1
|
Verma M, Yadav K, Parihar R, Dutta D, Chaudhuri S, Sivakumar S. Active tumor targeting by core-shell PDMS-HA nanoparticles with sequential delivery of doxorubicin and quercetin to overcome P-glycoprotein efflux pump. NANOSCALE 2025; 17:5033-5055. [PMID: 40013710 DOI: 10.1039/d4nr03040k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The therapeutic efficacy of chemotherapy in various malignancies and solid tumors is significantly limited when used as monotherapy. This study explored a combined treatment approach for breast cancer cells involving sequential delivery of doxorubicin followed by quercetin, both delivered via polydimethylsiloxane nanoparticles decorated with hyaluronic acid. Quercetin inhibits P-glycoprotein efflux action to enhance doxorubicin activity by increasing its intracellular accumulation; hence, both synergistically suppress cancer cell growth by promoting cytotoxicity and apoptosis. Quercetin reverses multidrug resistance, induces arrest in the cell cycle, and alters the mitochondrial membrane potential. The successful delivery and internalization of these drugs into breast cancer cells were confirmed through CD44 ligand recognition, inhibiting cell viability via apoptosis (caspase-induced) and cell arrest in the G2/M phase of the cell cycle. Furthermore, in an MCF-7 (breast cancer) cell-derived xenograft tumor model using NOD/SCID mice, the core-shell PDMS-HA nanoparticle system carrying quercetin and doxorubicin resulted in approximately 65% tumor volume reduction, outperforming the loaded single drug and free drug combination. These results were supported by the TUNEL assay and proliferation index by Ki-67 immunohistochemistry staining, which show substantial cell death and tissue necrosis in the tumor sections. Histological studies of tumor tissues confirm enhanced anticancer efficacy with negligible systemic toxicity to normal organs. Overall, the PDMS-HA delivery system efficiently transports quercetin and doxorubicin to tumor cells, enhancing the antitumor effects against the MCF-7 tumor xenograft model in mice without adverse effects. This study suggests that the targeted co-delivery of phytochemicals and anti-cancer agents can synergistically overcome many barriers associated with tumor treatment.
Collapse
Affiliation(s)
- Madhu Verma
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India.
| | - Krishna Yadav
- Central Experimental Animal Facility, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Rashmi Parihar
- Central Experimental Animal Facility, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Debjani Dutta
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India.
| | - Surabhi Chaudhuri
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, India.
| | - Sri Sivakumar
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
- Material Science Programme, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
- Centre for Environmental Science and Engineering, Center for Nanosciences, Mehta Family Centre for Engineering in Medicine, Gangwal School of Medical Sciences and Technology Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
2
|
Yang X, Sun Y, Zhang H, Liu F, Chen Q, Shen Q, Kong Z, Wei Q, Shen JW, Guo Y. CaCO 3 nanoplatform for cancer treatment: drug delivery and combination therapy. NANOSCALE 2024; 16:6876-6899. [PMID: 38506154 DOI: 10.1039/d3nr05986c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The use of nanocarriers for drug delivery has opened up exciting new possibilities in cancer treatment. Among them, calcium carbonate (CaCO3) nanocarriers have emerged as a promising platform due to their exceptional biocompatibility, biosafety, cost-effectiveness, wide availability, and pH-responsiveness. These nanocarriers can efficiently encapsulate a variety of small-molecule drugs, proteins, and nucleic acids, as well as co-encapsulate multiple drugs, providing targeted and sustained drug release with minimal side effects. However, the effectiveness of single-drug therapy using CaCO3 nanocarriers is limited by factors such as multidrug resistance, tumor metastasis, and recurrence. Combination therapy, which integrates multiple treatment modalities, offers a promising approach for tackling these challenges by enhancing efficacy, leveraging synergistic effects, optimizing therapy utilization, tailoring treatment approaches, reducing drug resistance, and minimizing side effects. CaCO3 nanocarriers can be employed for combination therapy by integrating drug therapy with photodynamic therapy, photothermal therapy, sonodynamic therapy, immunotherapy, radiation therapy, radiofrequency ablation therapy, and imaging. This review provides an overview of recent advancements in CaCO3 nanocarriers for drug delivery and combination therapy in cancer treatment over the past five years. Furthermore, insightful perspectives on future research directions and development of CaCO3 nanoparticles as nanocarriers in cancer treatment are discussed.
Collapse
Affiliation(s)
- Xiaorong Yang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Yue Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Hong Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Fengrui Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Qin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Qiying Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhe Kong
- Center for Advanced Optoelectronic Materials and Devices, Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Qiaolin Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, China
| | - Jia-Wei Shen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yong Guo
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
3
|
Xue H, Ju Y, Ye X, Dai M, Tang C, Liu L. Construction of intelligent drug delivery system based on polysaccharide-derived polymer micelles: A review. Int J Biol Macromol 2024; 254:128048. [PMID: 37967605 DOI: 10.1016/j.ijbiomac.2023.128048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 10/23/2023] [Accepted: 11/10/2023] [Indexed: 11/17/2023]
Abstract
Micelles are nanostructures developed via the spontaneous assembly of amphiphilic polymers in aqueous systems, which possess the advantages of high drug stability or active-ingredient solubilization, targeted transport, controlled release, high bioactivity, and stability. Polysaccharides have excellent water solubility, biocompatibility, and degradability, and can be modified to achieve a hydrophobic core to encapsulate hydrophobic drugs, improve drug biocompatibility, and achieve regulated delivery of the loaded drug. Micelles drug delivery systems based on polysaccharides and their derivatives show great potential in the biomedical field. This review discusses the principles of self-assembly of amphiphilic polymers and the formation of micelles; the preparation of amphiphilic polysaccharides is described in detail, and an overview of common polysaccharides and their modifications is provided. We focus on the review of strategies for encapsulating drugs in polysaccharide-derived polymer micelles (PDPMs) and building intelligent drug delivery systems. This review provides new research directions that will help promote future research and development of PDPMs in the field of drug carriers.
Collapse
Affiliation(s)
- Huaqian Xue
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; School of Pharmacy, Ningxia Medical University, Ningxia 750004, China
| | - Yikun Ju
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Xiuzhi Ye
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| |
Collapse
|
4
|
Wang S, Tavakoli S, Parvathaneni RP, Nawale GN, Oommen OP, Hilborn J, Varghese OP. Dynamic covalent crosslinked hyaluronic acid hydrogels and nanomaterials for biomedical applications. Biomater Sci 2022; 10:6399-6412. [PMID: 36214100 DOI: 10.1039/d2bm01154a] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Hyaluronic acid (HA), one of the main components of the extracellular matrix (ECM), is extensively used in the design of hydrogels and nanoparticles for different biomedical applications due to its critical role in vivo, degradability by endogenous enzymes, and absence of immunogenicity. HA-based hydrogels and nanoparticles have been developed by utilizing different crosslinking chemistries. The development of such crosslinking chemistries indicates that even subtle differences in the structure of reactive groups or the procedure of crosslinking may have a profound impact on the intended mechanical, physical and biological outcomes. There are widespread examples of modified HA polymers that can form either covalently or physically crosslinked biomaterials. More recently, studies have been focused on dynamic covalent crosslinked HA-based biomaterials since these types of crosslinking allow the preparation of dynamic structures with the ability to form in situ, be injectable, and have self-healing properties. In this review, HA-based hydrogels and nanomaterials that are crosslinked by dynamic-covalent coupling (DCC) chemistry have been critically assessed.
