine.
Collapse
|
32
|
Oladipo AO, Unuofin JO, Iku SI, Nkambule TT, Mamba BB, Msagati TA. Nuclear targeted multimodal 3D-bimetallic Au@Pd nanodendrites promote doxorubicin efficiency in breast cancer therapy. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
33
|
Chen MM, Hao HL, Zhao W, Zhao X, Chen HY, Xu JJ. A plasmon-enhanced theranostic nanoplatform for synergistic chemo-phototherapy of hypoxic tumors in the NIR-II window. Chem Sci 2021; 12:10848-10854. [PMID: 34476064 PMCID: PMC8372559 DOI: 10.1039/d1sc01760h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/10/2021] [Indexed: 12/14/2022] Open
Abstract
Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron-hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O2 level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high-Z elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both in vitro and in vivo experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation.
Collapse
Affiliation(s)
- Ming-Ming Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hai-Li Hao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Wei Zhao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Xueli Zhao
- College of Chemistry and Molecular Engineering, Zhengzhou University Zhengzhou 450001 China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
34
|
Kwon T, Kumari N, Kumar A, Lim J, Son CY, Lee IS. Au/Pt‐Egg‐in‐Nest Nanomotor for Glucose‐Powered Catalytic Motion and Enhanced Molecular Transport to Living Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Taewan Kwon
- Center for Nanospace-confined Chemical Reactions (NCCR) Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Nitee Kumari
- Center for Nanospace-confined Chemical Reactions (NCCR) Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Amit Kumar
- Center for Nanospace-confined Chemical Reactions (NCCR) Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Jongwon Lim
- Center for Nanospace-confined Chemical Reactions (NCCR) Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Chang Yun Son
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - In Su Lee
- Center for Nanospace-confined Chemical Reactions (NCCR) Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of Chemistry Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE) Yonsei University Seoul 03722 South Korea
| |
Collapse
|
35
|
Wang XL, Han X, Tang XY, Chen XJ, Li HJ. A Review of Off-On Fluorescent Nanoprobes: Mechanisms, Properties, and Applications. J Biomed Nanotechnol 2021; 17:1249-1272. [PMID: 34446130 DOI: 10.1166/jbn.2021.3117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the development of nanomaterials, fluorescent nanoprobes have attracted enormous attention in the fields of chemical sensing, optical materials, and biological detection. In this paper, the advantages of "off-on" fluorescent nanoprobes in disease detection, such as high sensitivity and short response time, are attentively highlighted. The characteristics, sensing mechanisms, and classifications of disease-related target substances, along with applications of these nanoprobes in cancer diagnosis and therapy are summarized systematically. In addition, the prospects of "off-on" fluorescent nanoprobe in disease detection are predicted. In this review, we presented information from all the papers published in the last 5 years discussing "off-on" fluorescent nanoprobes. This review was written in the hopes of being useful to researchers who are interested in further developing fluorescent nanoprobes. The characteristics of these nanoprobes are explained systematically, and data references and supports for biological analysis, clinical drug improvement, and disease detection have been provided appropriately.
Collapse
Affiliation(s)
- Xiao-Lin Wang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xiao Han
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xiao-Ying Tang
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Xiao-Jun Chen
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| | - Han-Jun Li
- School of Life Science, Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
36
|
Kwon T, Kumari N, Kumar A, Lim J, Son CY, Lee IS. Au/Pt-Egg-in-Nest Nanomotor for Glucose-Powered Catalytic Motion and Enhanced Molecular Transport to Living Cells. Angew Chem Int Ed Engl 2021; 60:17579-17586. [PMID: 34107153 DOI: 10.1002/anie.202103827] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/03/2021] [Indexed: 01/16/2023]
Abstract
Nanostructures converting chemical energy to mechanical work by using benign metabolic fuels, have huge implications in biomedical science. Here, we introduce Au/Pt-based Janus nanostructures, resembling to "egg-in-nest" morphology (Au/Pt-ENs), showing enhanced motion as a result of dual enzyme-relay-like catalytic cascade in physiological biomedia, and in turn showing molecular-laden transport to living cells. We developed dynamic-casting approach using silica yolk-shell nanoreactors: first, to install a large Au-seed fixing the silica-yolk aside while providing the anisotropically confined concave hollow nanospace to grow curved Pt-dendritic networks. Owing to the intimately interfaced Au and Pt catalytic sites integrated in a unique anisotropic nest-like morphology, Au/Pt-ENs exhibited high diffusion rates and displacements as the result of glucose-converted oxygen concentration gradient. High diffusiophoresis in cell culture media increased the nanomotor-membrane interaction events, in turn facilitated the cell internalization. In addition, the porous network of Au/Pt-ENs facilitated the drug-molecule cargo loading and delivery to the living cells.
