1
|
Naga A, Scarratt LRJ, Neto C, Papadopoulos P, Vollmer D. Drop Friction and Failure on Superhydrophobic and Slippery Surfaces. ACS NANO 2025; 19:18902-18928. [PMID: 40367354 PMCID: PMC12120990 DOI: 10.1021/acsnano.5c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/22/2025] [Accepted: 04/22/2025] [Indexed: 05/16/2025]
Abstract
The mobility of drops on a surface influences how much water and energy is required to clean the surface. By controlling drop mobility, it is possible to promote or reduce fogging, icing, and fouling. Superhydrophobic and slippery liquid-infused surfaces both display high drop mobility despite being 'lubricated' by fluids having very different viscosities. Superhydrophobic surfaces rely on micro- and/or nanoscale textures to trap air pockets beneath drops, minimizing solid-liquid contact. In contrast, on liquid-infused surfaces, these solid textures are filled with an immiscible liquid lubricant. Over the past few years, innovations in experimental and computational methods have provided detailed new insights into the static and dynamic wetting properties of drops on these surfaces. In this review, we describe the criteria needed to obtain stable wetting states with low drop friction and high mobility on both surfaces, and discuss the mechanisms that have been proposed to explain the origins of friction on each surface. Drops can collapse from the low-friction Cassie state to the high-friction Wenzel state on both surfaces, but the transition follows different pathways: on liquid-infused surfaces, the wetting ridge near the drop edge plays a central role in triggering collapse, a phenomenon not observed on superhydrophobic surfaces. This review emphasizes that a liquid-infused surface cannot be simply viewed as a superhydrophobic surface with the air pockets replaced by lubricant. The wetting ridge surrounding drops on liquid-infused surfaces significantly alters most of the drop's properties, including macroscopic shape, friction mechanisms, and the mechanism of collapse to a Wenzel state.
Collapse
Affiliation(s)
- Abhinav Naga
- Institute
for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, EdinburghEH9 3FD, United Kingdom
| | | | - Chiara Neto
- School
of Chemistry, The University of Sydney, Sydney2006, Australia
- University
of Sydney Nano Institute, The University
of Sydney, Sydney2006, Australia
| | - Periklis Papadopoulos
- Department
of Physics, University of Ioannina, IoanninaGR-45110, Greece
- University
Research Center of Ioannina, Institute of
Materials Science and Computing, IoanninaGR-45110, Greece
| | - Doris Vollmer
- Physics
at Interfaces, Max Planck Institute for
Polymer Research, 55128Mainz, Germany
| |
Collapse
|
2
|
Wang FW, Sun J, Tuteja A. Material Design for Durable Lubricant-Infused Surfaces That Can Reduce Liquid and Solid Fouling. ACS NANO 2025; 19:18075-18094. [PMID: 40331593 DOI: 10.1021/acsnano.5c03214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Liquid and solid fouling is a pervasive problem in numerous natural and industrial settings, significantly impacting energy efficiency, greenhouse emissions, operational costs, equipment lifespan, and human health. Inspired by pitcher plants, recently developed lubricant-infused surfaces (LISs) demonstrate resistance to both liquid and solid accretion under diverse environmental conditions, offering a potential solution to combat various foulants such as ice, bacteria, and mineral deposits. However, the commercial viability for most fouling-resistant LISs has thus far been compromised due to the challenges associated with maintaining a stable lubricant layer during operation. This review aims to address this important concern by providing systematic material design guidelines for fabricating durable LISs. We discuss fundamental design principles, methods for evaluating fouling resistance, and strategies to prevent lubricant loss. By presenting a comprehensive design methodology for this important class of materials, this review aims to aid future advancements in the field of antifouling surfaces, potentially impacting a variety of industries ranging from marine engineering to medical device manufacturing.
Collapse
Affiliation(s)
- Fan-Wei Wang
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jianxing Sun
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Anish Tuteja
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular Science and Engineering Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Wu Z, Prakash B, Shi Y. Synthesizing lignin-based gelators to prepare oleogels used as green and fossil-free greases. Int J Biol Macromol 2025; 305:141074. [PMID: 39978526 DOI: 10.1016/j.ijbiomac.2025.141074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/21/2025] [Accepted: 02/13/2025] [Indexed: 02/22/2025]
Abstract
Traditional lubricating greases are mainly derived from petroleum, which poses major environmental challenges due to their non-biodegradability and pollution issues. This study attempts to synthesize lignin-based green thickeners and explore their potential for developing green and fossil-free greases. A lignin-based gelator was successfully synthesized by reacting malic acid with lignin and epoxidized soybean oil, in which malic acid participated in both the esterification reaction and the ring-opening of the epoxy group. This synthesized gelator was used as the thickener to prepare greases with several different oils, e.g., castor oil, epoxidized soybean oil, rapeseed oil, PAO 15, and paraffin oil. It was found that combining this lignin-based gelator with castor oil and epoxidized soybean oil can be successfully used for preparing greases, while it does not work with other oils. Rheological studied showed that the 35 % gelator-castor oil grease exhibited strong gel-like behaviour, with storage modulus (G', 400 Pa) exceeding loss modulus (G", 40 Pa) and shear-thinning viscosity reducing from 106 to 104 mPa·s under stress. Comprehensive tribological studies on the developed greases show that lignin-based gelators significantly improve lubricant performance (about 20 % lower friction and around 40 % lower wear under a contact pressure of 2.72 GPa, reciprocating speed 0.1 m/s, and 80 °C). XPS analysis further revealed the ability of the developed grease to form a protective film on metal surfaces. This study demonstrates the great potential of lignin as a green thickener and provides new ideas for developing high-performance, green, and fossil-free greases.
Collapse
Affiliation(s)
- Zhipeng Wu
- Division of Machine Elements, Luleå University of Technology, 97187 Luleå, Sweden
| | - Braham Prakash
- Division of Machine Elements, Luleå University of Technology, 97187 Luleå, Sweden
| | - Yijun Shi
- Division of Machine Elements, Luleå University of Technology, 97187 Luleå, Sweden.
| |
Collapse
|
4
|
Karimi Z, Flores I, Kolle S, Kundu S, Walton E, Badder L, Levy N, Berry DB, Schar D, Levy J, Aizenberg J, R3D consortium, Wangpraseurt D. Mitigating Algal Competition with Fouling-Prevention Coatings for Coral Restoration and Reef Engineering. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2025; 13:5808-5817. [PMID: 40313778 PMCID: PMC12042296 DOI: 10.1021/acssuschemeng.4c07508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025]
Abstract
Coral reefs are undergoing unprecedented degradation due to rising ocean temperatures, acidification, overfishing, and coastal pollution. Despite conservation efforts, including marine protected areas and sustainable fishing practices, the magnitude of these challenges calls for innovative approaches to repair and restore coral reefs. In this study, we explore the application of bioinspired materials to address the challenge of algal competition, a key bottleneck for effective restoration approaches. We develop and optimize slippery liquid-infused porous surfaces (SLIPS), as a fouling-prevention coating tailored for coral reef restoration and engineering. Through aquarium experiments and in situ trials on O'ahu, Hawai'i, we assess the effectiveness of these coatings in mitigating algal competition and facilitating coral growth. Our results demonstrate that PDMS-based SLIPS coatings significantly reduce algal coverage compared to commercial aragonite-based surfaces, with up to 70% reduction observed over a 12-week deployment period in situ. We also develop coral-guards, which are slippery substrates customized for coral fragment outplanting. Coral-guards facilitate tissue growth of Stylophora pistillata fragments, without competitive turf algal growth. These approaches hold promise for advancing restoration efforts, including the engineering of hybrid reefs and targeted coral gardening approaches.
Collapse
Affiliation(s)
- Zahra Karimi
- Department
of Chemical and NanoEngineering, University
of California San Diego, La Jolla, California 92093, United States
| | - Isabel Flores
- Department
of Chemical and NanoEngineering, University
of California San Diego, La Jolla, California 92093, United States
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92037, United States
| | - Stefan Kolle
- Department
of Chemical and NanoEngineering, University
of California San Diego, La Jolla, California 92093, United States
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92037, United States
| | - Samapti Kundu
- Department
of Chemical and NanoEngineering, University
of California San Diego, La Jolla, California 92093, United States
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92037, United States
| | - Emily Walton
- Department
of Chemical and NanoEngineering, University
of California San Diego, La Jolla, California 92093, United States
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92037, United States
| | - Lindsey Badder
- Department
of Chemical and NanoEngineering, University
of California San Diego, La Jolla, California 92093, United States
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92037, United States
| | - Natalie Levy
- Department
of Chemical and NanoEngineering, University
of California San Diego, La Jolla, California 92093, United States
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92037, United States
| | - David B. Berry
- Department
of Chemical and NanoEngineering, University
of California San Diego, La Jolla, California 92093, United States
| | - Daniel Schar
- Hawai‘i
Institute of Marine Biology, University of Hawai‘i, Ma̅noa, Ka̅ne‘ohe, Hawaii 96744, United States
| | - Joshua Levy
- Applied
Research Laboratory, University of Hawai‘i, Honolulu, Hawaii 96822, United States
| | - Joanna Aizenberg
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States
| | | | - Daniel Wangpraseurt
- Department
of Chemical and NanoEngineering, University
of California San Diego, La Jolla, California 92093, United States
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92037, United States
| |
Collapse
|
5
|
Athukoralalage SSA, Datson Z, Darwish N, Zhu Y, Chung KHK, Chew K, Rowan AE, Amiralian N. Dual-Functional Antimicrobial and Low-Fouling Cellulose Coatings. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16027-16039. [PMID: 40017042 DOI: 10.1021/acsami.4c21252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Surfaces contaminated with pathogens raise significant concerns due to their potential role in increasing the risk of disease transmission and subsequent infection. Existing surface coatings face several challenges that undermine their effectiveness and their broader applicability. These include the impact of surface topography on pathogen adhesion, which leads to biofouling, high production costs, scalability issues, as well as environmental concerns stemming from the utilization of toxic antifoulants and biocides. Here, we report dual-functional surface coatings with intrinsic antimicrobial and low fouling properties that are synergistic. The coatings are a porous reactive cellulose fibers network with dialdehyde functionality that demonstrates high antibacterial and antiviral performance against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Escherichia coli, and influenza A/H1N1 virus. Furthermore, we showed that the wettability of the coating significantly reduces the adhesion and colony formation of bacteria and their dead debris after inactivation by dialdehyde groups. The reactive cellulose fibers did not demonstrate any acute toxicity on L929 cells, which can meet the safe use of coating on the contact surfaces. The cellulose fibers coating derived from agricultural waste is cost-effective, eco-friendly, and highly scalable and is promising for use in packaging, household products, public facilities, and medical settings surfaces.