Collapse
Affiliation(s)
- Shujiang Wang
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Shima Tavakoli
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Rohith Pavan Parvathaneni
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Ganesh N Nawale
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Jöns Hilborn
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| | - Oommen P Varghese
- Macromolecular Chemistry Division, Department of Chemistry-Ångström Laboratory, Uppsala University, 751 21, Uppsala, Sweden.
| |
Collapse
|
5
|
Wang Y, Tang Y, Zhao XM, Huang G, Gong JH, Yang SD, Li H, Wan WJ, Jia CH, Chen G, Zhang XN. A Multifunctional Non-viral Vector for the Delivery of MTH1-targeted CRISPR/Cas9 System for Non-Small Cell Lung Cancer Therapy. Acta Biomater 2022; 153:481-493. [PMID: 36162766 DOI: 10.1016/j.actbio.2022.09.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system adapted from bacteria is a programmable nuclease-based genome editing tool. The long-lasting effect of gene silencing or correction is beneficial in cancer treatment. Considering the need to broaden the practical application of this technology, highly efficient non-viral vectors are urgently required. We prepared a multifunctional non-viral vector that could actively target tumor cells and deliver CRISPR/Cas9 plasmids into nuclei of cancer cells. Protamine sulfate (PS) which contains nuclear localization sequence was utilized to condense plasmid DNA and facilitate nuclei-targeted delivery. Liposome-coated protein/DNA complex avoided the degradation of nuclease in blood circulation. The obtained PS@Lip/pCas9 was further modified with distearoyl phosphoethanolamine-polyethylene glycol-hyaluronic acid (HA) to endow the vector ability to actively target tumor cell. Results suggested that PS@HA-Lip could deliver CRISPR/Cas9 plasmids into nuclei of tumor cells and induce genome editing effect. With the disruption of MTH1 (mutT homolog1) gene, the growth of non-small cell lung cancer was inhibited. Moreover, cell apoptosis in tumor tissue was promoted, and liver metastasis of non-small cell lung cancer (NSCLC) was reduced. Our study has provided a therapeutic strategy targeting MTH1 gene for NSCLC therapy. STATEMENT OF SIGNIFICANCE: CRISPR/Cas9 as a powerful tool for genome editing has drawn much attention. The long-lasting effect possesses unique advantage in cancer treatment. Non-viral vectors have high loading capacity, high safety and low immunogenicity, playing an important role in CRISPR/Cas9 delivery. In our study, a multifunctional non-viral vector for the efficient delivery of CRISPR/Cas9 plasmid was constructed. With the active targeting ligand and nuclei-targeting component, the cargo was efficiently delivered into cell nuclei and exerted genome editing effect. By using this vector, we successfully inhibited the growth and induced the apoptosis of non-small cell lung cancer by disrupting MTH1 expression with good safety. Our work provided an efficient non-vial vector for CRISPR/Cas9 delivery and explored the possibility for cancer treatment.
Collapse
Affiliation(s)
- Yu Wang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Jiangsu Suzhou 215123, China
| | - Yan Tang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Jiangsu Suzhou 215123, China
| | - Xiao-Mei Zhao
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Jiangsu Suzhou 215123, China
| | - Gui Huang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Jiangsu Suzhou 215123, China
| | - Jin-Hong Gong
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Jiangsu Suzhou 215123, China; Department of Pharmacy, Changzhou the Second People's Hospital Affiliated to Nanjing Medical University, Jiangsu Changzhou 213000, China
| | - Shu-di Yang
- Suzhou Polytechnic Institute of Agriculture, Jiangsu Suzhou 215000, China
| | - Hui Li
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Jiangsu Suzhou 215123, China
| | - Wen-Jun Wan
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Jiangsu Suzhou 215123, China
| | - Chang-Hao Jia
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Jiangsu Suzhou 215123, China
| | - Gang Chen
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Jiangsu Suzhou 215123, China
| | - Xue-Nong Zhang
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Jiangsu Suzhou 215123, China.
| |
Collapse
|
6
|
Ke L, Wei F, Xie L, Karges J, Chen Y, Ji L, Chao H. A Biodegradable Iridium(III) Coordination Polymer for Enhanced Two-Photon Photodynamic Therapy Using an Apoptosis-Ferroptosis Hybrid Pathway. Angew Chem Int Ed Engl 2022; 61:e202205429. [PMID: 35532958 DOI: 10.1002/anie.202205429] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 12/13/2022]
Abstract
The clinical application of photodynamic therapy is hindered by the high glutathione concentration, poor cancer-targeting properties, poor drug loading into delivery systems, and an inefficient activation of the cell death machinery in cancer cells. To overcome these limitations, herein, the formulation of a promising IrIII complex into a biodegradable coordination polymer (IrS NPs) is presented. The nanoparticles were found to remain stable under physiological conditions but deplete glutathione and disintegrate into the monomeric metal complexes in the tumor microenvironment, causing an enhanced therapeutic effect. The nanoparticles were found to selectively accumulate in the mitochondria where these trigger cell death by hybrid apoptosis and ferroptosis pathways through the photoinduced production of singlet oxygen and superoxide anion radicals. This study presents the first example of a coordination polymer that can efficiently cause cancer cell death by apoptosis and ferroptosis upon irradiation, providing an innovative approach for cancer therapy.
Collapse
Affiliation(s)
- Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Lina Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Johannes Karges
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510006, P. R. China.,MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 400201, P. R. China
| |
Collapse
|
7
|
Ke L, Wei F, Xie L, Karges J, Chen Y, Ji L, Chao H. A Biodegradable Iridium(III) Coordination Polymer for Enhanced Two‐Photon Photodynamic Therapy Using an Apoptosis–Ferroptosis Hybrid Pathway. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Guangdong Provincial Key Laboratory of Digestive Cancer Research The Seventh Affiliated Hospital Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Guangdong Provincial Key Laboratory of Digestive Cancer Research The Seventh Affiliated Hospital Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Lina Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Guangdong Provincial Key Laboratory of Digestive Cancer Research The Seventh Affiliated Hospital Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Johannes Karges
- Department of Chemistry and Biochemistry University of California 9500 Gilman Drive La Jolla CA 92093 USA
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Guangdong Provincial Key Laboratory of Digestive Cancer Research The Seventh Affiliated Hospital Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Guangdong Provincial Key Laboratory of Digestive Cancer Research The Seventh Affiliated Hospital Sun Yat-Sen University Guangzhou 510006 P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Guangdong Provincial Key Laboratory of Digestive Cancer Research The Seventh Affiliated Hospital Sun Yat-Sen University Guangzhou 510006 P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 400201 P. R. China
| |
Collapse
|
8
|
Sun X, Xu Y, Guo Q, Wang N, Wu B, Zhu C, Zhao W, Qiang W, Zheng M. A Novel Nanoprobe for Targeted Imaging and Photothermal/Photodynamic Therapy of Lung Cancer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1360-1367. [PMID: 35060743 DOI: 10.1021/acs.langmuir.1c02434] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An effective accumulation of the photosensitive drugs in the target tissues is a vital prerequisite for obtaining the optimal photodynamic or photothermal treatment effects during the lung cancer treatment. In this study, porous Fe3O4 nanoparticles were used to efficiently load the near-infrared photosensitive drug indocyanine green (ICG) in the pores (denoted as Fe/ICG) by electrostatic adsorption. Subsequently, Fe/ICG was modified with hyaluronic acid (HA) to construct a novel target nanoprobe (denoted as Fe/ICG@HA). Fe/ICG@HA exhibited not only excellent ICG loading and stability but also a significant uptake by the lung cancer cells owing to the targeting characteristics. Meanwhile, the nanoprobe improved the efficiency of thermal conversion and generation of singlet oxygen, thereby resulting in an optimal photothermal/photodynamic therapy effect. Based on the in vivo experiments and T2-magnetic resonance (MR) imaging, the nanoprobe was confirmed to possess excellent tumor-targeting abilities. Furthermore, under 808 nm laser irradiation, a significant therapeutic effect was observed on the tumor growth in the animal models. The proposed treatment strategy may provide a functional pathway for the targeted combined photothermal/photodynamic lung cancer therapy.