Collapse
Affiliation(s)
- Taewan Kwon
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Nitee Kumari
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Amit Kumar
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Jongwon Lim
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Chang Yun Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - In Su Lee
- Center for Nanospace-confined Chemical Reactions (NCCR), Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul, 03722, South Korea
| |
Collapse
|
37
|
Wu Q, Peng R, Luo Y, Cui Q, Zhu S, Li L. Antibacterial Activity of Porous Gold Nanocomposites via NIR Light-Triggered Photothermal and Photodynamic Effects. ACS APPLIED BIO MATERIALS 2021; 4:5071-5079. [PMID: 35007055 DOI: 10.1021/acsabm.1c00318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phototherapeutic approaches, including photothermal therapy (PTT) and photodynamic therapy (PDT), have become a promising strategy to combat microbial pathogens and tackle the crisis brought about by antibiotic-resistant strains. Herein, porous gold nanoparticles (AuPNs) were synthesized as photothermal agents and loaded with indocyanine green (ICG), a common photosensitizer for PDT, to fabricate a nanosystem presenting near-infrared (NIR) light-triggered synchronous PTT and PDT effects. The AuPNs can not only convert NIR light into heat with a high photothermal conversion efficiency (50.6-68.5%), but also provide a porous structure to facilely load ICG molecules. The adsorption of ICG onto AuPNs was mainly driven by electrostatic and hydrophobic interactions with the surfactant layer of AuPNs, and the aggregate state of ICG significantly enhanced its generation of reactive oxygen species. Moreover, taking advantage of its synergistic PTT and PDT effect, the hybrid nanocomposites displayed a remarkable antibacterial effect to the gram-positive pathogen Staphylococcus aureus (S. aureus) upon 808 nm laser irradiation.
Collapse
Affiliation(s)
- Qing Wu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Rui Peng
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yufeng Luo
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qianling Cui
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Shuxian Zhu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Lidong Li
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
38
|
Wang J, Zhang B, Sun J, Hu W, Wang H. Recent advances in porous nanostructures for cancer theranostics. NANO TODAY 2021; 38:101146. [PMID: 33897805 PMCID: PMC8059603 DOI: 10.1016/j.nantod.2021.101146] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Porous nanomaterials with high surface area, tunable porosity, and large mesopores have recently received particular attention in cancer therapy and imaging. Introduction of additional pores to nanostructures not only endows the tunability of optoelectronic and optical features optimal for tumor treatment, but also modulates the loading capacity and controlled release of therapeutic agents. In recognition, increasing efforts have been made to fabricate various porous nanomaterials and explore their potentials in oncology applications. Thus, a systematic and comprehensive summary is necessary to overview the recent progress, especially in last ten years, on the development of various mesoporous nanomaterials for cancer treatment as theranostic agents. While outlining their individual synthetic mechanisms after a brief introduction of the structures and properties of porous nanomaterials, the current review highlighted the representative applications of three main categories of porous nanostructures (organic, inorganic, and organic-inorganic nanomaterials). In each category, the synthesis, representative examples, and interactions with tumors were further detailed. The review was concluded with deliberations on the key challenges and future outlooks of porous nanostructures in cancer theranostics.