Collapse
Affiliation(s)
- Sandya S A Athukoralalage
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072 St Lucia, Queensland, Australia
| | - Zane Datson
- School of Molecular and Life Sciences, Curtin University, 6102 Bentley, Western Australia, Australia
| | - Nadim Darwish
- School of Molecular and Life Sciences, Curtin University, 6102 Bentley, Western Australia, Australia
| | - Yanshan Zhu
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072 St Lucia, Queensland, Australia
| | - Ka H K Chung
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072 St Lucia, Queensland, Australia
| | - Keng Chew
- School of Chemistry and Molecular Biosciences, The University of Queensland, 4072 St Lucia, Queensland, Australia
| | - Alan E Rowan
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072 St Lucia, Queensland, Australia
| | - Nasim Amiralian
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, 4072 St Lucia, Queensland, Australia
| |
Collapse
|
6
|
Kang HED, Costalonga M, Vandereydt B, Varanasi KK. Design of Antibiofouling Lubricant-Impregnated Surfaces Robust to Cell-Growth-Induced Instability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:5000-5008. [PMID: 39983042 DOI: 10.1021/acs.langmuir.4c03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2025]
Abstract
Biofouling, commonly referred to as the unwanted deposition of cells on wetted solids, is a serious operational and environmental issue in many underwater and biomedical applications. Over the past decade, lubricant-impregnated surfaces (LIS) arose as a potential solution to prevent fouling, owing to their unique layer of lubricant masking the solid from the outer environment, thereby preventing biofouling. However, living microorganisms alter their environment by reproducing and secreting biomolecules, which can threaten the stability of such coatings over time. In this paper, we show that secretion of biomolecules from aquatic cells and subsequent changes in the interfacial tension of the surrounding media can trigger dewetting of the lubricant, ultimately exposing the surface to the outer solution and therefore becoming prone to fouling. By observing LIS immersed in Nannochloropsis oculata algae solutions at various stages of population growth, we establish a correlation between the decrease in interfacial tension and wetting states of the surface. We also visualize dewetting of the lubricant through confocal imaging performed in situ. Finally, we establish a diagram providing fundamental insights to design sturdy LIS circumventing such dewetting, therefore ensuring long-term protection against biofouling upon extended immersion in living cell solutions.
Collapse
Affiliation(s)
- Ha Eun David Kang
- Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Maxime Costalonga
- Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Bert Vandereydt
- Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, United States
| | - Kripa K Varanasi
- Department of Mechanical Engineering, MIT, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Song X, Hou Y, Zhang X, Zhao Y, Wu Y, Liu M, Guo Z. Multiplex Biomimetic SLIPS With Super-Lubricity to Multiphase Matters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407530. [PMID: 39593244 DOI: 10.1002/smll.202407530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/11/2024] [Indexed: 11/28/2024]
Abstract
In recent years, slippery liquid infused porous surfaces (SLIPS) renowned for their exceptional liquid repellency and anti-fouling properties, have garnered considerable attention. However, the instability of both structural integrity and the oil film severely restricts their practical applications. This study is inspired by superwetting biological surfaces, such as fish scales, seashells, and Nepenthes, to design and fabricate a multiplex biomimetic and robust lubricant-infused textured surface (LITMS) using laser-coating composite processing technology. The influence of morphological structure and chemical composition on oil stability, wettability, and lubricating properties are systematically investigated. The LITMS exhibits remarkable repellency toward multiphase materials, including liquids, ice crystals, and solids, demonstrating exceptional omniphobicity, anti-icing, and anti-friction properties. Thus, this preparation strategy and construction methodology for SLIPS provide new insights into interfacial phenomena and promote advancements in applications for engineering material protection and machinery lubrication.
Collapse
Affiliation(s)
- Xiaorui Song
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Yuanyuan Hou
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Xiuli Zhang
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Yuanliang Zhao
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Yongling Wu
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| | - Mingming Liu
- Centre for Advanced Laser Manufacturing (CALM), School of Mechanical Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
8
|
Li Y, Zhou Y, Lin J, Liu H, Liu X. Antifouling Slippery Surface with Enhanced Stability for Marine Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5598. [PMID: 39597421 PMCID: PMC11595577 DOI: 10.3390/ma17225598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024]
Abstract
In recent years, slippery liquid-infused porous surfaces (SLIPSs) have gained significant attention in antifouling applications. However, their slippery performance often deteriorates in dynamic environments, limiting their service life. TC4 titanium alloy, commonly used in hulls and propellers, is prone to biofouling. SLIPSs have gained significant attention in antifouling applications. However, their slippery performance often deteriorates in dynamic environments, limiting their service life. To address these issues, a novel slippery liquid-infused surface (STASL) was developed on TC4 through the integration of hydroxyl end-blocked dimethylsiloxane (OH-PDMS), a silane coupling agent (KH550), and nano-titanium dioxide loaded with silver particles (TiO2-Ag, anatase) and silicone oil, thereby ensuring stable performance in both dynamic and static conditions. The as-prepared surfaces exhibited excellent sliding capabilities for water, acidic, alkaline, and saline droplets, achieving speeds of up to 2.859 cm/s. Notably, the STASL demonstrated superior oil retention and slippery stability compared to SLIPS, particularly at increased rotational speeds. With remarkable self-cleaning properties, the STASL significantly reduced the adhesion of proteins (50.0%), bacteria (77.8%), and algae (78.8%) compared to the titanium alloy. With these outstanding properties, the STASL has emerged as a promising solution for mitigating marine biofouling and corrosion on titanium alloys.
Collapse
Affiliation(s)
| | | | | | | | - Xin Liu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, China; (Y.L.); (Y.Z.); (J.L.); (H.L.)
| |
Collapse
|
9
|
Zhang H, Ding Q, Zhang Y, Lu G, Liu Y, Tong Y. Prevention and Control of Biofouling Coatings in Limnoperna fortunei: A Review of Research Progress and Strategies. Polymers (Basel) 2024; 16:3070. [PMID: 39518278 PMCID: PMC11548153 DOI: 10.3390/polym16213070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The increasing environmental concerns of conventional antifouling coatings have led to the exploration of novel and sustainable solutions to address the biofouling caused by Limnoperna fortunei. As a rapidly expanding invasive species, the fouling process of Limnoperna fortunei is closely associated with microbial fouling, posing significant threats to the integrity of aquatic infrastructure and biodiversity. This review discusses recent progress in the development of non-toxic, eco-friendly antifouling coatings that are designed to effectively resist biofouling without using toxic chemicals. Recent research has focused on developing novel non-toxic coatings that integrate natural bioactive components with advanced material technologies. These formulations not only meet current environmental standards and exhibit minimal ecological impact, but also possess significant potential in preventing the attachment, growth, and reproduction of Limnoperna fortunei. This review aims to provide scientific guidance by proposing effective and sustainable solutions to address the ecological challenges presented by Limnoperna fortunei. The insights gained from current research not only reveal novel antifouling methods, but also identify key areas for further investigation aimed at enhancing performance and environmental compatibility.
Collapse
Affiliation(s)
- Hailong Zhang
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China; (Y.L.); (Y.T.)
| | - Qingjie Ding
- Sinohydro Bureau 11 Co., Ltd., Zhengzhou 450000, China; (Q.D.); (G.L.)
| | - Yonghui Zhang
- Sinohydro Bureau 11 Co., Ltd., Zhengzhou 450000, China; (Q.D.); (G.L.)
| | - Guangyi Lu
- Sinohydro Bureau 11 Co., Ltd., Zhengzhou 450000, China; (Q.D.); (G.L.)
| | - Yangyu Liu
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China; (Y.L.); (Y.T.)
| | - Yuping Tong
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China; (Y.L.); (Y.T.)
| |
Collapse
|
10
|
Samanta R, Rowthu S. Can Microcavitated Slippery Surfaces Outperform Micropillared and Untextured? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22324-22337. [PMID: 39377664 DOI: 10.1021/acs.langmuir.4c02956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Surface features' morphology is crucial in designing lubricant-infused slippery surfaces (LIS). Microcavities were hypothesized to provide lower physical pinning, reduced droplet normal adhesion, and superior lubricant retention as compared to micropillars and untextured surfaces. Micropillars and microcavities (h = 10 ± 3 μm, d = 8 ± 1 μm, p = 17 ± 3 μm, rw = 1.4 ± 0.2) were replicated on polydimethylsiloxane from Lotus leaf and were coated with 1000 cSt silicone oil films (530 nm-27 μm thick). Water wetting, water-oil thermodynamic stability, droplet's normal adhesion and oil shear drainage properties were investigated to evaluate the relative performance of microcavitated, micropillared and untextured LIS. For ≤7 μm thick oil films, cavitated and untextured LIS displayed superior slippery properties than micropillared LIS (16 ± 1°, 7 ± 1°, 30 ± 4° slide-off angles respectively). Also, normal adhesion is of the order: cavities < untextured < pillars, and smaller than their dry counterparts. Furthermore, the oil retention efficiency under the action of centrifugal forces and continuous shear flow of water is of the order: pillars > cavities > untextured. Thus, it can be concluded that microcavitated LIS can outperform micropillared and untextured LIS.