Collapse
Affiliation(s)
- Xiyang Sun
- Hongqiao International Institute of Medicine, Tong ren Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xian Xia Road, Shanghai 200336, China
- Department of Thoracic Surgery, Tong ren Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xian Xia Road, Shanghai 200336, China
| | - Ye Xu
- Hongqiao International Institute of Medicine, Tong ren Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xian Xia Road, Shanghai 200336, China
- Department of Thoracic Surgery, Tong ren Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xian Xia Road, Shanghai 200336, China
| | - Qingkui Guo
- Hongqiao International Institute of Medicine, Tong ren Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xian Xia Road, Shanghai 200336, China
- Department of Thoracic Surgery, Tong ren Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xian Xia Road, Shanghai 200336, China
| | - Ning Wang
- Hongqiao International Institute of Medicine, Tong ren Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xian Xia Road, Shanghai 200336, China
- Department of Thoracic Surgery, Tong ren Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xian Xia Road, Shanghai 200336, China
| | - Bin Wu
- Hongqiao International Institute of Medicine, Tong ren Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xian Xia Road, Shanghai 200336, China
- Department of Thoracic Surgery, Tong ren Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xian Xia Road, Shanghai 200336, China
| | - Chen Zhu
- Department of Thoracic Surgery, Tong ren Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xian Xia Road, Shanghai 200336, China
| | - Wen Zhao
- Department of Thoracic Surgery, Tong ren Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xian Xia Road, Shanghai 200336, China
| | - Wenliang Qiang
- Department of Thoracic Surgery, Tong ren Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xian Xia Road, Shanghai 200336, China
| | - Min Zheng
- Hongqiao International Institute of Medicine, Tong ren Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xian Xia Road, Shanghai 200336, China
- Department of Thoracic Surgery, Tong ren Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xian Xia Road, Shanghai 200336, China
| |
Collapse
|
9
|
Yue S, Zhang Y, Wei Y, Haag R, Sun H, Zhong Z. Cetuximab-Polymersome-Mertansine Nanodrug for Potent and Targeted Therapy of EGFR-Positive Cancers. Biomacromolecules 2021; 23:100-111. [PMID: 34913340 DOI: 10.1021/acs.biomac.1c01065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Targeted nanomedicines particularly armed with monoclonal antibodies are considered to be the most promising advanced chemotherapy for malignant cancers; however, their development is hindered by their instability and drug leakage problems. Herein, we constructed a robust cetuximab-polymersome-mertansine nanodrug (C-P-DM1) for highly potent and targeted therapy of epidermal growth factor receptor (EGFR)-positive solid tumors. C-P-DM1 with a tailored cetuximab surface density of 2 per P-DM1 exhibited a size of ca. 60 nm, high stability with minimum DM1 leakage, glutathione-triggered release of native DM1, and 6.0-11.3-fold stronger cytotoxicity in EGFR-positive human breast (MDA-MB-231), lung (A549), and liver (SMMC-7721) cancer cells (IC50 = 27.1-135.5 nM) than P-DM1 control. Notably, intravenous injection of C-P-DM1 effectively repressed subcutaneous MDA-MB-231 breast cancer and orthotopic A549-Luc lung carcinoma in mice without inducing toxic effects. Strikingly, intratumoral injection of C-P-DM1 completely cured 60% of mice bearing breast tumor without recurrence. This robust cetuximab-polymersome-mertansine nanodrug provides a promising new strategy for targeted treatment of EGFR-positive solid malignancies.
Collapse
Affiliation(s)
- Shujing Yue
- Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Yifan Zhang
- Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Yaohua Wei
- Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Rainer Haag
- Department of Biology, Chemistry and Pharmacy, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Huanli Sun
- Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
10
|
Mu M, Chen H, Fan R, Wang Y, Tang X, Mei L, Zhao N, Zou B, Tong A, Xu J, Han B, Guo G. A Tumor-Specific Ferric-Coordinated Epigallocatechin-3-gallate cascade nanoreactor for glioblastoma therapy. J Adv Res 2021; 34:29-41. [PMID: 35024179 PMCID: PMC8655135 DOI: 10.1016/j.jare.2021.07.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/21/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023] Open
Abstract
Introduction Numerous options for treatment of glioblastoma have been explored; however, single-drug therapies and poor targeting have failed to provide effective drugs. Chemotherapy has significant antitumor effect, but the efficacy of single-drug therapies in the clinic is limited over a long period of time. Thus, novel therapeutic approaches are necessary to address these critical issues. Objectives The present study, we investigated a tumor-specific metal-tea polyphenol-based cascade nanoreactor for chemodynamic therapy-enhanced chemotherapy. Methods HA-EGCG was synthesized for the first time by introducing epigallocatechin-3-gallate (EGCG) into the skeleton of hyaluronic acid (HA) with reducible disulfide bonds. A rapid and green method was developed to fabricate the metal-tea polyphenol networks (MTP) with an HA-EGCG coating (DOX@MTP/HA-EGCG) based on Fe3+ and EGCG for targeted delivery of doxorubicin hydrochloride (DOX). GL261 cells were used to evaluate the antitumor efficacy of the DOX@MTP/HA-EGCG nanoreactor in vitro and in vivo. Results DOX@MTP/HA-EGCG nanoreactors were able to disassemble, resulting in escape of their components from lysosomes and precise release of DOX, Fe3+, and EGCG in the tumor cells. HA-EGCG depleted glutathione to amplify oxidative stress and enhance chemodynamic therapy. The results of in vivo experiments suggested that DOX@MTP/HA-EGCG specifically accumulates at the CD44-overexpressing GL261 tumor sites and that sustained release of DOX and Fe3+ induced a distinct therapeutic outcome. Conclusions The findings suggested the developed nanoreactor has promising potential as a future GL261 glioblastoma therapy.
Collapse
Affiliation(s)
- Min Mu
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Haifeng Chen
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Rangrang Fan
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Yuelong Wang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Xin Tang
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Lan Mei
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Na Zhao
- School of Pharmacy, Shihezi University, and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, China
| | - Bingwen Zou
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Jianguo Xu
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| | - Bo Han
- School of Pharmacy, Shihezi University, and Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, Shihezi, 832002, China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, and Department of Neurosurgery, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China
| |
Collapse
|
11
|
An intelligent cell-selective polymersome-DM1 nanotoxin toward triple negative breast cancer. J Control Release 2021; 340:331-341. [PMID: 34774889 DOI: 10.1016/j.jconrel.2021.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 12/22/2022]
Abstract
Antibody-drug conjugates (ADCs) are among the most significant advances in clinical cancer treatments, however, they are haunted with fundamental issues like low drug/antibody ratio (DAR), need of large amount of antibody, and complex chemistry. Targeted nanomedicines while offering a promising alternative to ADCs are afflicted with drug leakage and inferior cancer-specificity. Herein, we developed an intelligent cell-selective nanotoxin based on anti-CD44 antibody-polymersome-DM1 conjugates (aCD44-AP-DM1) for potent treatment of solid tumors. DM1 was simultaneously coupled to vesicular membrane via disulfide bonds during self-assembly and anti-CD44 antibody was facilely clicked onto polymersome surface, tailor-making an optimal aCD44-AP-DM1 with a controlled antibody density of 5.0, extraordinary DAR of 275, zero drug leakage and rapid reduction-responsive DM1 release. aCD44-AP-DM1 displayed a high specificity and exceptional cytotoxicity toward MDA-MB-231 triple negative breast cancer, SMMC-7721 hepatocellular carcinoma and A549 non-small cell lung cancer cells with half-maximal inhibitory concentrations (IC50) of 21.4, 3.7 and 64.6 ng/mL, respectively, 3.6-47.2-fold exceeding non-targeted P-DM1. Intriguingly, the systemic administration of aCD44-AP-DM1 significantly suppressed subcutaneous MDA-MB-231 tumor xenografts in nude mice while intratumoral injection achieved complete tumor eradication in four out of five mice, without causing toxicity. This intelligent cell-selective nanotoxin has emerged as a better platform over ADCs for targeted cancer therapy.