Collapse
Affiliation(s)
- Jinping Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences, Hebei University of Technology, 300401, Tianjin, PR China
| | - Beilu Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Jingyu Sun
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Wei Hu
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, New Jersey, 07030, United States
| |
Collapse
|
39
|
Wang J, Duan Q, Yang M, Zhang B, Guo L, Li P, Zhang W, Sang S. Rapid controlled synthesis of gold-platinum nanorods with excellent photothermal properties under 808 nm excitation. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:462-472. [PMID: 34104623 PMCID: PMC8144918 DOI: 10.3762/bjnano.12.37] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Noble metal nanomaterials are particularly suitable as photothermal transduction agents (PTAs) with high photothermal conversion efficiency (PCE) due to local surface plasmon resonance (LSPR). Studies on different gold-platinum (Au-Pt) bimetal nanoparticles exhibiting the LSPR effect have provided a new idea for the synthesis of excellent PTAs. But there is no simple and scalable method for the controllable synthesis of Au-Pt nanoparticles with adjustable LSPR wavelength range. In this work, the effects of Ag+ and K2PtCl4 on the deposition of Pt on the surface of gold nanorods (AuNRs) were investigated. A fast, precise, and controlled synthesis of dumbbell-like Pt-coated AuNRs (Au@Pt NRs) under mild conditions is proposed. The synthesized Au@Pt NRs have a longitudinal LSPR wavelength of 812 nm, which is very close to a common laser wavelength of 808 nm. The Au@Pt NRs exhibit excellent photothermal properties when irradiated with a laser. The temperature increased by more than 36 °C after irradiation for 10 min, with a PCE of about 78.77%, which is much higher than that of AuNRs (57.33%). In addition, even after four on/off cycles, the Au@Pt NRs are able to maintain the photothermal properties and retain their optical properties, indicating that they have excellent photothermal stability and reusability.
Collapse
Affiliation(s)
- Jialin Wang
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Qianqian Duan
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Min Yang
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Boye Zhang
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Li Guo
- Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan 030024, Shanxi, China
| | - Pengcui Li
- Department of Orthopedics, the Second Hospital of Shanxi Medical University, Taiyuan 030024, Shanxi, China
| | - Wendong Zhang
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Shengbo Sang
- MicroNano System Research Center, College of Information and Computer & Key Laboratory of Advanced Transducers and Intelligent Control System of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| |
Collapse
|
40
|
Oladipo AO, Unuofin JO, Iku SII, Nkambule TTI, Mamba BB, Msagati TAM. Bimetallic Au@Pd nanodendrite system incorporating multimodal intracellular imaging for improved doxorubicin antitumor efficiency. Int J Pharm 2021; 602:120661. [PMID: 33933638 DOI: 10.1016/j.ijpharm.2021.120661] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
The sufficient accumulation of drugs is crucial for efficient treatment in a complex tumor microenvironment. Drug delivery systems (DDS) with high surface area and selective cytotoxicity present a novel approach to mitigate insufficient drug loading for improved therapeutic response. Herein, a doxorubicin-conjugated bimetallic gold-core palladium-shell nanocarrier with multiple dense arrays of branches (Au@PdNDs.PEG/DOX) was characterized and its efficacy against breast adenocarcinoma (MCF-7) and lung adenocarcinoma (A549) cells were evaluated. Enhanced darkfield and hyperspectral imaging (HSI) microscopy were used to study the intracellular uptake and accumulation of the DOX-loaded nanodendrites A fascinating data from a 3D-CytoViva fluorescence imaging technique provided information about the dynamics of localization and distribution of the nanocarrier. In vitro cytotoxicity assays indicated that Au@PdNDs.PEG/DOX inhibited the proliferative effects of MCF-7 cells at equivalent IC50 dosage compared to DOX alone. The nanocarrier triggered higher induction of apoptosis proved by a time-dependent phosphatidylserine V release, cell cycle arrest, and flow cytometry analysis. Moreover, the cell cycle phase proportion increase suggests that the enhanced apoptotic effect induced by Au@PdNDs.PEG/DOX was via a G2/M phase arrest. Thus, this study demonstrated the potential of dendritic nanoparticles to improve DOX therapeutic efficiency and plasmonic-mediated intracellular imaging as a suitable theranostic platform for deployment in nanomedicine.
Collapse
Affiliation(s)
- Adewale O Oladipo
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Park Florida, Johannesburg 1710, South Africa.
| | - Jeremiah O Unuofin
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Park Florida, Johannesburg 1710, South Africa
| | - Solange I I Iku
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Science Park Florida, Johannesburg 1710, South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Park Florida, Johannesburg 1710, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Park Florida, Johannesburg 1710, South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Park Florida, Johannesburg 1710, South Africa.