Collapse
Affiliation(s)
- Ratnadeep Samanta
- Materials Engineering Department, Indian Institute of Technology (IIT) Gandhinagar, Gujarat382055, India
| | - Sriharitha Rowthu
- Materials Engineering Department, Indian Institute of Technology (IIT) Gandhinagar, Gujarat382055, India
| |
Collapse
|
11
|
Wang T, Su E. Guardians of Future Food Safety: Innovative Applications and Advancements in Anti-biofouling Materials. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21973-21985. [PMID: 39332908 DOI: 10.1021/acs.jafc.4c05156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Biofilm formation is a widespread natural phenomenon that poses a substantial threat to food microbiological safety, with direct implications for consumer health. To combat this challenge effectively, one promising strategy involves the development of functional anti-biofouling layers on food-contact surfaces to deter microbial adhesion. Herein, we explore the methodologies for fabricating both hydrophilic and hydrophobic anti-biofouling materials, along with a detailed examination of their inherent antiadhesive mechanisms. Furthermore, we provide concise insights into exemplary applications of anti-biofouling materials within the context of the food industry. This comprehensive analysis not only advances our understanding of biofilm prevention but also sets the stage for innovative developments in anti-biofouling materials and their future applications in food science. These advancements hold the potential to significantly enhance food microbiological safety, ensuring that consumers can confidently enjoy food products of the highest standards in terms of hygiene and quality.
Collapse
Affiliation(s)
- Tao Wang
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Erzheng Su
- Co-innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Gerchman D, Acunha Ferrari PH, Baranov O, Levchenko I, Takimi AS, Bazaka K. One-step rapid formation of wrinkled fractal antibiofouling coatings from environmentally friendly, waste-derived terpenes. J Colloid Interface Sci 2024; 668:319-334. [PMID: 38678887 DOI: 10.1016/j.jcis.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/26/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024]
Abstract
Wrinkled coatings are a potential drug-free method for mitigating bacterial attachment and biofilm formation on materials such as medical and food grade steel. However, their fabrication typically requires multiple steps and often the use of a stimulus to induce wrinkle formation. Here, we report a facile plasma-based method for rapid fabrication of thin (<250 nm) polymer coatings from a single environmentally friendly precursor, where wrinkle formation and fractal pattern development are controlled solely by varying the deposition time from 3 s to 60 s. We propose a mechanism behind the observed in situ development of wrinkles in plasma, as well as demonstrate how introducing specific topographical features on the surface of the substrata can result int the formation of even more complex, ordered wrinkle patterns arising from the non-uniformity of plasma when in contact with structured surfaces. Thus-fabricated wrinkled surfaces show good adhesion to substrate and an antifouling activity that is not observed in the equivalent smooth coatings and hence is attributed to the specific pattern of wrinkles.
Collapse
Affiliation(s)
- Daniel Gerchman
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Oleg Baranov
- Department of Theoretical Mechanics, Engineering and Robomechanical Systems, National Aerospace University, Kharkiv 61070, Ukraine; Department of Gaseous Electronics, Jožef Stefan Institute, Ljubljana 1000, Slovenia, EU
| | - Igor Levchenko
- Plasma Sources and Application Center, NIE, Nanyang Technological University, Singapore 639798, Singapore.
| | | | - Kateryna Bazaka
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
13
|
Chen YC, Luo YW, Huang CY, Li YL, Chen TL, Xu TY, Hsueh HY. Fabrication of Self-Wrinkling Polymer Films with Tunable Patterns through an Interfacial-Fuming-Induced Surface Instability Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311679. [PMID: 38243856 DOI: 10.1002/smll.202311679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Indexed: 01/22/2024]
Abstract
Inspired by the superglue fuming method for fingerprint collection, this study developed a novel interfacial-fuming-induced surface instability process to generate wrinkled patterns on polymeric substrates. High-electronegativity groups are introduced on the substrate surface to initiate the polymerization of monomer vapors, such as ethyl cyanoacrylate, which results in the formation of a stiff poly(ethyl cyanoacrylate) capping layer. Moreover, interfacial polymerization resulted in the covalent bonding of the substrate, which led to the volumetric shrinkage of the composite and the accumulation of compressive strain. This process ultimately resulted in the development and stabilization of wrinkled surface morphologies. The authors systematically examined parameters such as the modulus of the epoxy substrate, prestrain, the flow rate of fuming, and operating temperature. The aforementioned technique can be easily applied to architectures with complex outer morphologies and inner surfaces, thereby enabling the construction of surface patterns under ambient conditions without vacuum limitations or precise process control. This study is the first to combine fuming-induced interfacial polymerization with surface instability to create robust wrinkles. The proposed method enables the fabrication of intricate microwrinkled patterns and has considerable potential for use in various practical applications, including microfluidics, optical components, bioinspired adhesive devices, and interfacial engineering.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Department of Material Science and Engineering, National Chung Hsing University, Taichung, Taiwan, 40227, Republic of China
| | - Ying-Wei Luo
- Department of Material Science and Engineering, National Chung Hsing University, Taichung, Taiwan, 40227, Republic of China
| | - Ching-Yu Huang
- Department of Material Science and Engineering, National Chung Hsing University, Taichung, Taiwan, 40227, Republic of China
| | - Yan-Lin Li
- Department of Material Science and Engineering, National Chung Hsing University, Taichung, Taiwan, 40227, Republic of China
| | - Ting-Lun Chen
- Department of Material Science and Engineering, National Chung Hsing University, Taichung, Taiwan, 40227, Republic of China
| | - Ting-Yu Xu
- Department of Material Science and Engineering, National Chung Hsing University, Taichung, Taiwan, 40227, Republic of China
| | - Han-Yu Hsueh
- Department of Material Science and Engineering, National Chung Hsing University, Taichung, Taiwan, 40227, Republic of China
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, Taiwan, 40227, Republic of China
| |
Collapse
|
14
|
Zhang J, Williams G, Jitniyom T, Singh NS, Saal A, Riordan L, Berrow M, Churm J, Banzhaf M, de Cogan F, Gao N. Wettability and Bactericidal Properties of Bioinspired ZnO Nanopillar Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7353-7363. [PMID: 38536768 PMCID: PMC11008234 DOI: 10.1021/acs.langmuir.3c03537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/10/2024]
Abstract
Nanomaterials of zinc oxide (ZnO) exhibit antibacterial activities under ambient illumination that result in cell membrane permeability and disorganization, representing an important opportunity for health-related applications. However, the development of antibiofouling surfaces incorporating ZnO nanomaterials has remained limited. In this work, we fabricate superhydrophobic surfaces based on ZnO nanopillars. Water droplets on these superhydrophobic surfaces exhibit small contact angle hysteresis (within 2-3°) and a minimal tilting angle of 1°. Further, falling droplets bounce off when impacting the superhydrophobic ZnO surfaces with a range of Weber numbers (8-46), demonstrating that the surface facilitates a robust Cassie-Baxter wetting state. In addition, the antibiofouling efficacy of the surfaces has been established against model pathogenic Gram-positive bacteria Staphylococcus aureus (S. aureus) and Gram-negative bacteria Escherichia coli (E. coli). No viable colonies of E. coli were recoverable on the superhydrophobic surfaces of ZnO nanopillars incubated with cultured bacterial solutions for 18 h. Further, our tests demonstrate a substantial reduction in the quantity of S. aureus that attached to the superhydrophobic ZnO nanopillars. Thus, the superhydrophobic ZnO surfaces offer a viable design of antibiofouling materials that do not require additional UV illumination or antimicrobial agents.
Collapse
Affiliation(s)
- Jitao Zhang
- School
of Engineering, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Georgia Williams
- School
of Biosciences, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Thanaphun Jitniyom
- School
of Engineering, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Navdeep Sangeet Singh
- School
of Engineering, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Alexander Saal
- School
of Engineering, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Lily Riordan
- School
of Pharmacy, University of Nottingham, University
Park, Nottingham NG7 2RD, United Kingdom
| | - Madeline Berrow
- School
of Pharmacy, University of Nottingham, University
Park, Nottingham NG7 2RD, United Kingdom
| | - James Churm
- School
of Engineering, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Manuel Banzhaf
- School
of Biosciences, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| | - Felicity de Cogan
- School
of Pharmacy, University of Nottingham, University
Park, Nottingham NG7 2RD, United Kingdom
| | - Nan Gao
- School
of Engineering, University of Birmingham, Edgbaston ,Birmingham B15 2TT, United Kingdom
| |
Collapse
|
15
|
Tong Z, Gao F, Chen S, Song L, Hu J, Hou Y, Lu J, Leung MKH, Zhan X, Zhang Q. Slippery Porous-Liquid-Infused Porous Surface (SPIPS) with On-Demand Responsive Switching between "Defensive" and "Offensive" Antifouling Modes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308972. [PMID: 37917884 DOI: 10.1002/adma.202308972] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/31/2023] [Indexed: 11/04/2023]
Abstract
Slippery liquid-infused porous surfaces (SLIPS) have received widespread attention in the antifouling field. However, the reduction in antifouling performance caused by lubricant loss limits their application in marine antifouling. Herein, inspired by the skin of a poison dart frog which contains venom glands and mucus, a porous liquid (PL) based on ZIF-8 is prepared as a lubricant and injected into a silicone polyurethane (SPU) matrix to construct a new type of SLIPS for marine antifouling applications: the slippery porous-liquid-infused porous surface (SPIPS). The SPIPS consists of a responsive antifoulant-releasing switch between "defensive" and "offensive" antifouling modes to intelligently enhance the antifouling effect after lubricant loss. The SPIPS can adjust antifouling performance to meet the antifouling requirements under different light conditions. The wastage of antifoulants is reduced, thereby effectively maintaining the durability and service life of SLIPS materials. The SPIPS exhibits efficient lubricant self-replenishment, self-cleaning, anti-protein, anti-bacterial, anti-algal, and self-healing (97.48%) properties. Furthermore, it shows satisfactory 360-day antifouling performance in actual marine fields during boom seasons, demonstrating the longest antifouling lifespan in the field tests of reported SLIPS coatings. Hence, the SPIPS can effectively promote the development of SLIPS for neritic antifouling.