Collapse
|
12
|
Brossier T, Volpi G, Vasquez-Villegas J, Petitjean N, Guillaume O, Lapinte V, Blanquer S. Photoprintable Gelatin- graft-Poly(trimethylene carbonate) by Stereolithography for Tissue Engineering Applications. Biomacromolecules 2021; 22:3873-3883. [PMID: 34510908 DOI: 10.1021/acs.biomac.1c00687] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The stereolithography process is a powerful additive manufacturing technology to fabricate scaffolds for regenerative medicine. Nevertheless, the quest for versatile inks allowing one to produce scaffolds with controlled properties is still unsatisfied. In this original article, we tackle this bottleneck by synthesizing a panel of photoprocessable hybrid copolymers composed of gelatin-graft-poly(trimethylene carbonate)s (Gel-g-PTMCn). We demonstrated that by changing the length of PTMC blocks grafted from gelatin, it is possible to tailor the final properties of the photofabricated objects. We reported here on the synthesis of Gel-g-PTMCn with various lengths of PTMC blocks grafted from gelatin using hydroxy and amino side groups of the constitutive amino acids. Then, the characterization of the resulting hybrid copolymers was fully investigated by quantitative NMR spectroscopy before rendering them photosensitive by methacrylation of the PTMC terminal groups. Homogeneous composition of the photocrosslinked hybrid polymers was demonstrated by EDX spectroscopy and electronic microscopy. To unravel the individual contribution of the PTMC moiety on the hybrid copolymer behavior, water absorption, contact angle measurements, and degradation studies were undertaken. Interestingly, the photocrosslinked materials immersed in water were examined using tensile experiments and displayed a large panel of behavior from hydrogel to elastomer-like depending on the PTMC/gel ratio. Moreover, the absence of cytotoxicity was conducted following the ISO 10993 assay. As a proof of concept, 3D porous objects were successfully fabricated using stereolithography. Those results validate the great potential of this panel of inks for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Thomas Brossier
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34095, France.,3D Medlab, Marignane 13700, France
| | | | | | - Noémie Petitjean
- LMGC, Univ. Montpellier, CNRS, Montpellier 34090, France.,IRMB, Univ. Montpellier, INSERM, Montpellier 34090, France
| | - Olivier Guillaume
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien Getreidemarkt 9/308, 1060 Vienna, Austria
| | - Vincent Lapinte
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34095, France
| | | |
Collapse
|
13
|
Yang HY, Meng Du J, Jang MS, Mo XW, Sun XS, Lee DS, Lee JH, Fu Y. CD44-Targeted and Enzyme-Responsive Photo-Cross-Linked Nanogels with Enhanced Stability for In Vivo Protein Delivery. Biomacromolecules 2021; 22:3590-3600. [PMID: 34286578 DOI: 10.1021/acs.biomac.1c00653] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One of the biggest challenges of the protein delivery system is to realize stable and high protein encapsulation efficiency in blood circulation and rapid release of protein in the targeted tumor cells. To overcome these hurdles, we fabricated enzyme-responsive photo-cross-linked nanogels (EPNGs) through UV-triggered chemical cross-linking of cinnamyloxy groups in the side chain of PEGylation hyaluronic acid (HA) for CD44-targeted transport of cytochrome c (CC). The EPNGs showed high loading efficiency and excellent stability in different biological media. Notably, CC leakage effectively suppressed under physiological conditions but accelerated release in the presence of hyaluronidase, an overexpressed enzyme in tumor cells. Moreover, thiazolylblue tetrazolium bromide (MTT) results indicated that the vacant EPNGs showed excellent nontoxicity, while CC-loaded EPNGs exhibited higher killing efficiency to CD44-positive A549 cells than to CD44-negative HepG2 cells and free CC. Confocal images confirmed that CC-loaded EPNGs could effectively be internalized by CD44-mediated endocytosis pathway and rapidly escape from the endo/lysosomal compartment. Human lung tumor-bearing mice imaging assays further revealed that CC-loaded EPNGs actively target tumor locations. Remarkably, CC-loaded EPNGs also exhibited enhanced antitumor activity with negligible systemic toxicity. These results implied that these EPNGs have appeared as stable and promising nanocarriers for tumor-targeting protein delivery.
Collapse
Affiliation(s)
- Hong Yu Yang
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, P. R. China
| | - Jia Meng Du
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, P. R. China
| | - Moon-Sun Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Xin Wang Mo
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, P. R. China
| | - Xin Shun Sun
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, P. R. China
| | - Doo Sung Lee
- Theranostic Macromolecules Research Center and School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jung Hee Lee
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine and Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute, Seoul 06351, Republic of Korea
| | - Yan Fu
- College of Materials Science and Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, P. R. China
| |
Collapse
|
14
|
Asrorov AM, Gu Z, Li F, Liu L, Huang Y. Biomimetic camouflage delivery strategies for cancer therapy. NANOSCALE 2021; 13:8693-8706. [PMID: 33949576 DOI: 10.1039/d1nr01127h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cancer remains a significant challenge despite the progress in developing different therapeutic approaches. Nanomedicine has been explored as a promising novel cancer therapy. Recently, biomimetic camouflage strategies have been investigated to change the bio-fate of therapeutics and target cancer cells while reducing the unwanted exposure on normal tissues. Endogenous components (e.g., proteins, polysaccharides, and cell membranes) have been used to develop anticancer drug delivery systems. These biomimetic systems can overcome biological barriers and enhance tumor cell-specific uptake. The tumor-targeting mechanisms include ligand-receptor interactions and stimuli-responsive (e.g., pH-sensitive and light-sensitive) delivery. Drug delivery carriers composed of endogenous components represent a promising approach for improving cancer treatment efficacy. In this paper, different biomimetic drug delivery strategies for cancer treatment are reviewed with a focus on the discussion of their advantages and potential applications.
Collapse
Affiliation(s)
- Akmal M Asrorov
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China. and Institute of Bioorganic Chemistry, Academy of Sciences of Uzbekistan, 83, M. Ulughbek Street, Tashkent 100125, Uzbekistan
| | - Zeyun Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China.
| | - Feng Li
- Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA.
| | - Lingyun Liu
- First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510450, China
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China. and Zhongshan Institute for Drug Discovery, Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan 528437, China and NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
| |
Collapse
|
15
|
Ke L, Wei F, Liao X, Rees TW, Kuang S, Liu Z, Chen Y, Ji L, Chao H. Nano-assembly of ruthenium(II) photosensitizers for endogenous glutathione depletion and enhanced two-photon photodynamic therapy. NANOSCALE 2021; 13:7590-7599. [PMID: 33884385 DOI: 10.1039/d1nr00773d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photodynamic therapy (PDT) is a promising noninvasive cancer treatment. PDT in the clinic faces several hurdles due to the unique tumor environment, a feature of which is high levels of glutathione (GSH). An excess amount of GSH consumes reactive oxygen species (ROS) generated by photosensitizers (PSs), reducing PDT efficiency. Herein, nano-photosensitizers (RuS1 NPs and RuS2 NPs) are reported. These consist of ruthenium complexes joined by disulfide bonds forming GSH sensitive polymer nanoparticles. The NPs achieve enhanced uptake compared to their constituent monomers. Inside cancer cells, high levels of GSH break the S-S bonds releasing PS molecules in the cell. The level of GSH is also then reduced leading to excellent PDT activity. Furthermore, RuS2 NPs functionalized with tumor targeting hyaluronic acid (HA@RuS2 NPs) assessed in vivo were highly effective with minimal side effects. To the best of our knowledge, RuS NPs are the first metal complex-based nano-assembled photosensitizers which exhibit enhanced specificity and consume endogenous GSH simultaneously, thus achieving excellent two-photon PDT efficiency in vitro and in vivo.
Collapse
Affiliation(s)
- Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zhou Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
16
|
Xiong S, Xiong G, Li Z, Jiang Q, Yin J, Yin T, Zheng H. Gold nanoparticle-based nanoprobes with enhanced tumor targeting and photothermal/photodynamic response for therapy of osteosarcoma. NANOTECHNOLOGY 2021; 32:155102. [PMID: 33395672 DOI: 10.1088/1361-6528/abd816] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Abastract
Plasmonic nanomaterials, especially a wide variety of gold nanoparticles, demonstrate great potential for theranostics of cancer. Herein, a gold nanotriangle with CD133 and hyaluronic acid on its surface loaded with a near-infrared photosensitizer was prepared for enhanced photodynamic/photothermal combined anti-tumor therapy. CD133 and hyaluronic acid provide the nanoprobe with dual tumor targeting, while the hyaluronic acid also protects photosensitive drugs from photodegradation. Thus, the nanoprobe has enhanced photothermal/photodynamic effects. This integrated treatment strategy significantly enhanced photodynamic/photothermal destruction of osteosarcoma cells. In addition, this treatment, induced by mild irradiation with a single wavelength laser, inhibited tumor growth in an osteosarcoma mouse model. These results indicate that this systemic treatment strategy can achieve enhanced anti-tumor therapeutic effects through active tumor targeting and protection of the loaded drugs.
Collapse
Affiliation(s)
- Shengren Xiong
- Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian 350007, People's Republic of China
| | - Guosheng Xiong
- Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian 350007, People's Republic of China
| | - Zhaohui Li
- Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian 350007, People's Republic of China
| | - Qing Jiang
- Fuzhou Traditional Chinese Medicine Hospital, Fuzhou, Fujian 350001, People's Republic of China
| | - Jia Yin
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China
| | - Ting Yin
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan 523808, People's Republic of China
| | - Hong Zheng
- Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, Fujian 350007, People's Republic of China
| |
Collapse
|
17
|
Yu W, Maynard E, Chiaradia V, Arno MC, Dove AP. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chem Rev 2021; 121:10865-10907. [DOI: 10.1021/acs.chemrev.0c00883] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Yu
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Edward Maynard
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Maria C. Arno
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| |
Collapse
|
18
|
Han C, Xu X, Zhang C, Yan D, Liao S, Zhang C, Kong L. Cytochrome c light-up graphene oxide nanosensor for the targeted self-monitoring of mitochondria-mediated tumor cell death. Biosens Bioelectron 2020; 173:112791. [PMID: 33190048 DOI: 10.1016/j.bios.2020.112791] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/30/2020] [Accepted: 11/01/2020] [Indexed: 12/19/2022]
Abstract
Targeting mitochondria-mediated apoptosis has emerged as a promising strategy for tumor therapy. However, technologies used to treat tumors that enable the direct visualization of mitochondria-mediated apoptosis in living cells have not been developed to date. Cytochrome c (Cyt c) translocation from mitochondria is a central mediating event in cell apoptosis. In this study, we developed a multifunctional nanosensor that can monitor the real-time translocation of Cyt c from mitochondria in living cells to evaluate the antitumor effect of dihydroartemisinin (DHA). A fluorophore-tagged DNA aptamer is loaded on a graphene oxide (GO)-based nanovehicle, and the cytosolic release of Cyt c causes the dissociation of the aptamer from the GO nanovehicle and triggers the emission of a red fluorescence signal. Furthermore, DHA linked with a coumarin derivative is loaded on GO as a mitochondria-targeting ligand to improve its antitumor activity. This DHA prodrug also emits a green fluorescence signal when delivered to mitochondria. This nanosensor provides a convenient mechanism to monitor mitochondrial targeting by drugs and mitochondria-induced therapeutic efficacy, which may be possible to diagnose the drug efficacy to optimize the treatment for patients with cancer.