| |
Collapse
|
41
|
Peng J, Xiao Y, Yang Q, Liu Q, Chen Y, Shi K, Hao Y, Han R, Qian Z. Intracellular aggregation of peptide-reprogrammed small molecule nanoassemblies enhances cancer chemotherapy and combinatorial immunotherapy. Acta Pharm Sin B 2021; 11:1069-1082. [PMID: 33996418 PMCID: PMC8105769 DOI: 10.1016/j.apsb.2020.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/15/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023] Open
Abstract
The intracellular retention of nanotherapeutics is essential for their therapeutic activity. The immobilization of nanotherapeutics inside target cell types can regulate various cell behaviors. However, strategies for the intracellular immobilization of nanoparticles are limited. Herein, a cisplatin prodrug was synthesized and utilized as a glutathione (GSH)-activated linker to induce aggregation of the cisplatin prodrug/IR820/docetaxel nanoassembly. The nanoassembly has been reprogrammed with peptide-containing moieties for tumor-targeting and PD-1/PD-L1 blockade. The aggregation of the nanoassemblies is dependent on GSH concentration. Evaluations in vitro and in vivo revealed that GSH-induced intracellular aggregation of the nanoassemblies enhances therapeutic activity in primary tumors by enhancing the accumulation and prolonging the retention of the chemotherapeutics in the tumor site and inducing reactive oxygen species (ROS) generation and immunogenic cell death. Moreover, the nanoassemblies reinvigorate the immunocytes, especially the systemic immunocytes, and thereby alleviate pulmonary metastasis, even though the population of immunocytes in the primary tumor site is suppressed due to the enhanced accumulation of chemotherapeutics. This strategy provides a promising option for the intracellular immobilization of nanoparticles in vitro and in vivo.
Collapse
|
42
|
Wang W, Wang J, Ding Y. Gold nanoparticle-conjugated nanomedicine: design, construction, and structure-efficacy relationship studies. J Mater Chem B 2021; 8:4813-4830. [PMID: 32227036 DOI: 10.1039/c9tb02924a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In comparison with conventional therapies, nanomedicine shows prominent clinical performance, with better therapeutic efficacy and less off-target toxicity. As an important component of nanomedicine, gold nanoparticle (GNP)-based nanodrugs have attracted considerable interest because of their excellent performance given by the unique structure. Although no pharmaceutical formulations of GNP-associated nanodrugs have been officially marketed yet, a substantial amount of research on this aspect is being carried out, producing numerous GNP-based drug delivery systems with potential clinical applications. In this review, we present an overview of our progress on GNP-based nanodrugs combined with other achievements in biomedical applications, including drug-conjugated GNPs prepared for disease treatments and specific tumour targeting, structure-efficacy relationship (SER) studies on GNP-conjugated nanodrugs, and therapeutic hybrid nanosystems composed of GNPs. In addition, we also put forward some proposals to guide future work in developing GNP-based nanomedicine. We hope that this review will offer some useful experience for our peers and GNP-based nanodrugs will be utilized in the clinic with further persistent efforts.
Collapse
Affiliation(s)
- Wenjie Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jing Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
43
|
Gu M, Jiang L, Hao L, Lu J, Liu Z, Lei Z, Li Y, Hua C, Li W, Li X. A novel theranostic nanoplatform for imaging-guided chemo-photothermal therapy in oral squamous cell carcinoma. J Mater Chem B 2021; 9:6006-6016. [PMID: 34282440 DOI: 10.1039/d1tb01136g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is highly malignant and invasive, and current treatments are limited due to serious side effects and unsatisfactory outcomes. Here, we reported the terbium ion-doped hydroxyapatite (HATb) nanoparticle as a luminescent probe to encapsulate both the near-infrared (NIR) photothermal agent polydopamine (PDA) and anticancer doxorubicin (DOX) for imaging-guided chemo-photothermal therapy. The morphology, crystal structure, fluorescence, and composition of HATb-PDA-DOX were characterized. HATb-PDA showed a high DOX loading capacity. A theranostic nanoplatform showed pH/NIR responsive release properties and better antitumor outcomes in OSCC cells than monomodal chemotherapy or photothermal therapy, while keeping side effects at a minimum. Also, the luminescence signal was confirmed to be tracked and the increase of the red/green (R/G) ratio caused by the DOX release could be used to monitor the DOX release content. Furthermore, HATb-PDA-DOX plus NIR treatment synergistically promoted in vitro cell death through the overproduction of reactive oxygen species (ROS), cell cycle arrest, and increased cell apoptosis. Overall, this work presents an innovative strategy in designing a multifunctional nano-system for imaging-guided cancer treatment.