Collapse
Affiliation(s)
- Zheming Tong
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Feng Gao
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Sifan Chen
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Lina Song
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Jiankun Hu
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| | - Jianguo Lu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Michael K H Leung
- School of Energy and Environment, Ability R&D Energy Research Centre, City University of Hong Kong, Hong Kong, 999077, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou, 310027, China
- Zhejiang Provincial Innovation Center of Advanced Chemicals Technology, Quzhou Research Institute, Zhejiang University, Quzhou, 324000, China
| |
Collapse
|
16
|
Vega-Sánchez C, Neto C. Fluid Slip and Drag Reduction on Liquid-Infused Surfaces under High Static Pressure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4460-4467. [PMID: 38359379 DOI: 10.1021/acs.langmuir.3c03792] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Liquid-infused surfaces (LIS) have been shown to reduce the huge frictional drag affecting microfluidic flow and are expected to be more robust than superhydrophobic surfaces when exposed to external pressure as the lubricant in LIS is incompressible. Here, we investigate the effect of applying static pressure on the effective slip length measured on Teflon wrinkled surfaces infused with silicone oil through pressure measurements in microfluidic devices. The effect of static pressure on LIS was found to depend on air content in the flowing water: for degassed water, the average effective slip length was beff = 2.16 ± 0.90 μm, irrespective of applied pressure. In gassed water, the average effective slip length was beff = 4.32 ± 1.06 μm at zero applied pressure, decreased by 55% to 2.37 ± 0.90 μm when the pressure was increased to 50 kPa, and then remained constant up to 200 kPa. The result is due to nanobubbles present on LIS, which are compressed or partially dissolved under pressure, and the effect is more evident when the size and portion of surface nanobubbles are higher. In contrast, on superhydrophobic wrinkles, the decline in beff was more sensitive to applied pressure, with beff = 6.8 ± 1.4 μm at 0 kPa and, on average, beff = -1 ± 3 μm for pressures higher than 50 kPa for both gassed and degassed water. Large fluctuations in the experimental measurements were observed on superhydrophobic wrinkles, suggesting the nucleation of large bubbles on the surface. The same pressure increase did not affect the flow on smooth substrates, on which gas nanobubbles were not observed. Contrary to expectations, we observed that drag reduction in LIS is affected by applied pressure, which we conclude is because, in a similar manner to superhydrophobic surfaces, they lose the interfacial gas, which lubricates the flow.
Collapse
Affiliation(s)
- Christopher Vega-Sánchez
- School of Electromechanical Engineering, Costa Rica Institute of Technology, Cartago 159-7050, Costa Rica
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chiara Neto
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
- University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
17
|
Hong JK, Gresham IJ, Daniel D, Waterhouse A, Neto C. Visualizing a Nanoscale Lubricant Layer under Blood Flow. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56433-56441. [PMID: 37975828 DOI: 10.1021/acsami.3c11898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Tethered-liquid perfluorocarbons (TLPs) are a class of liquid-infused surfaces with the ability to reduce blood clot formation (thrombosis) on blood-contacting medical devices. TLP comprises a tethered perfluorocarbon (TP) infused with a liquid perfluorocarbon (LP); this LP must be retained to maintain the antithrombotic properties of the layer. However, the stability of the LP layer remains in question, particularly for medical devices under blood flow. In this study, the lubricant thickness is spatially mapped and quantified in situ through confocal dual-wavelength reflection interference contrast microscopy. TLP coatings prepared on glass substrates are exposed to the flow of 37% glycerol/water mixtures (v/v) or whole blood at a shear strain rate of around 2900 s-1 to mimic physiological conditions (similar to flow conditions found in coronary arteries). Excess lubricant (>2 μm film thickness) is removed upon commencement of flow. For untreated glass, the lubricant is completely depleted after 1 min of shear flow. However, on optimized TLP surfaces, nanoscale films of lubricants (thickness between 100 nm and 2 μm) are retained over many tens of minutes of flow. The nanoscale films conform to the underlying structure of the TP layer and are sufficient to prevent the adhesion of red blood cells and platelets.
Collapse
Affiliation(s)
- Jun Ki Hong
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Heart Research Institute, Newtown, NSW 2042, Australia
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Isaac J Gresham
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Dan Daniel
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
- Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Anna Waterhouse
- School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Heart Research Institute, Newtown, NSW 2042, Australia
- The Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
- Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Chiara Neto
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
18
|
Cao Z, Cao P. Research Progress on Low-Surface-Energy Antifouling Coatings for Ship Hulls: A Review. Biomimetics (Basel) 2023; 8:502. [PMID: 37887633 PMCID: PMC10603911 DOI: 10.3390/biomimetics8060502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
The adhesion of marine-fouling organisms to ships significantly increases the hull surface resistance and expedites hull material corrosion. This review delves into the marine biofouling mechanism on marine material surfaces, analyzing the fouling organism adhesion process on hull surfaces and common desorption methods. It highlights the crucial role played by surface energy in antifouling and drag reduction on hulls. The paper primarily concentrates on low-surface-energy antifouling coatings, such as organic silicon and organic fluorine, for ship hull antifouling and drag reduction. Furthermore, it explores the antifouling mechanisms of silicon-based and fluorine-based low-surface-energy antifouling coatings, elucidating their respective advantages and limitations in real-world applications. This review also investigates the antifouling effectiveness of bionic microstructures based on the self-cleaning abilities of natural organisms. It provides a thorough analysis of antifouling and drag reduction theories and preparation methods linked to marine organism surface microstructures, while also clarifying the relationship between microstructure surface antifouling and surface hydrophobicity. Furthermore, it reviews the impact of antibacterial agents, especially antibacterial peptides, on fouling organisms' adhesion to substrate surfaces and compares the differing effects of surface structure and substances on ship surface antifouling. The paper outlines the potential applications and future directions for low-surface-energy antifouling coating technology.
Collapse
Affiliation(s)
- Zhimin Cao
- Institute of Intelligent Manufacturing and Smart Transportation, Suzhou City University, Suzhou 215104, China
| | - Pan Cao
- College of mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
19
|
Liu X, Gu X, Zhou Y, Pan W, Liu J, Song J. Antifouling Slippery Surface against Marine Biofouling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13441-13448. [PMID: 37657482 DOI: 10.1021/acs.langmuir.3c00986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
Titanium and its alloys have become the most excellent structure materials for naval seawater pipelines due to their high strength and good corrosion resistance. However, marine biofouling poses a serious threat to titanium alloy piping systems because of their good biocompatibility. Recently, the biomimetic antifouling coating, a novel antifouling method, has received great attention. Here, based on this biomimetic idea, we develop a nontoxic antifouling slippery surface (AFSS) using silicone oil, silane coupling agent, nanosilica, nanoceramic coating, epoxy resin, and capsaicin. The developed AFSS has excellent slippery performance for various droplets, good durability, and a superior self-cleaning property. Additionally, the antifouling performance of the AFSS was significantly enhanced, as confirmed by the reduced adhesion of proteins (70.7%), bacteria (97.2%), and algae (97.7%) compared to the ordinary titanium alloy. With these excellent properties, the AFSS was expected to be a promising candidate for protecting titanium alloy piping systems from marine biofouling.
Collapse
Affiliation(s)
- Xin Liu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xiaolei Gu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yuyang Zhou
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Weihao Pan
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jiyu Liu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jinlong Song
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
20
|
Hopkins GA, Scott N, Cahill P. Application of bubble streams to control biofouling on marine infrastructure-pontoon-scale implementation. PeerJ 2023; 11:e16004. [PMID: 37701841 PMCID: PMC10493092 DOI: 10.7717/peerj.16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023] Open
Abstract
There is a lack of cost-effective, environmentally-friendly tools available to manage marine biofouling accumulation on static artificial structures such as drilling rigs, wind turbines, marine farms, and port and marina infrastructure. For there to be uptake and refinement of tools, emerging technologies need to be tested and proven at an operational scale. This study aimed to see whether biofouling accumulation could be suppressed on marine infrastructure under real-world conditions through the delivery of continuous bubble streams. Submerged surfaces of a floating marina pontoon were cleaned in-situ by divers, and the subsequent colonisation by biofouling organisms was monitored on treated (bubbles applied) and untreated sections. Continuous bubble streams proved highly effective (>95%) in controlling macrofouling accumulation on the underside surface of the marina pontoon for the first 2 months after deployment, but efficacy dropped off rapidly once bubble stream delivery was partially obscured due to biofouling accumulation on the diffuser itself. Although extensive macrofouling cover by mussels, bryozoans and hydroids was observed on treated surfaces by 4 months (27.5%, SE = 4.8%), biofouling % cover and diversity was significantly higher on untreated surfaces (79.6%, SE = 2.9%). While this study demonstrates that continuous bubble streams greatly restrict biofouling accumulation over short-to-medium timescales, improved system design, especially the incorporation of diffusers resistant to fouling, is needed for the approach to be considered a viable long-term option for biofouling management on static artificial structures.
Collapse
|
21
|
Lai YF, Chang MY, Liou YY, Lee CC, Hsueh HY. Morphological Diagram of Dynamic-Interfacial-Release-Induced Surface Instability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38975-38985. [PMID: 37478376 DOI: 10.1021/acsami.3c07497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
In this study, a morphological diagram was constructed for quantitatively predicting various modes of surface instabilities caused by the dynamic interfacial release of strain in initially flat bilayer composites comprising an elastomer and a capping layer. Theory, experiment, and simulation were combined to produce the diagram, which enables systematic generation of the following instability patterns: wrinkle, fold, period-double, delamination, and coexisting patterns. The pattern that forms is most strongly affected by three experimental parameters: the elastic modulus of the elastomer, the elastic modulus of the capping layer, and the thickness of the capping layer. The morphological diagram offers understanding of the formation of complex patterns and development of their applications. Critically, the wrinkle alignment can be well controlled by changing the direction of the interfacial release to enable the creation of centimeter-sized and highly ordered lamellar wrinkled patterns with a single orientation on a soft elastomer without the need for costly high-vacuum instruments or complex fabrication processes. The method and diagram have great potential for broad use in many practical applications ranging from flexible electronic devices to smart windows.