Collapse
Affiliation(s)
- Chao Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Xiao Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Center of Drug Discovery and Department of Pharmaceutics, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Dan Yan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Shanting Liao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Chao Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
19
|
Deng Z, Liu S. Controlled drug delivery with nanoassemblies of redox-responsive prodrug and polyprodrug amphiphiles. J Control Release 2020; 326:276-296. [DOI: 10.1016/j.jconrel.2020.07.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/20/2023]
|
20
|
Fang Y, Lin X, Jin X, Yang D, Gao S, Shi K, Yang M. Design and Fabrication of Dual Redox Responsive Nanoparticles with Diselenide Linkage Combined Photodynamically to Effectively Enhance Gene Expression. Int J Nanomedicine 2020; 15:7297-7314. [PMID: 33061382 PMCID: PMC7534861 DOI: 10.2147/ijn.s266514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/24/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND PEI is currently the most used non-viral gene carrier and the transfection efficiency is closely related to the molecular weight; however, the prominent problem is that the cytotoxicity increased with the molecular weight. METHODS A novel redox responsive biodegradable diselenide cross-linked polymer (dPSP) was designed to enhance gene expression. ICG-pEGFP-TRAIL/dPSP nanoparticles with high drug loading are prepared, which have redox sensitivity and plasmid protection. The transfection efficiency of dPSP nanoparticle was evaluated in vitro. RESULTS The plasmid was compressed by 100% at the N/P ratio of 16, and the particle size was less than 100 nm. When explored onto high concentrations of GSH/H2O2, dPSP4 degraded into small molecular weight cationic substances with low cytotoxicity rapidly. Singlet oxygen (1O2) was produced when indocyanine green (ICG) was irradiated by near-infrared laser irradiation (NIR) to promote oxidative degradation of dPSP4 nanoparticles. Under the stimulation of NIR 808 and redox agent, the particle size and PDI of ICG-pDNA/dPSP nanoparticle increased significantly. CONCLUSION Compared with gene therapy alone, co-transportation of dPSP4 nanoparticle with ICG and pEGFP-TRAIL had better antitumor effect. Diselenide-crosslinked polyspermine had a promising prospect on gene delivery and preparation of multifunctional anti-tumor carrier.
Collapse
Affiliation(s)
- Yan Fang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang110016, People’s Republic of China
| | - Xiaojie Lin
- Department of Pharmaceutics, School of Pharmaceutical Science, Shenyang Pharmaceutical University, Shenyang117004, People’s Republic of China
| | - Xuechao Jin
- Department of Pharmaceutics, School of Pharmaceutical Science, Shenyang Pharmaceutical University, Shenyang117004, People’s Republic of China
| | - Dongjuan Yang
- Department of Pharmaceutics, School of Pharmaceutical Science, Shenyang Pharmaceutical University, Shenyang117004, People’s Republic of China
| | - Shan Gao
- Department of Pharmaceutics, School of Pharmaceutical Science, Shenyang Pharmaceutical University, Shenyang117004, People’s Republic of China
| | - Kai Shi
- Department of Pharmaceutics, School of Pharmaceutical Science, Shenyang Pharmaceutical University, Shenyang117004, People’s Republic of China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang110016, People’s Republic of China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen ODK-2100, Denmark
| |
Collapse
|
21
|
Emerging era of “somes”: polymersomes as versatile drug delivery carrier for cancer diagnostics and therapy. Drug Deliv Transl Res 2020; 10:1171-1190. [PMID: 32504410 DOI: 10.1007/s13346-020-00789-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past two decades, polymersomes have been widely investigated for the delivery of diagnostic and therapeutic agents in cancer therapy. Polymersomes are stable polymeric vesicles, which are prepared using amphiphilic block polymers of different molecular weights. The use of high molecular weight amphiphilic copolymers allows for possible manipulation of membrane characteristics, which in turn enhances the efficiency of drug delivery. Polymersomes are more stable in comparison with liposomes and show less toxicity in vivo. Furthermore, their ability to encapsulate both hydrophilic and hydrophobic drugs, significant biocompatibility, robustness, high colloidal stability, and simple methods for ligands conjugation make polymersomes a promising candidate for therapeutic drug delivery in cancer therapy. This review is focused on current development in the application of polymersomes for cancer therapy and diagnosis. Graphical abstract.
Collapse
|
22
|
Wang J, Muhammad N, Li T, Wang H, Liu Y, Liu B, Zhan H. Hyaluronic Acid-Coated Camptothecin Nanocrystals for Targeted Drug Delivery to Enhance Anticancer Efficacy. Mol Pharm 2020; 17:2411-2425. [PMID: 32437163 DOI: 10.1021/acs.molpharmaceut.0c00161] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tumor-targeted drug delivery via chemotherapy is very effective on cancer treatment. For potential anticancer agent such as Camptothecin (CPT), high chemotherapeutic efficacy and accurate tumor targeting are equally crucial. Inspired by special CD44 binding capability from hyaluronic acid (HA), in this study, novel HA-coated CPT nanocrystals were successfully prepared by an antisolvent precipitation method for tumor-targeted delivery of hydrophobic drug CPT. These HA-coated CPT nanocrystals demonstrated high drug loading efficiency, improved aqueous dispersion, prolonged circulation, and enhanced stability resulting from their nanoscaled sizes and hydrophilic HA layer. Moreover, as compared to crude CPT and naked CPT nanocrystals, HA-coated CPT nanocrystals displayed dramatically enhanced in vitro anticancer activity, apoptosis-inducing potency against CD44 overexpressed cancer cells, and lower toxic effect toward normal cells due to pH-responsive drug release behavior and specific HA-CD44 mediated endocytosis. Additionally, HA-coated CPT nanocrystals performed fairly better antimigration activity and biocompatibility. The possible molecular mechanism regarding this novel drug formulation might be linked to intrinsic mitochondria-mediated apoptosis by an increase of Bax to Bcl-2 ratio and upregulation of P53. Consequently, HA-coated CPT nanocrystals are expected to be an effective nanoplatform in drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Jihui Wang
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China.,School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, Guangzhou Province, P. R. China
| | - Nazim Muhammad
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Tongtong Li
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Han Wang
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Yujia Liu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Bingnan Liu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Honglei Zhan
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| |
Collapse
|
23
|
Zhou J, Ma S, Zhang Y, He Y, Yang J, Zhang H, Luo K, Gu Z. Virus-Inspired Mimics: Dual-pH-Responsive Modular Nanoplatforms for Programmable Gene Delivery without DNA Damage with the Assistance of Light. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22519-22533. [PMID: 32329598 DOI: 10.1021/acsami.0c03486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jie Zhou
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Shengnan Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610041, P. R. China
| | - Yuxin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Yiyan He
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, P. R. China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, California 91711, United States
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, P. R. China
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
24
|
Zhong W, Pang L, Feng H, Dong H, Wang S, Cong H, Shen Y, Bing Y. Recent advantage of hyaluronic acid for anti-cancer application: a review of "3S" transition approach. Carbohydr Polym 2020; 238:116204. [PMID: 32299556 DOI: 10.1016/j.carbpol.2020.116204] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/06/2020] [Accepted: 03/20/2020] [Indexed: 12/25/2022]
Abstract
In recent years, nano drug delivery system has been widely concerned because of its good therapeutic effect. However, the process from blood circulation to cancer cell release of nanodrugs will be eliminated by the human body's own defense trap, thus reducing the therapeutic effect. In recent years, a "3S" transition concept, including stability transition, surface transition and size transition, was proposed to overcome the barriers in delivery process. Hyaluronic (HA) acid has been widely used in delivery of anticancer drugs due to its excellent biocompatibility, biodegradability and specific targeting to cancer cells. In this paper, the strategies and methods of HA-based nanomaterials using "3S" theory are reviewed. The applications and effects of "3S" modified nanomaterials in various fields are also introduced.