Collapse
Affiliation(s)
- Mengqin Gu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Li Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. and Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Liying Hao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Junzhuo Lu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Zhenqi Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Zixue Lei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yijun Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chengge Hua
- Department of General Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Wei Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Xiyu Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. and Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
44
|
Oladipo AO, Nkambule TTI, Mamba BB, Msagati TAM. Therapeutic nanodendrites: current applications and prospects. NANOSCALE ADVANCES 2020; 2:5152-5165. [PMID: 36132031 PMCID: PMC9417514 DOI: 10.1039/d0na00672f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/03/2020] [Indexed: 05/04/2023]
Abstract
Multidisciplinary efforts in the field of nanomedicine for cancer therapy to provide solutions to common limitations of traditional drug administration such as poor bioaccumulation, hydrophobicity, and nonspecific biodistribution and targeting have registered very promising progress thus far. Currently, a new class of metal nanostructures possessing a unique dendritic-shaped morphology has been designed for improved therapeutic efficiency. Branched metal nanoparticles or metal nanodendrites are credited to present promising characteristics for biomedical applications owing to their unique physicochemical, optical, and electronic properties. Nanodendrites can enhance the loading efficiency of bioactive molecules due to their three-dimensional (3D) high surface area and can selectively deliver their cargo to tumor cells using their stimuli-responsive properties. With the ability to accumulate sufficiently within cells, nanodendrites can overcome the detection and clearance by glycoproteins. Moreover, active targeting ligands such as antibodies and proteins can as well be attached to these therapeutic nanodendrites to enhance specific tumor targeting, thereby presenting a multifunctional nanoplatform with tunable strategies. This mini-review focuses on recent developments in the understanding of metallic nanodendrite synthesis, formation mechanism, and their therapeutic capabilities for next-generation cancer therapy. Finally, the challenges and future opportunities of these fascinating materials to facilitate extensive research endeavors towards the design and application were discussed.
Collapse
Affiliation(s)
- Adewale O Oladipo
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa Science Park Florida Johannesburg 1710 South Africa
| | - Thabo T I Nkambule
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa Science Park Florida Johannesburg 1710 South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa Science Park Florida Johannesburg 1710 South Africa
| | - Titus A M Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa Science Park Florida Johannesburg 1710 South Africa
| |
Collapse
|
45
|
Yang Q, Xiao Y, Liu Q, Xu X, Peng J. Carrier-Free Small-Molecule Drug Nanoassembly Elicits Chemoimmunotherapy via Co-inhibition of PD-L1/mTOR. ACS APPLIED BIO MATERIALS 2020; 3:4543-4555. [PMID: 35025453 DOI: 10.1021/acsabm.0c00470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The growth and progression of tumor are promoted by multiple cytokines, which are overactivated in the tumor microenvironment. Co-inhibiting the activities of these cytokines is expected to realize the enhanced therapeutic outcome of cancer. However, reasonable combinational strategies are still limited. Herein, a nanoassembly structure that was totally formed by the assembly of small-molecule inhibitors is constructed for the co-inhibition of mTOR and PD-L1. Together with the NIR dye IR783, Rapa and (+)-JQ1 assemble to form a stable nanoassembly structure with controllable particle size. The JQ1/Rapa-IR783 nanoassembly efficiently downregulates the PD-L1 level as well as the level of PKM2. The combination of Rapa and (+)-JQ1 enhances the apoptosis of cancer cells compared with that following treatment with Rapa or (+)-JQ1 alone. In vivo assays conducted to evaluate tumor growth inhibition mediated by the nanoassemblies revealed that the simultaneous delivery of Rapa and (+)-JQ1 not only inhibited the growth of primary tumors but also alleviated pulmonary metastasis by reinvigorating the immune system as the result of the downregulation of both mTOR and PD-L1. It demonstrates that the nanoassembly structure is a promising candidate for the codelivery of immunomodulator for enhanced cancer immunotherapy.