Collapse
Affiliation(s)
- Yu-Fang Lai
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Meng-Yuan Chang
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Yan-Yu Liou
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Chang-Chun Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Han-Yu Hsueh
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| |
Collapse
|
22
|
He Z, Mu L, Wang N, Su J, Wang Z, Luo M, Zhang C, Li G, Lan X. Design, fabrication, and applications of bioinspired slippery surfaces. Adv Colloid Interface Sci 2023; 318:102948. [PMID: 37331090 DOI: 10.1016/j.cis.2023.102948] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 05/30/2023] [Accepted: 06/10/2023] [Indexed: 06/20/2023]
Abstract
Bioinspired slippery surfaces (BSSs) have attracted considerable attention owing to their antifouling, drag reduction, and self-cleaning properties. Accordingly, various technical terms have been proposed for describing BSSs based on specific surface characteristics. However, the terminology can often be confusing, with similar-sounding terms having different meanings. Additionally, some terms fail to fully or accurately describe BSS characteristics, such as the surface wettability of lubricants (hydrophilic or hydrophobic), surface wettability anisotropy (anisotropic or isotropic), and substrate morphology (porous or smooth). Therefore, a timely and thorough review is required to clarify and distinguish the various terms used in BSS literature. This review initially categorizes BSSs into four types: slippery solid surfaces (SSSs), slippery liquid-infused surfaces (SLISs), slippery liquid-like surfaces (SLLSs), and slippery liquid-solid surfaces (SLSSs). Because SLISs have been the primary research focus in this field, we thoroughly review their design and fabrication principles, which can also be applied to the other three types of BSS. Furthermore, we discuss the existing BSS fabrication methods, smart BSS systems, antifouling applications, limitations of BSS, and future research directions. By providing comprehensive and accurate definitions of various BSS types, this review aims to assist researchers in conveying their results more clearly and gaining a better understanding of the literature.
Collapse
Affiliation(s)
- Zhoukun He
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China
| | - Linpeng Mu
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Na Wang
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Jie Su
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Zhuo Wang
- Institute for Advanced Study, Research Center of Composites & Surface and Interface Engineering, Chengdu University, Chengdu 610106, China; School of Mechanical Engineering, Chengdu University, Chengdu 610106, China
| | - Mingdong Luo
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China
| | - Chunle Zhang
- Kidney Research Institute, Division of Nephrology, West China Hospital of Sichuan University, Chengdu 610041, China.
| | - Guangwen Li
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China.
| | - Xiaorong Lan
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Stomatology, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
23
|
Gresham IJ, Neto C. Advances and challenges in slippery covalently-attached liquid surfaces. Adv Colloid Interface Sci 2023; 315:102906. [PMID: 37099851 DOI: 10.1016/j.cis.2023.102906] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/13/2023] [Accepted: 04/13/2023] [Indexed: 04/28/2023]
Abstract
Over the past decade, a new class of slippery, anti-adhesive surfaces known as slippery covalently-attached liquid surfaces (SCALS) has emerged, characterized by low values of contact angle hysteresis (CAH, less than 5°) with water and most solvents. Despite their nanoscale thickness (1 to 5 nm), SCALS exhibit behavior similar to lubricant-infused surfaces, including high droplet mobility and the ability to prevent icing, scaling, and fouling. To date, SCALS have primarily been obtained using grafted polydimethylsiloxane (PDMS), though there are also examples of polyethylene oxide (PEO), perfluorinated polyether (PFPE), and short-chain alkane SCALS. Importantly, the precise physico-chemical characteristics that enable ultra-low CAH are unknown, making rational design of these systems impossible. In this review, we conduct a quantitative and comparative analysis of reported values of CAH, molecular weight, grafting density, and layer thickness for a range of SCALS. We find that CAH does not scale monotonically with any reported parameter; instead, the CAH minimum is found at intermediate values. For PDMS, optimal behavior is observed at advancing contact angle of 106°, molecular weight between 2 and 10 kg mol-1, and grafting density of around 0.5 nm-2. CAH on SCALS is lowest for layers created from end-grafted chains and increases with the number of binding sites, and can generally be improved by increasing the chemical homogeneity of the surface through the capping of residual silanols. We review the existing literature on SCALS, including both synthetic and functional aspects of current preparative methods. The properties of reported SCALS are quantitatively analyzed, revealing trends in the existing data and highlighting areas for future experimental study.
Collapse
Affiliation(s)
- Isaac J Gresham
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, NSW Australia, Sydney 2006, NSW, Australia.
| | - Chiara Neto
- School of Chemistry and the University of Sydney Nano Institute, The University of Sydney, NSW Australia, Sydney 2006, NSW, Australia.
| |
Collapse
|
24
|
Liu N, Sun Q, Yang Z, Shan L, Wang Z, Li H. Wrinkled Interfaces: Taking Advantage of Anisotropic Wrinkling to Periodically Pattern Polymer Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207210. [PMID: 36775851 PMCID: PMC10131883 DOI: 10.1002/advs.202207210] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 06/18/2023]
Abstract
Periodically patterned surfaces can cause special surface properties and are employed as functional building blocks in many devices, yet remaining challenges in fabrication. Advancements in fabricating structured polymer surfaces for obtaining periodic patterns are accomplished by adopting "top-down" strategies based on self-assembly or physico-chemical growth of atoms, molecules, or particles or "bottom-up" strategies ranging from traditional micromolding (embossing) or micro/nanoimprinting to novel laser-induced periodic surface structure, soft lithography, or direct laser interference patterning among others. Thus, technological advances directly promote higher resolution capabilities. Contrasted with the above techniques requiring highly sophisticated tools, surface instabilities taking advantage of the intrinsic properties of polymers induce surface wrinkling in order to fabricate periodically oriented wrinkled patterns. Such abundant and elaborate patterns are obtained as a result of self-organizing processes that are rather difficult if not impossible to fabricate through conventional patterning techniques. Focusing on oriented wrinkles, this review thoroughly describes the formation mechanisms and fabrication approaches for oriented wrinkles, as well as their fine-tuning in the wavelength, amplitude, and orientation control. Finally, the major applications in which oriented wrinkled interfaces are already in use or may be prospective in the near future are overviewed.
Collapse
Affiliation(s)
- Ning Liu
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Qichao Sun
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Zhensheng Yang
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Linna Shan
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Zhiying Wang
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Hao Li
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| |
Collapse
|
25
|
Wang X, Bai H, Li Z, Cao M. Fluid manipulation via multifunctional lubricant infused slippery surfaces: principle, design and applications. SOFT MATTER 2023; 19:588-608. [PMID: 36633123 DOI: 10.1039/d2sm01547a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Water-repellent interfaces with high performance have emerged as an indispensable platform for developing advanced materials and devices. Inspired by the pitcher plant, slippery liquid-infused porous surfaces (SLIPSs) with reliable hydrophobicity have proven to possess great potential for various applications in droplet and bubble manipulation, droplet energy harvesting, condensation, fog collection, anti-icing, and anti-biofouling due to their excellent properties such as persistent surface hydrophobicity, molecular smoothness, and fluidity. This review aims to introduce the development history of interaction between SLIPSs and fluids as well as the design principles, preparation methods, and various applications of some of the more typical SLIPSs. The fluid manipulation strategies of the slippery surfaces have been proposed including the wettability pattern, oriented micro-structure, and geometric gradient. At last, the application prospects of SLIPSs in various fields and the challenges in the design and fabrication of slippery surfaces are analyzed. We envision that this review can provide an overview of the fluid manipulating processes on slippery surfaces for researchers in both academic and industrial fields.
Collapse
Affiliation(s)
- Xinsheng Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China.
| | - Haoyu Bai
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China.
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhe Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Moyuan Cao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, P. R. China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300072, P. R. China.
| |
Collapse
|
26
|
Li R, Zhao L, Yao A, Li Z, Wu F, Ding X, An H, Ye H, Zhang Y, Li H. A paraffin-wax-infused porous membrane with thermo-responsive properties for fouling-release microfiltration. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Zhang B, Zhang Y, Ma S, Zhang H. Slippery liquid-infused porous surface (SLIPS) with super-repellent and contact-killing antimicrobial performances. Colloids Surf B Biointerfaces 2022; 220:112878. [PMID: 36215899 DOI: 10.1016/j.colsurfb.2022.112878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 10/14/2022]
Abstract
Slippery liquid-filled porous surfaces (SLIPS) have attracted extensive research attention for their unique repellent properties, but such surfaces typically lack essential bactericidal activity and cannot defend against the spread of bacteria once bacterial contamination occurs. Herein, a slippery liquid-infused porous surface (SLIPS), endowed with both super-repellent and contact-killing antimicrobial performances is reported. Firstly, polystyrene (PS) based porous structures are developed via a facile microphase separation technique with poly(ethylene glycol) (PEG) as the sacrifice template. The porous surface was then covalently modified by 3-(trimethoxysilyl)propyl dimethyl undecyl ammonium chloride (QAC-Silane) to get the contact-killing antimicrobial performances. After lubricant (silicone oil) is introduced to the porous structure, the SLIPS surface demonstrates remarkably high super-repellence against both Gram-positive and negative bacteria, and also maintains essential contact-killing antimicrobial activities from the fixed QAC-11 groups, once the infused lubricant was depleted. Also, this surface demonstrates a reduced coefficient of friction (COF) of ∼56% as compared to that of the control flat surface. Moreover, this SLIPS surface can be easily realized on various substrates, such as silica glass, polycarbonate (PC), polyethylene terephthalate (PET), polyethylene (PE) and silicone catheter tube. Owing to its simple, low-cost and fast fabrication approach, this kind of surface may find unique biomedical applications where an effective antibacterial performance and lubricity are highly needed.