Collapse
Affiliation(s)
- Wei Zhong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Long Pang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Haohui Feng
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Haonan Dong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Song Wang
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Yu Bing
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
25
|
Piergies N, Oćwieja M, Paluszkiewicz C, Kwiatek WM. Spectroscopic insights into the effect of pH, temperature, and stabilizer on erlotinib adsorption behavior onto Ag nanosurface. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117737. [PMID: 31757706 DOI: 10.1016/j.saa.2019.117737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/30/2019] [Accepted: 10/30/2019] [Indexed: 06/10/2023]
Abstract
In this study, surface - enhanced Raman spectroscopy (SERS) was applied at the first time for estimation of how pH, temperature, and nanoparticle (NP) stabilizer affect an adsorption behavior of erlotinib (drug approved in a non-small cell lung cancer therapy) onto citrate-stabilized silver nanoparticles (AgNPs). Novel approach to improve cancer therapy assumes application of NPs as an efficient drug delivery system. This strategy requires designing stable drug/nanocarrier conjugates that can effectively interact in the target site. It is also important to perform deeply characterization of a drug orientation on the potential carrier surface and estimation how stable the appeared interaction is. Performed analysis, indicates that pH, temperature, presence of NP stabilizers, and time of incubation have an influence on the occurring adsorption geometry of the drug. However, the observed erlotinib/AgNP interaction remains stable regardless of the applied conditions. These considerations were supported by insightful physicochemical characteristics of the AgNPs and the erlotinib/AgNP conjugates by conducting transmission electron microscopy (TEM) imaging, determination of colloid stability conducted with the use of dynamic light scattering technique (DLS) and measurements of electrophoretic mobility. Such complex approach allows a better understanding of the stability of the erlotinib/AgNP conjugates and provides information how the investigated interaction is affected by the induced perturbations.
Collapse
Affiliation(s)
- Natalia Piergies
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Krakow, Poland.
| | - Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemisty, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | | | - Wojciech M Kwiatek
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342, Krakow, Poland
| |
Collapse
|
26
|
Liu Y, Sun C, Zhang G, Wu J, Huang L, Qiao J, Guan Q. Bio-responsive Bletilla striata polysaccharide-based micelles for enhancing intracellular docetaxel delivery. Int J Biol Macromol 2020; 142:277-287. [PMID: 31593738 DOI: 10.1016/j.ijbiomac.2019.09.099] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/20/2019] [Accepted: 09/13/2019] [Indexed: 12/13/2022]
Abstract
The aim of this study was to design a pH- and redox-dual responsive Bletilla striata polysaccharide (BSP)-based copolymer to enhance anti-tumor drugs release at tumor sites and improve the therapeutic effect. The copolymer was synthesized using stearic acid (SA) and cystamine via a disulfide linkage and characterized using 1H-Nuclear Magnetic Resonance spectroscopy and Fourier Transform Infrared spectroscopy. The BSP-ss-SA copolymer could self-assemble into micelle in an aqueous environment and could encapsulate docetaxel therein. Its inhibitory effects on HepG2 cells and 4 T1 cells were determined. Besides, the anti-cancer effects in vivo and histopathological study of 4 T1-bearing tumor mice were also evaluated. Docetaxel-loaded BSP-ss-SA micelles showed significant pH-sensitive release behavior, supplying a greater drug release percentage in pH 5.0 media compared to pH 7.4 media. BSP-ss-SA micelles exhibited a clear redox-responsive release property in pH 7.4 media whereas the similar cumulative release percentage of docetaxel from BSP-ss-SA micelles in pH 5.0 media in the presence and absence of DL-dithiothreitol. The Docetaxel-loaded BSP-ss-SA micelles clearly inhibited the proliferation of HepG2 and 4 T1 cells compared with docetaxel solution. The results of MTT and histopathological study indicated that BSP-ss-SA copolymer exhibited good blood compatibility. The BSP-ss-SA copolymer may be used as carriers to deliver anti-tumor drugs to special tumor tissues.
Collapse
Affiliation(s)
- Yuran Liu
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Cheng Sun
- Sinotherapeutics Inc., Shanghai 201210, China
| | - Guangyuan Zhang
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Ji Wu
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Long Huang
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Jin Qiao
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China
| | - Qingxiang Guan
- Department of Pharmaceutics, School of Pharmacy, Jilin University, No. 1266, Fujin Road, Changchun 130021, China.
| |
Collapse
|
27
|
Yan Y, Dong Y, Yue S, Qiu X, Sun H, Zhong Z. Dually Active Targeting Nanomedicines Based on a Direct Conjugate of Two Purely Natural Ligands for Potent Chemotherapy of Ovarian Tumors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46548-46557. [PMID: 31763810 DOI: 10.1021/acsami.9b17223] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Actively targeted nanomedicines have promised to revolutionize cancer treatment; however, their clinical translation has been limited by either low targetability, use of unsafe materials, or tedious fabrication. Here, we developed CD44 and folate receptor (FR) dually targeted nanoparticulate doxorubicin (HA/FA-NP-DOX) based on a direct conjugate of two purely natural ligands, hyaluronic acid and folic acid (FA), for safe, highly specific, and potent treatment of ovarian tumors in vivo. HA/FA-NP-DOX had a small size and high DOX loading, wherein the particle size decreased from 115, 93, to 89 nm with increasing degree of substitution of FA from 6.4, 8.5, to 11.1, while increased from 80, 93, to 103 nm with increasing DOX loading from 15.0, 23.1, to 31.4 wt %. Interestingly, HA/FA-NP-DOX exhibited excellent lyophilization redispersibility and long-term storage stability with negligible drug leakage while it released 91% of DOX in 48 h at pH 5.0. Cellular studies corroborated that HA/FA-NP-DOX possessed high selectivity to both CD44 and FR, resulting in strong killing of CD44- and FR-positive SKOV-3 ovarian cancer cells while low toxicity against CD44- and FR-negative L929 fibroblast cells. In vivo studies revealed a long elimination half-life of 5.6 h, an elevated tumor accumulation of 12.0% ID/g, and an effective inhibition of the SKOV-3 ovarian tumor for HA/FA-NP-DOX, leading to significant survival benefits over free DOX·HCl and phosphate-buffered saline controls. These dually targeted nanomedicines are simple and safe, providing a potentially translatable treatment for CD44- and FR-positive malignancies.
Collapse
Affiliation(s)
- Yu Yan
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Yangyang Dong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Shujing Yue
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Xinyun Qiu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
28
|
Facile preparation of pH-responsive PEGylated prodrugs for activated intracellular drug delivery. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.04.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Multifunctional hyaluronic acid-mediated quantum dots for targeted intracellular protein delivery and real-time fluorescence imaging. Carbohydr Polym 2019; 224:115174. [DOI: 10.1016/j.carbpol.2019.115174] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/17/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022]
|
30
|
Lv J, Fan Q, Wang H, Cheng Y. Polymers for cytosolic protein delivery. Biomaterials 2019; 218:119358. [DOI: 10.1016/j.biomaterials.2019.119358] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/31/2022]
|
31
|
Rippe M, Cosenza V, Auzély-Velty R. Design of Soft Nanocarriers Combining Hyaluronic Acid with Another Functional Polymer for Cancer Therapy and Other Biomedical Applications. Pharmaceutics 2019; 11:E338. [PMID: 31311150 PMCID: PMC6681414 DOI: 10.3390/pharmaceutics11070338] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
The rapid advancement in medicine requires the search for new drugs, but also for new carrier systems for more efficient and targeted delivery of the bioactive molecules. Among the latter, polymeric nanocarriers have an increasingly growing potential for clinical applications due to their unique physical and chemical characteristics. In this regard, nanosystems based on hyaluronic acid (HA), a polysaccharide which is ubiquitous in the body, have attracted particular interest because of the biocompatibility, biodegradability and nonimmunogenic property provided by HA. Furthermore, the fact that hyaluronic acid can be recognized by cell surface receptors in tumor cells, makes it an ideal candidate for the targeted delivery of anticancer drugs. In this review, we compile a comprehensive overview of the different types of soft nanocarriers based on HA conjugated or complexed with another polymer: micelles, nanoparticles, nanogels and polymersomes. Emphasis is made on the properties of the polymers used as well as the synthetic approaches for obtaining the different HA-polymer systems. Fabrication, characterization and potential biomedical applications of the nanocarriers will also be described.