Collapse
Affiliation(s)
- Qian Yang
- State Key Laboratory of Biotherapy and Cancer Center & Department of Burn and Plastic Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Yao Xiao
- State Key Laboratory of Biotherapy and Cancer Center & Department of Burn and Plastic Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Qingya Liu
- State Key Laboratory of Biotherapy and Cancer Center & Department of Burn and Plastic Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Xuewen Xu
- State Key Laboratory of Biotherapy and Cancer Center & Department of Burn and Plastic Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| | - Jinrong Peng
- State Key Laboratory of Biotherapy and Cancer Center & Department of Burn and Plastic Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center, No. 17, Section 3, Southern Renmin Road, Chengdu, Sichuan 610041, P. R. China
| |
Collapse
|
46
|
Han R, Peng J, Xiao Y, Hao Y, Jia Y, Qian Z. Ag2S nanoparticles as an emerging single-component theranostic agent. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.03.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
47
|
Chen T, Gu T, Cheng L, Li X, Han G, Liu Z. Porous Pt nanoparticles loaded with doxorubicin to enable synergistic Chemo-/Electrodynamic Therapy. Biomaterials 2020; 255:120202. [PMID: 32562941 DOI: 10.1016/j.biomaterials.2020.120202] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/21/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
Abstract
Overexpression of P-glycoprotein (P-gp), which is responsible for pumping chemotherapeutic drugs out of tumor cells, has been recognized as an important cause of drug resistance in conventional chemotherapy. Herein, porous platinum nanoparticles (pPt NPs) are developed to enable the combined electrodynamic therapy (EDT) with chemotherapy. With polyethylene glycol (PEG) coating, the obtained pPt-PEG NPs could be loaded with anticancer drug doxorubicin (DOX) by utilizing the porous structure of pPt NPs. Those pPt-PEG NPs are able to produce reactive oxygen species (ROS) by triggering water decomposition under electric field, independent of O2 and H2O2 contents in the tumor. Furthermore, the ROS generated during EDT could induce the inhibition of P-glycoprotein (P-gp), in turn enhancing the efficacy of chemotherapeutic agents by facilitating intracellular accumulation of drugs. As the results, excellent synergetic therapeutic effects were observed by combining chemotherapy with EDT using DOX-loaded pPt (DOX@pPt-PEG) NPs, as demonstrated by both in vitro and in vivo experiments. This study demonstrates a new concept of combinational cancer therapy with superior therapeutic efficacy.
Collapse
Affiliation(s)
- Tong Chen
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Tongxu Gu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xiang Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
| | - Gaorong Han
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
48
|
Oladipo AO, Iku SI, Ntwasa M, Nkambule TT, Mamba BB, Msagati TA. Doxorubicin conjugated hydrophilic AuPt bimetallic nanoparticles fabricated from Phragmites australis: Characterization and cytotoxic activity against human cancer cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101749] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Stimuli-responsive nano-assemblies for remotely controlled drug delivery. J Control Release 2020; 322:566-592. [DOI: 10.1016/j.jconrel.2020.03.051] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/19/2020] [Accepted: 03/31/2020] [Indexed: 12/30/2022]
|
50
|
Jia W, Zhen M, Li L, Zhou C, Sun Z, Liu S, Zhao Z, Li J, Wang C, Bai C. Gadofullerene nanoparticles for robust treatment of aplastic anemia induced by chemotherapy drugs. Am J Cancer Res 2020; 10:6886-6897. [PMID: 32550910 PMCID: PMC7295067 DOI: 10.7150/thno.46794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Aplastic anemia (AA) is characterized as hypoplasia of bone marrow hematopoietic cells and hematopenia of peripheral blood cells. Though the supplement of exogenous erythropoietin (EPO) has been clinically approved for AA treatment, the side-effects hinder its further application. Here a robust treatment for AA induced by chemotherapy drugs is explored using gadofullerene nanoparticles (GFNPs). Methods: The gadofullerene were modified with hydrogen peroxide under alkaline conditions to become the water-soluble nanoparticles (GFNPs). The physicochemical properties, in vitro chemical construction, stability, hydroxyl radical scavenging ability, in vitro cytotoxicity, antioxidant activity, in vivo treatment efficacy, therapeutic mechanism and biological distribution, metabolism, toxicity of GFNPs were examined. Results: GFNPs with great stability and high-efficiency antioxidant activity could observably increase the number of red blood cells (RBC) in the peripheral blood of AA mice and relieve the abnormal pathological state of bone marrow. The erythropoiesis mainly includes hemopoietic stem cells (HSCs) differentiation, erythrocyte development in bone marrow and erythrocyte maturation in peripheral blood. The positive control-EPO promotes erythropoiesis by regulating HSCs differentiation and erythrocyte development in bone marrow. Different from the anti-AA mechanism of EPO, GFNPs have little impact on both the differentiation of HSCs and the myeloid erythrocyte development, but notably improve the erythrocyte maturation. Besides, GFNPs can notably decrease the excessive reactive oxygen species (ROS) and inhibit apoptosis of hemocytes in blood. In addition, GFNPs are mostly excreted from the living body and cause no serious toxicity. Conclusion: Our work provides an insight into the advanced nanoparticles to powerfully treat AA through ameliorating the erythrocyte maturation during erythropoiesis.
Collapse
|