Collapse
Affiliation(s)
- Baogang Zhang
- Department of Endoscopy, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Yunxin Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Shurong Ma
- Department of Endoscopy, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Haishan Zhang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
28
|
Yan H, Zhang W, Cui Y, Qian F, Wei D, Guo P, Jiao K, Huang J, Wang Q, Zhao C. Durable drag reduction and anti-corrosion for liquid flows inside lubricant-infused aluminum/copper capillaries. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Wang W, Li J, Wang P, Ou J, Zhang D. Fabrication of polydimethylsiloxane-attached solid slippery surface with high underwater transparency towards the antifouling of optical window for marine instruments. J Colloid Interface Sci 2022; 623:832-844. [DOI: 10.1016/j.jcis.2022.05.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/10/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
30
|
Durand H, Whiteley A, Mailley P, Nonglaton G. Combining Topography and Chemistry to Produce Antibiofouling Surfaces: A Review. ACS APPLIED BIO MATERIALS 2022; 5:4718-4740. [PMID: 36162127 DOI: 10.1021/acsabm.2c00586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite decades of research on the reduction of surface fouling from biomolecules or micro-organisms, the ultimate antibiofouling surface remains undiscovered. The recent covid-19 pandemic strengthened the crucial need for such treatments. Among the numerous approaches that are able to provide surfaces with antibiofouling properties, chemical, biological, and topographical strategies have been implemented for instance in the marine, medical, or food industries. However, many of these methods have a biocidal effect and, with antibioresistance and biocide resistance a growing threat on humanity, strategies based on reducing adsorption of biomolecules and micro-organism are necessary for long-term solutions. Bioinspired strategies, combining both surface chemistry and topography, are currently at the heart of the best innovative and sustainable solutions. The synergistic effect of micro/nanostructuration, together with engineered chemical or biological functionalization is believed to contribute to the development of antibiofouling surfaces. This review aims to present approaches combining hydrophobic or hydrophilic chemistries with a specific topography to avoid biofouling in various industrial environments and healthcare facilities.
Collapse
Affiliation(s)
| | - Amelia Whiteley
- Univ. Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France
| | - Pascal Mailley
- Univ. Grenoble Alpes, CEA, LETI, DTBS, F-38000 Grenoble, France
| | | |
Collapse
|
31
|
Ma Y, Zohaib Aslam M, Wu M, Nitin N, Sun G. Strategies and perspectives of developing anti-biofilm materials for improved food safety. Food Res Int 2022; 159:111543. [DOI: 10.1016/j.foodres.2022.111543] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/04/2022] [Accepted: 06/18/2022] [Indexed: 11/04/2022]
|
32
|
Peppou-Chapman S, Vega-Sánchez C, Neto C. Detection of Nanobubbles on Lubricant-Infused Surfaces Using AFM Meniscus Force Measurements. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10234-10243. [PMID: 35959766 DOI: 10.1021/acs.langmuir.2c01411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
So far, the presence of nanobubbles on lubricant-infused surfaces (LIS) has been overlooked, because of the difficulty in detecting them in such a complex system. We recently showed that anomalously large interfacial slip measured on LIS is explained by the presence of nanobubbles [Vega-Sánchez, Peppou-Chapman, Zhu and Neto, Nat. Commun., 2022 13, 351]. Crucial to drawing this conclusion was the use of atomic force microscopy (AFM) force-distance spectroscopy (meniscus force measurements) to directly image nanobubbles on LIS. This technique provided vital direct evidence of the spontaneous nucleation of nanobubbles on lubricant-infused hydrophobic surfaces. In this paper, we describe in detail the data collection and analysis of AFM meniscus force measurements on LIS and show how these powerful measurements can quantify both the thickness and distribution of multiple coexisting fluid layers (i.e., gas and oil) over a nanostructured surface. Using this technique, thousands of force curves were automatically analyzed. The results show that the interfacial tension of the nanobubbles is reduced from 52 ± 9 mN m-1 to 39 ± 4 mN m-1 by the presence of the silicone oil layer.
Collapse
Affiliation(s)
- Sam Peppou-Chapman
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Christopher Vega-Sánchez
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
- School of Electromechanical Engineering, Costa Rica Institute of Technology, Cartago 159-7050, Costa Rica
| | - Chiara Neto
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
33
|
Ganne AA. On the Issue of the Stability of Water-Repellent Infusion Liquids on Hydrophilic and Hydrophobic Silica Substrates. COLLOID JOURNAL 2022. [DOI: 10.1134/s1061933x22040068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
34
|
Lee YA, Cho S, Choi S, Kwon O, Yoon SM, Kim SJ, Park K, Chung S, Moon M. Slippery, Water-Infused Membrane with Grooved Nanotrichomes for Lubricating-Induced Oil Repellency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103950. [PMID: 35138051 PMCID: PMC9069195 DOI: 10.1002/advs.202103950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Water, abundant and ubiquitous in nature, is an easy yet powerful resource for the creatures to survive by putting together with their topologies interfacing their living environment. Here, a slippery, water-infusing surface (SWIS) that retains a thick and stable water layer on the membrane is presented, robustly maintaining the oil repellency against the pressure and friction of immiscible liquids. Inspired by the plant trichome structures and their function, grooved nanotrichome, formed on the fibrous membrane by the oxygen plasma etching, induces robust water lubrication on the SWIS. SWIS membrane repels and separates highly viscous and adhesive oils in air and underwater by preventing oils from adhering to the lubricating surface. Repeated tests both in air and underwater confirm the antiadhesion and self-cleaning properties of the SWIS. The SWIS oil scooper, fixed on a frame with a handle, successfully collects spilled oil on a pilot-scale oil spill site and a real ocean oil spill site by simply scooping and recovering the oil. In addition, SWIS membrane is expected to help protect environments with further applications such as oil-wastewater treatment and oil separation in food.
Collapse
Affiliation(s)
- Young A Lee
- Extreme Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- Department of Biomicrosystem TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Seohyun Cho
- Extreme Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Mechanical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Seounkyun Choi
- School of Mechanical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - O‐Chang Kwon
- Extreme Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
- School of Mechanical EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Sun Mi Yoon
- Extreme Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Seong Jin Kim
- Extreme Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| | - Kyoo‐Chul Park
- Department of Mechanical EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Seok Chung
- Department of Biomicrosystem TechnologyKorea UniversitySeoul02841Republic of Korea
- School of Mechanical EngineeringKorea UniversitySeoul02841Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| | - Myoung‐Woon Moon
- Extreme Materials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792Republic of Korea
| |
Collapse
|
35
|
Zhou Y, Guo C, Dong G, Liu H, Zhou Z, Niu B, Wu D, Li T, Huang H, Liu M, Min T. Tip-Induced In-Plane Ferroelectric Superstructure in Zigzag-Wrinkled BaTiO 3 Thin Films. NANO LETTERS 2022; 22:2859-2866. [PMID: 35312334 DOI: 10.1021/acs.nanolett.1c05028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The complex micro-/nanoscale wrinkle morphology primarily fabricated by elastic polymers is usually designed to realize unique functionalities in physiological, biochemical, bioelectric, and optoelectronic systems. In this work, we fabricated inorganic freestanding BaTiO3 ferroelectric thin films with zigzag wrinkle morphology and successfully modulated the ferroelectric domains to form an in-plane (IP) superstructure with periodic surface charge distribution. Our piezoresponse force microscopy (PFM) measurements and phase-field simulation demonstrate that the self-organized strain/stress field in the zigzag-wrinkled BaTiO3 film generates a corresponding pristine domain structure. These domains can be switched by tip-induced strain gradient (flexoelectricity) and naturally form a robust and unique "braided" in-plane domain pattern, which enables us to offer an effective and convenient way to create a microscopic ferroelectric superstructure. The corresponding periodic surface potential distribution provides an extra degree of freedom in addition to the morphology that could regulate cells or polar molecules in physiological and bioelectric applications.
Collapse
Affiliation(s)
- Yuqing Zhou
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Department of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Changqing Guo
- School of Materials Science and Engineering & Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Guohua Dong
- The Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Haixia Liu
- The Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ziyao Zhou
- The Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ben Niu
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, Jiangsu Key Laboratory for Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Di Wu
- National Laboratory of Solid State Microstructures, Department of Materials Science and Engineering, Jiangsu Key Laboratory for Artificial Functional Materials, Nanjing University, Nanjing 210093, China
| | - Tao Li
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Department of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Houbing Huang
- School of Materials Science and Engineering & Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Ming Liu
- The Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, School of Electronic Science and Engineering, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tai Min
- Center for Spintronics and Quantum Systems, State Key Laboratory for Mechanical Behavior of Materials, Department of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
36
|
Khan S, Jarad NA, Ladouceur L, Rachwalski K, Bot V, Shakeri A, Maclachlan R, Sakib S, Weitz JI, Brown ED, Soleymani L, Didar TF. Transparent and Highly Flexible Hierarchically Structured Polydimethylsiloxane Surfaces Suppress Bacterial Attachment and Thrombosis Under Static and Dynamic Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2108112. [PMID: 35224860 DOI: 10.1002/smll.202108112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Indexed: 06/14/2023]
Abstract
The surface fouling of biomedical devices has been an ongoing issue in healthcare. Bacterial and blood adhesion in particular, severely impede the performance of such tools, leading to poor patient outcomes. Various structural and chemical modifications have been shown to reduce fouling, but all existing strategies lack the combination of physical, chemical, and economic traits necessary for widespread use. Herein, a lubricant infused, hierarchically micro- and nanostructured polydimethylsiloxane surface is presented. The surface is easy to produce and exhibits the high flexibility and optical transparency necessary for incorporation into various biomedical tools. Tests involving two clinically relevant, priority pathogens show up to a 98.5% reduction in the biofilm formation of methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. With blood, the surface reduces staining by 95% and suppresses thrombin generation to background levels. Furthermore, the surface shows applicability within applications such as catheters, extracorporeal circuits, and microfluidic devices, through its effectiveness in dynamic conditions. The perfusion of bacterial media shows up to 96.5% reduction in bacterial adhesion. Similarly, a 95.8% reduction in fibrin networks is observed following whole blood perfusion. This substrate stands to hold high applicability within biomedical systems as a means to prevent fouling, thus improving performance.