Collapse
Affiliation(s)
- Marlène Rippe
- Grenoble Alpes University, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, CEDEX 9, 38041 Grenoble, France
| | - Vanina Cosenza
- Grenoble Alpes University, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, CEDEX 9, 38041 Grenoble, France
| | - Rachel Auzély-Velty
- Grenoble Alpes University, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, CEDEX 9, 38041 Grenoble, France.
| |
Collapse
|
32
|
Birhan YS, Hailemeskel BZ, Mekonnen TW, Hanurry EY, Darge HF, Andrgie AT, Chou HY, Lai JY, Hsiue GH, Tsai HC. Fabrication of redox-responsive Bi(mPEG-PLGA)-Se 2 micelles for doxorubicin delivery. Int J Pharm 2019; 567:118486. [PMID: 31260783 DOI: 10.1016/j.ijpharm.2019.118486] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/15/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
Stimuli-responsive polymeric nanostructures have emerged as potential drug carriers for cancer therapy. Herein, we synthesized redox-responsive diselenide bond containing amphiphilic polymer, Bi(mPEG-PLGA)-Se2 from mPEG-PLGA and 3,3'-diselanediyldipropanoic acid (DSeDPA) using DCC/DMAP as coupling agents. Due to its amphiphilic nature, Bi(mPEG-PLGA)-Se2 self-assembled in to stable micelles in aqueous solution with a hydrodynamic size of 123.9 ± 0.85 nm. The Bi(mPEG-PLGA)-Se2 micelles exhibited DOX-loading content (DLC) of 6.61 wt% and encapsulation efficiency (EE) of 54.9%. The DOX-loaded Bi(mPEG-PLGA)-Se2 micelles released 73.94% and 69.54% of their cargo within 72 h upon treatment with 6 mM GSH and 0.1% H2O2, respectively, at pH 7.4 and 37 °C. The MTT assay results demonstrated that Bi(mPEG-PLGA)-Se2 was devoid of any inherent toxicity and the DOX-loaded micelles showed pronounced antitumor activities against HeLa cells, 44.46% of cells were viable at maximum dose of 7.5 µg/mL. The cellular uptake experiment further confirmed the internalization of DOX-loaded Bi(mPEG-PLGA)-Se2 micelles and endowed redox stimuli triggered drug release in cytosol and nuclei of cancer cells. Overall, the results suggested that the smart, biocompatible Bi(mPEG-PLGA)-Se2 copolymer could serve as potential drug delivery biomaterial for the controlled release of hydrophobic drugs in cancer cells.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Balkew Zewge Hailemeskel
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC
| | - Ging-Ho Hsiue
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan, ROC.
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC.
| |
Collapse
|
33
|
Hayes AJ, Melrose J. Glycosaminoglycan and Proteoglycan Biotherapeutics in Articular Cartilage Protection and Repair Strategies: Novel Approaches to Visco‐supplementation in Orthobiologics. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anthony J. Hayes
- Bioimaging Research HubCardiff School of BiosciencesCardiff University Cardiff CF10 3AX Wales UK
| | - James Melrose
- Graduate School of Biomedical EngineeringUNSW Sydney Sydney NSW 2052 Australia
- Raymond Purves Bone and Joint Research LaboratoriesKolling Institute of Medical ResearchRoyal North Shore Hospital and The Faculty of Medicine and HealthUniversity of Sydney St. Leonards NSW 2065 Australia
- Sydney Medical SchoolNorthernRoyal North Shore HospitalSydney University St. Leonards NSW 2065 Australia
| |
Collapse
|
34
|
Kim H, Shin M, Han S, Kwon W, Hahn SK. Hyaluronic Acid Derivatives for Translational Medicines. Biomacromolecules 2019; 20:2889-2903. [DOI: 10.1021/acs.biomac.9b00564] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hyemin Kim
- PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, South Korea
| | - Myeonghwan Shin
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Seulgi Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, 100 Cheongpa-ro-47-gil, Seoul 04310, South Korea
| | - Sei Kwang Hahn
- PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, South Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|
35
|
Choi CA, Ryplida B, In I, Park SY. Selective redox-responsive theragnosis nanocarrier for breast tumor cells mediated by MnO2/fluorescent carbon nanogel. Eur J Pharm Sci 2019; 134:256-265. [DOI: 10.1016/j.ejps.2019.04.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/25/2019] [Accepted: 04/27/2019] [Indexed: 02/08/2023]
|
36
|
Cao J, Wei Y, Zhang Y, Wang G, Ji X, Zhong Z. Iodine-Rich Polymersomes Enable Versatile SPECT/CT Imaging and Potent Radioisotope Therapy for Tumor in Vivo. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18953-18959. [PMID: 31062589 DOI: 10.1021/acsami.9b04294] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Emerging tumor treatment demands high sensitivity and high-spatial resolution diagnosis in combination with targeted therapy. Here, we report that iodine-rich polymersomes (I-PS) enable versatile single-photon emission computed tomography (SPECT)/computed tomography (CT) dual-modal imaging and potent radioisotope therapy for breast cancer in vivo. Interestingly, I-PS could be easily and stably labeled with radioiodine, 125I and 131I. Dynamic light scattering and transmission electron microscopy showed that 125I-PS had a size of 106 nm and vesicular morphology, similar to those of the parent I-PS. Methyl thiazolyl tetrazolium assays displayed that I-PS and 125I-PS were noncytotoxic, whereas 131I-PS caused significant death of 4T1 cells at 5 mg PS/mL with a radioactivity of 12 μCi. Pharmacokinetic and biodistribution studies showed that 125I-PS has a prolonged circulation and distributes mainly in tumor and the reticuloendothelial system. The intravenous injection of 125I-PS to 4T1 murine breast tumor-bearing mice allowed simultaneous high sensitivity and high-spatial resolution imaging of tumor by SPECT and CT, respectively. The therapeutic studies revealed that 131I-PS could effectively retard the growth of 4T1 breast tumor and significantly prolong mice survival time. The hematoxylin and eosin staining assay proved that 131I-PS induced tumor cell death. I-PS emerges as a robust and versatile platform for dual-modal imaging and targeted radioisotope therapy.
Collapse
Affiliation(s)
| | | | | | | | - Xiang Ji
- Institute of Nuclear Energy Safety Technology , Chinese Academy of Sciences , Hefei 230031 , P. R. China
| | | |
Collapse
|
37
|
Tang X, Li Q, Liang X, Yang J, Liu Z, Li Q. Inhibition of proliferation and migration of tumor cells through lipoic acid-modified oligoethylenimine-mediated p53 gene delivery. NEW J CHEM 2019. [DOI: 10.1039/c8nj05368e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Inhibition of proliferation and migration of tumor cells through lipoic acid-modified oligoethylenimine-mediated p53 gene delivery.
Collapse
Affiliation(s)
- Xiuhui Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Qing Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| | - Ziling Liu
- Department of Cancer Center, The First Hospital of Jilin University
- Changchun
- China
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- China
| |
Collapse
|
38
|
Oh JK. Disassembly and tumor-targeting drug delivery of reduction-responsive degradable block copolymer nanoassemblies. Polym Chem 2019. [DOI: 10.1039/c8py01808a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Review on recent strategies to synthesize novel disulfide-containing reductively-degradable block copolymers and their nanoassemblies as being classified with the number, position, and location of the disulfide linkages toward effective tumor-targeting intracellular drug delivery exhibiting enhanced release of encapsulated drugs.
Collapse
Affiliation(s)
- Jung Kwon Oh
- Department of Chemistry and Biochemistry
- Concordia University
- Montreal
- Canada H4B 1R6
| |
Collapse
|
39
|
Gu Z, Wang X, Cheng R, Cheng L, Zhong Z. Hyaluronic acid shell and disulfide-crosslinked core micelles for in vivo targeted delivery of bortezomib for the treatment of multiple myeloma. Acta Biomater 2018; 80:288-295. [PMID: 30240956 DOI: 10.1016/j.actbio.2018.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/03/2018] [Accepted: 09/15/2018] [Indexed: 12/21/2022]
Abstract
Bortezomib (BTZ) provides one of the best treatments for multiple myeloma (MM). The efficacy of BTZ is, nevertheless, restricted by its fast clearance, low selectivity, and dose limiting toxicities. Here, we report on targeted BTZ therapy of MM in vivo by hyaluronic acid-shelled and core-disulfide-crosslinked biodegradable micelles (HA-CCMs) encapsulating lipophilized BTZ, bortezomib-pinanediol (BP). HA-CCMs loaded with 7.3 BTZ equiv. wt% exhibited a small size of 78 nm, good stability in 10% FBS, and glutathione-triggered drug release. MTT assays in CD44 positive LP-1 multiple myeloma cells revealed that BP encapsulated in HA-CCMs caused enhanced antiproliferative effect compared with free BP. Flow cytometry, confocal microscopy and MTT assays indicated BP-loaded HA-CCMs (HA-CCMs-BP) could actively target to LP-1 cells and induce high antitumor effect. Proteasome activity assays in vitro showed HA-CCMs-BP had a similar proteasome activity inhibition as compared to free BTZ at 18 h. The fluorescence imaging using Cy5-labeled HA-CCMs showed that HA-CCMs had a long elimination half-life and enhanced tumor accumulation via HA-mediated uptake mechanism. The therapeutic studies in LP-1 MM-bearing mice revealed better treatment efficacy of HA-CCMs-BP compared with free BTZ, in which HA-CCMs-BP at 3 mg BTZ equiv./kg brought about significant tumor growth inhibition and survival benefits. Loading of lipophilized BTZ into HA-shelled multifunctional micelles has emerged as an exciting approach for bortezomib therapy of MM. STATEMENT OF SIGNIFICANCE: Multiple myeloma (MM) is the second most common hematological malignancy. Bortezomib (BTZ), a potent proteasome inhibitor, provides one of the best treatments for MM. The clinical efficacy of BTZ is, however, limited by its quick clearance, poor selectivity, and significant side effects including myelosuppression and peripheral neuropathy. Here, we report on targeted BTZ therapy of MM in vivo by hyaluronic acid-shelled and core-disulfide-crosslinked biodegradable micelles (HA-CCMs) encapsulating lipophilized BTZ, bortezomib-pinanediol (BP). Our results showed that BP-loaded HA-CCMs exhibit markedly enhanced toleration, broadened therapeutic window, and significantly more effective growth suppression of CD44-overexpressed multiple myeloma in nude mice than free bortezomib. Lipophilized BTZ-loaded HA-CCMs has opened a new avenue for targeted bortezomib therapy of multiple myeloma.
Collapse
Affiliation(s)
- Zhaoxin Gu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xiuxiu Wang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Ru Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Liang Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China; Department of Pharmaceutics, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
40
|
Yao P, Zhang Y, Meng H, Sun H, Zhong Z. Smart Polymersomes Dually Functionalized with cRGD and Fusogenic GALA Peptides Enable Specific and High-Efficiency Cytosolic Delivery of Apoptotic Proteins. Biomacromolecules 2018; 20:184-191. [DOI: 10.1021/acs.biomac.8b01243] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Peili Yao
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yifan Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hao Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
41
|
Zhang Y, Cai L, Li D, Lao YH, Liu D, Li M, Ding J, Chen X. Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas. NANO RESEARCH 2018; 11:4806-4822. [DOI: 10.1007/s12274-018-2066-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 03/24/2018] [Accepted: 03/25/2018] [Indexed: 01/06/2025]
|
42
|
Fu J, Qiu L. Photo-crosslinked and esterase-sensitive polymersome for improved antitumor effect of water-soluble chemotherapeutics. Nanomedicine (Lond) 2018; 13:2051-2066. [PMID: 30188247 DOI: 10.2217/nnm-2018-0048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Jun Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Liyan Qiu
- Ministry of Education (MOE) Key Laboratory of Macromolecular Synthesis & Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, PR China
- Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| |
Collapse
|
43
|
Sun H, Zhang Y, Zhong Z. Reduction-sensitive polymeric nanomedicines: An emerging multifunctional platform for targeted cancer therapy. Adv Drug Deliv Rev 2018; 132:16-32. [PMID: 29775625 DOI: 10.1016/j.addr.2018.05.007] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/21/2018] [Accepted: 05/12/2018] [Indexed: 01/08/2023]
Abstract
The development of smart delivery systems that are robust in circulation and quickly release drugs following selective internalization into target cancer cells is a key to precision cancer therapy. Interestingly, reduction-sensitive polymeric nanomedicines showing high plasma stability and triggered cytoplasmic drug release behavior have recently emerged as one of the most exciting platforms for targeted delivery of various anticancer drugs including small chemical drugs, proteins, and nucleic acids. In vivo studies in varying tumor models reveal that these reduction-sensitive multifunctional nanomedicines outperform the currently used clinical formulations and reduction-insensitive counterparts, bringing about not only significantly enhanced tumor selectivity, accumulation and inhibition efficacy but also markedly reduced systemic toxicity and improved therapeutic index. In this review, we will highlight the cutting-edge advancement with a focus on in vivo performances as well as future perspectives on reduction-sensitive polymeric nanomedicines for targeted cancer therapy.
Collapse
Affiliation(s)
- Huanli Sun
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Yifan Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
44
|
Wang X, Cheng R, Cheng L, Zhong Z. Lipoyl Ester Terminated Star PLGA as a Simple and Smart Material for Controlled Drug Delivery Application. Biomacromolecules 2018; 19:1368-1373. [PMID: 29553255 DOI: 10.1021/acs.biomac.8b00130] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PLGA, a copolymer of lactide and glycolide, is one of the most used biodegradable polymers that find a wide range of biomedical applications including drug delivery and tissue engineering. However, in spite of remarkable advancement, nanotherapeutics based on PLGA might have drawbacks of inadequate stability, drug leakage, and slow drug release at the tumor site, which reduces its targeting ability and therapeutic efficacy. Here, we report that direct modification of star PLGA ends with lipoic acid, a natural antioxidant present in our human body, affords a smart material (sPLGA-LA) that forms reversibly crosslinked and bioresponsive multifunctional nanoparticles (sPLGA XNPs). Interestingly, sPLGA XNPs obtained in the presence of 23.0 wt % PEG-PDLLA displayed a small hydrodynamic size of 73 ± 1.2 nm, high stability against dilution and 10% serum, while fast destabilization under a reductive environment. Moreover, sPLGA XNPs achieved efficient loading of lipophilic anticancer drug model, doxorubicin (DOX), at a theoretical drug loading content of 13.3 wt %, giving DOX-loaded sPLGA XNPs with reduced drug leakage under physiological conditions as well as significantly accelerated drug release under 10 mM glutathione condition compared with both linear and star PLGA controls (denoted as lPLGA NPs and sPLGA NPs, respectively). Confocal microscopy and flow cytometry displayed obviously stronger DOX fluorescence in B16F10 melanoma cells treated with DOX-loaded sPLGA XNPs than with lPLGA and sPLGA counterparts. MTT assays revealed that DOX-sPLGA XNPs caused 2.4- and 4.2-fold higher antitumor activity toward B16F10 cells than DOX-sPLGA NPs and DOX-lPLGA NPs, respectively. Notably, in vivo pharmacokinetics studies showed prolonged circulation time and significantly improved AUC for DOX-sPLGA XNPs over lPLGA NPs control. Hence, lipoyl ester terminated star PLGA emerges as a simple and smart material for better-controlled anticancer drug delivery.
Collapse
Affiliation(s)
- Xiuxiu Wang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , People's Republic of China
| | - Ru Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , People's Republic of China
| | - Liang Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , People's Republic of China.,Department of Pharmaceutics, College of Pharmaceutical Sciences , Soochow University , Suzhou 215123 , People's Republic of China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , People's Republic of China
| |
Collapse
|
45
|
Zhu Y, Zhang J, Meng F, Cheng L, Feijen J, Zhong Z. Reduction-responsive core-crosslinked hyaluronic acid-b-poly(trimethylene carbonate-co-dithiolane trimethylene carbonate) micelles: synthesis and CD44-mediated potent delivery of docetaxel to triple negative breast tumor in vivo. J Mater Chem B 2018; 6:3040-3047. [DOI: 10.1039/c8tb00094h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Docetaxel-loaded core crosslinked HA-P(TMC-DTC) micelles show high targetability to CD44-overexpressing MDA-MB-231 breast tumor and effectively inhibit tumor growth.
Collapse
Affiliation(s)
- Yaqin Zhu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Liang Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Jan Feijen
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|