Collapse
Affiliation(s)
- Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Noor Abu Jarad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Liane Ladouceur
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Kenneth Rachwalski
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Veronica Bot
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Amid Shakeri
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| | - Roderick Maclachlan
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON, L8S4L7, Canada
| | - Sadman Sakib
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON, L8S4L7, Canada
| | - Jeffrey I Weitz
- Departments of Medicine and Biochemistry and Biomedical Sciences, McMaster University and the Thrombosis & Atherosclerosis Research Institute, 237 Barton Street East, Hamilton, ON, L8L 2X2, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8N 3Z5, Canada
| | - Leyla Soleymani
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- Department of Engineering Physics, McMaster University, 1280 Main Street West, Hamilton, ON, L8S4L7, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
| |
Collapse
|
37
|
Disjoining pressure analysis of the lubricant nanofilm stability of liquid-infused surface upon lubricant depletion. J Colloid Interface Sci 2022; 618:121-128. [PMID: 35334360 DOI: 10.1016/j.jcis.2022.03.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
HYPOTHESIS The structure of the slippery layer and the evolution of functional properties of a lubricant infused substrate (LIS) is determined by the isotherm of disjoining pressure in the lubricant film. METHODS The macroscopic theory of van der Waals forces was applied to the layered system used to model the structure and properties of LIS. For a lubricant layer sandwiched between the flat substrate and air or water, the isotherms of disjoining pressure were calculated and their analysis was used to conclude about stability of LIS. FINDINGS The results obtained for silicone oil and perfluorodecalin on smooth and porous hydrophilic and hydrophobic solids allow selecting the LIS components corresponding to stability of lubricant films in air and water. It was found that for hydrophilic substrates in conditions of lubricant depletion, silicone oil and perfluorodecalin show lubricant film stability in both air and water. On flat or post microtexture hydrophobic substrate with flat tops, the perfluorodecalin lubricating layer is typically stable in air and unstable in water. In contrast, silicone oil lubricating layer demonstrates the stability in a wide range of lubricant film thicknesses for the hydrophobic substrate with flat-top textures in water, however, it can be unstable in air.
Collapse
|
38
|
Zhu Y, McHale G, Dawson J, Armstrong S, Wells G, Han R, Liu H, Vollmer W, Stoodley P, Jakubovics N, Chen J. Slippery Liquid-Like Solid Surfaces with Promising Antibiofilm Performance under Both Static and Flow Conditions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6307-6319. [PMID: 35099179 PMCID: PMC9096797 DOI: 10.1021/acsami.1c14533] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Biofilms are central to some of the most urgent global challenges across diverse fields of application, from medicine to industries to the environment, and exert considerable economic and social impact. A fundamental assumption in anti-biofilms has been that the coating on a substrate surface is solid. The invention of slippery liquid-infused porous surfaces─a continuously wet lubricating coating retained on a solid surface by capillary forces─has led to this being challenged. However, in situations where flow occurs, shear stress may deplete the lubricant and affect the anti-biofilm performance. Here, we report on the use of slippery omniphobic covalently attached liquid (SOCAL) surfaces, which provide a surface coating with short (ca. 4 nm) non-cross-linked polydimethylsiloxane (PDMS) chains retaining liquid-surface properties, as an antibiofilm strategy stable under shear stress from flow. This surface reduced biofilm formation of the key biofilm-forming pathogens Staphylococcus epidermidis and Pseudomonas aeruginosa by three-four orders of magnitude compared to the widely used medical implant material PDMS after 7 days under static and dynamic culture conditions. Throughout the entire dynamic culture period of P. aeruginosa, SOCAL significantly outperformed a typical antibiofilm slippery surface [i.e., swollen PDMS in silicone oil (S-PDMS)]. We have revealed that significant oil loss occurred after 2-7 day flow for S-PDMS, which correlated to increased contact angle hysteresis (CAH), indicating a degradation of the slippery surface properties, and biofilm formation, while SOCAL has stable CAH and sustainable antibiofilm performance after 7 day flow. The significance of this correlation is to provide a useful easy-to-measure physical parameter as an indicator for long-term antibiofilm performance. This biofilm-resistant liquid-like solid surface offers a new antibiofilm strategy for applications in medical devices and other areas where biofilm development is problematic.
Collapse
Affiliation(s)
- Yufeng Zhu
- School
of Engineering, Newcastle University, Newcastle Upon Tyne NE1
7RU, U.K.
| | - Glen McHale
- School
of Engineering, University of Edinburgh, Edinburgh EH9 3FB, U.K.
| | - Jack Dawson
- School
of Engineering, Newcastle University, Newcastle Upon Tyne NE1
7RU, U.K.
| | - Steven Armstrong
- School
of Engineering, University of Edinburgh, Edinburgh EH9 3FB, U.K.
| | - Gary Wells
- School
of Engineering, University of Edinburgh, Edinburgh EH9 3FB, U.K.
| | - Rui Han
- School
of Engineering, Newcastle University, Newcastle Upon Tyne NE1
7RU, U.K.
| | - Hongzhong Liu
- School
of Mechanical Engineering, Xi’an
Jiaotong University, Xi’an 710054, China
| | - Waldemar Vollmer
- Centre
for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle
Upon Tyne NE2 4AX, U.K.
| | - Paul Stoodley
- Department
of Microbial Infection and Immunity and the Department of Orthopaedics, The Ohio State University, Columbus, Ohio 43210, United States
- National
Centre for Advanced Tribology at Southampton (nCATS), National Biofilm
Innovation Centre (NBIC), Mechanical Engineering, University of Southampton, Southampton S017 1BJ, U.K.
| | - Nicholas Jakubovics
- School
of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle
Upon Tyne NE2 4BW, U.K.
| | - Jinju Chen
- School
of Engineering, Newcastle University, Newcastle Upon Tyne NE1
7RU, U.K.
| |
Collapse
|
39
|
Nanobubbles explain the large slip observed on lubricant-infused surfaces. Nat Commun 2022; 13:351. [PMID: 35039515 PMCID: PMC8764024 DOI: 10.1038/s41467-022-28016-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022] Open
Abstract
Lubricant-infused surfaces hold promise to reduce the huge frictional drag that slows down the flow of fluids at microscales. We show that infused Teflon wrinkled surfaces induce an effective slip length 50 times larger than expected based on the presence of the lubricant alone. This effect is particularly striking as it occurs even when the infused lubricant’s viscosity is several times higher than that of the flowing liquid. Crucially, the slip length increases with increasing air content in the water but is much higher than expected even in degassed and plain Milli-Q water. Imaging directly the immersed interface using a mapping technique based on atomic force microscopy meniscus force measurements reveals that the mechanism responsible for this huge slip is the nucleation of surface nanobubbles. Using a numerical model and the height and distribution of these surface nanobubbles, we can quantitatively explain the large fluid slip observed in these surfaces. Why are lubricant-infused surfaces so effective at reducing drag in microfluidic flow? Here, authors reveal that infused nanostructured Teflon wrinkles induce large interfacial slip due to the spontaneous nucleation of surface nanobubbles, a mechanism likely to occur on most rough infused surfaces.
Collapse
|
40
|
Qiu H, Feng K, Gapeeva A, Meurisch K, Kaps S, Li X, Yu L, Mishra YK, Adelung R, Baum M. Functional Polymer Materials for Modern Marine Biofouling Control. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101516] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
41
|
Maryami F, Olad A, Nofouzi K. Fabrication of slippery lubricant-infused porous surface for inhibition of microorganism adhesion on the porcelain surface. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
42
|
|
43
|
Agarwal H, Nyffeler KE, Blackwell HE, Lynn DM. Fabrication of Slippery Liquid-Infused Coatings in Flexible Narrow-Bore Tubing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55621-55632. [PMID: 34775755 PMCID: PMC8840327 DOI: 10.1021/acsami.1c14662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We report a layer-by-layer suction-and-flow approach that enables the fabrication of polymer-based "slippery" liquid-infused porous surfaces (SLIPS) in the confined luminal spaces of flexible, narrow-bore tubing. These SLIPS-coated tubes can prevent or strongly reduce surface fouling after prolonged contact, storage, or flow of a broad range of complex fluids and viscoelastic materials, including many that are relevant in the contexts of medical devices (e.g., blood and urine), food processing (beverages and fluids), and other commercial and industrial applications. The robust and mechanically compliant nature of the nanoporous coating used to host the lubricating oil phase allows these coated tubes to be bent, flexed, and coiled repeatedly without affecting their inherent slippery and antifouling behaviors. Our results also show that SLIPS-coated tubes can prevent the formation of bacterial biofilms after prolonged and repeated flow-based exposure to the human pathogen Staphylococcus aureus and that the anti-biofouling properties of these coated tubes can be further improved or prolonged by coupling this approach with strategies that permit the sustained release of broad-spectrum antimicrobial agents. The suction-and-flow approach used here enables the application of slippery coatings in the confined luminal spaces of narrow-bore tubing that are difficult to access using several other methods for the fabrication of liquid-infused coatings and can be applied to tubing of arbitrary length and diameter. We anticipate that the materials and approaches reported here will prove useful for reducing or preventing biofouling, process fouling, and the clogging or occlusion of tubing in a wide range of consumer, industrial, and healthcare-oriented applications.
Collapse
Affiliation(s)
- Harshit Agarwal
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
| | - Kayleigh E Nyffeler
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, 1550 Linden Dr., Madison, Wisconsin 53706, United States
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - David M Lynn
- Department of Chemical & Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Dr., Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
44
|
Vinx N, Damman P, Leclère P, Bresson B, Fretigny C, Poleunis C, Delcorte A, Cossement D, Snyders R, Thiry D. Investigating the relationship between the mechanical properties of plasma polymer-like thin films and their glass transition temperature. SOFT MATTER 2021; 17:10032-10041. [PMID: 34705005 DOI: 10.1039/d1sm01134k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This work aims at understanding the influence of the substrate temperature (Ts) on the viscoelastic properties of propanethiol plasma polymer films (PPFs). By means of state-of-the-art AFM characterization-based techniques including peak force quantitative nanomechanical mapping (PFQNM), nano dynamic mechanical analysis (nDMA) and "scratch" experiments, it has been demonstrated that the mechanical behaviour of PPFs is dramatically affected by the thermal conditions of the substrate. Indeed, the material behaves from a high viscous liquid (i.e. viscosity ∼ 106 Pa s) to a viscoelastic solid (loss modulus ∼ 1.17 GPa, storage modulus ∼ 1.61 GPa) and finally to an elastic solid (loss modulus ∼ 1.95 GPa, storage modulus ∼ 8.51 GPa) when increasing Ts from 10 to 45 °C. This behaviour is ascribed to an increase in the surface glass transition temperature of the polymeric network. The latter has been correlated with the chemical composition through the presence of unbound molecules acting as plasticizers and the cross-linking density of the layers. In a second step, this knowledge is exploited for the fabrication of a nanopattern by generating surface instabilities in the propanethiol PPF/Al bilayer system.
Collapse
Affiliation(s)
- Nathan Vinx
- Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium.
| | - Pascal Damman
- Interface et Fluides Complexes (Influx), CIRMAP, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium
| | - Philippe Leclère
- Laboratory for Chemistry of Novel Materials (CMN), CIRMAP, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium
| | - Bruno Bresson
- Sciences et Ingénierie de la Matière Molle (SIMM), ESPCI, 10 rue Vauquelin, F-75231 Paris Cedex 05, France
| | - Christian Fretigny
- Sciences et Ingénierie de la Matière Molle (SIMM), ESPCI, 10 rue Vauquelin, F-75231 Paris Cedex 05, France
| | - Claude Poleunis
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCL), Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium
| | - Arnaud Delcorte
- Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCL), Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium
| | - Damien Cossement
- Materia Nova Research Center, Parc Initialis, B-7000 Mons, Belgium
| | - Rony Snyders
- Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium.
- Materia Nova Research Center, Parc Initialis, B-7000 Mons, Belgium
| | - Damien Thiry
- Chimie des Interactions Plasma-Surface (ChIPS), CIRMAP, University of Mons, 20 Place du Parc, B-7000 Mons, Belgium.
| |
Collapse
|
45
|
Semprebon C, Sadullah MS, McHale G, Kusumaatmaja H. Apparent contact angle of drops on liquid infused surfaces: geometric interpretation. SOFT MATTER 2021; 17:9553-9559. [PMID: 34730600 DOI: 10.1039/d1sm00704a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We theoretically investigate the apparent contact angle of drops on liquid infused surfaces as a function of the relative size of the wetting ridge and the deposited drop. We provide an intuitive geometrical interpretation whereby the variation in the apparent contact angle is due to the rotation of the Neumann triangle at the lubricant-drop-gas contact line. We also derive linear and quadratic corrections to the apparent contact angle as power series expansion in terms of pressure differences between the lubricant, drop and gas phases. These expressions are much simpler and more compact compared to those previously derived by Semprebon et al. [Soft Matter, 2017, 13, 101-110].
Collapse
Affiliation(s)
- Ciro Semprebon
- Smart Materials and Surfaces Laboratory, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | - Muhammad Subkhi Sadullah
- King Abdullah University of Science and Technology (KAUST), Water Desalination and Reuse Center (WDRC), Biological and Environmental Science and Engineering (BESE) Division, Thuwal 23955-6900, Saudi Arabia
| | - Glen McHale
- School of Engineering, The University of Edinburgh, Kings Buildings, Edinburgh EH9 3FB, UK.
| | | |
Collapse
|
46
|
Fouling Release Coatings Based on Acrylate-MQ Silicone Copolymers Incorporated with Non-Reactive Phenylmethylsilicone Oil. Polymers (Basel) 2021; 13:polym13183156. [PMID: 34578057 PMCID: PMC8469071 DOI: 10.3390/polym13183156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 12/03/2022] Open
Abstract
Copolymers containing MQ silicone and acrylate were synthesized by controlling the additive amount of compositions. Subsequently, fouling release coatings based on the copolymer with the incorporation of non-reactive phenylmethylsilicone oil were prepared. The surface properties of the coating (CAMQ40) were consistent with that of the polydimethylsiloxane (PDMS) elastomer, which ensured good hydrophobicity. Moreover, the seawater volume swelling rate of all prepared coatings was less than 5%, especially for CAMQ40 with only 1.37%. Copolymers enhanced the mechanical properties of the coatings, while the enhancement was proportional to the molar content of structural units from acrylate in the copolymer. More importantly, the adhesion performance between the prepared coatings and substrates indicated that pull-off strength values were more than 1.6 MPa, meaning a high adhesion strength. The phenylmethylsilicone oil leaching observation determined that the oil leaching efficiency increased with the increase in the structural unit’s molar content from MQ silicone in the copolymer, which was mainly owing to the decrease in compatibility between oil and the cured coating, as well as the decrease in mechanical properties. High oil leaching efficiency could make up for the decrease in the biofouling removal rate due to the enhancement of the elastic modulus. For CAMQ40, it had an excellent antifouling performance at 30 days of exposure time with more than 92% of biofouling removal rate, which was confirmed by biofilm adhesion assay.
Collapse
|
47
|
Rao Q, Lu Y, Song L, Hou Y, Zhan X, Zhang Q. Highly Efficient Self-Repairing Slippery Liquid-Infused Surface with Promising Anti-Icing and Anti-Fouling Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40032-40041. [PMID: 34378911 DOI: 10.1021/acsami.1c09491] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Smart slippery liquid-infused porous surfaces (SLIPSs) have aroused remarkable attention owing to tremendous application foreground in biomedical instruments and industry. However, challenges still remain in fabricating durable SLIPSs. In this work, a fast and highly efficient self-repairing slippery surface (SPU-60M) was fabricated based on a polyurethane membrane and silicone oil. By introducing a great quantity of reversible disulfide bonds into the polymer backbone and hydrogen bonds in the polymer interchain, this SLIPS material could be quickly repaired in 15 min with 97.8% healing efficiency. Moreover, the self-healing efficiency could be maintained at 42.75% after the 10th cutting-healing cycle. Notably, SPU-60M showed excellent self-repairing ability not only in an ambient environment but also in an underwater environment and at ultralow temperatures. Besides, the icing delay time (DT) of SPU-60M could be prolonged to 1182 s at -15 °C, and the ice adhesion strength was only 10.33 kPa at -30 °C. In addition, SPU-60M had excellent anti-fouling performance with BSA adsorption of 2.41 μg/cm2 and Escherichia coli CFU counts of 41 × 104. These findings provide a facile way to design highly efficient self-repairing SLIPSs with multifunctionality.
Collapse
Affiliation(s)
- Qingqing Rao
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
| | - Yulin Lu
- Department of Chemical and Biological Engineering, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen 91054, Germany
| | - Lina Song
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
| | - Yang Hou
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Xiaoli Zhan
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Qinghua Zhang
- College of Chemical and Biological Engineering, Zhejiang University, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
48
|
Composite Slow-Release Fouling Release Coating Inspired by Synergistic Anti-Fouling Effect of Scaly Fish. Polymers (Basel) 2021; 13:polym13162602. [PMID: 34451141 PMCID: PMC8401683 DOI: 10.3390/polym13162602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/02/2021] [Accepted: 08/02/2021] [Indexed: 01/07/2023] Open
Abstract
Inspired by the antifouling properties of scaly fish, the conventional silicone coating with phenylmethylsilicone oil (PSO/PDMS) composite coating was fabricated and modified with single layer polystyrene (PS) microsphere (PSO/PDMS-PS) arrays. The fish scale like micro-nano structures were fabricated on the surface of bio-inspired coating, which can reduce the contact area with the secreted protein membrane of fouling organisms effectively and prevent further adhesion between fouling organisms and bio-inspired coating. Meanwhile, PSO exuded to the coating surface has the similar function with mucus secreted by fish epidermis, which make the coating surface slithery and will be polished with the fouling organisms in turbulent waters. Compared to PSO/PDMS coating without any structure and conventional silicone coating, PSO/PDMS-PS showed better antiadhesion activity against both marine bacteria and benthic diatom (Navicula sp.). Additionally, the existence of PS microspheres can reduce the release rate of PSO greatly, which will extend the service life of coating. Compared to PSO/PDMS coating, the sustained release efficiency of PSO/PDMS-PS coating can reach 23.2%. This facile method for fabricating the bio-inspired composite slow-release antifouling coating shows a widely fabricating path for the development of synergistic anti-fouling coating.
Collapse
|
49
|
Improving the properties of antifouling hybrid composites: The use of Halloysites as nano-containers in epoxy coatings. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Jiang Y, Zhang Z, Qi Y. The Compatibility of Three Silicone Oils with Polydimethylsiloxane and the Microstructure and Properties of Their Composite Coatings. Polymers (Basel) 2021; 13:polym13142355. [PMID: 34301112 PMCID: PMC8309578 DOI: 10.3390/polym13142355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
The compatibility of three types of silicone oil with polydimethylsiloxane, the phase separation of their mixture and the microstructure and properties of their composite coatings were investigated. The existing form of silicone oil in the coating and the precipitation behavior were also studied. The compatibility observed experimentally of the three silicone oils with PDMS is consistent with the results of the thermodynamic calculation. The silicone oil droplet produced by phase separation in the mixture solution can keep its shape in the cured coating, also affecting the microstructure and mechanical properties of the coating. It was found that methyl silicone oil and methyl fluoro silicone oil do not precipitate on the surface, and they have no effect on the surface properties of the coating. In contrast, phenyl silicone oil has obvious effect on the surface, which makes the water contact angle and diiodomethane contact angle of the coating decrease significantly.
Collapse
|