1
|
Pradhan L, Kamila S, Padhy G, Das DP, Jena BK. Emerging Vanadium-Doped Cobalt Chloride Carbonate Hydroxide for Flexible Electrochromic Micro-Supercapacitor: Charged-State Prediction from RGB Input by ANN Model. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401238. [PMID: 38602230 DOI: 10.1002/smll.202401238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Multifunctional devices integrated with electrochromic and supercapacitance properties are fascinating because of their extensive usage in modern electronic applications. In this work, vanadium-doped cobalt chloride carbonate hydroxide hydrate nanostructures (V-C3H NSs) are successfully synthesized and show unique electrochromic and supercapacitor properties. The V-C3H NSs material exhibits a high specific capacitance of 1219.9 F g-1 at 1 mV s-1 with a capacitance retention of 100% over 30 000 CV cycles. The electrochromic performance of the V-C3H NSs material is confirmed through in situ spectroelectrochemical measurements, where the switching time, coloration efficiency (CE), and optical modulation (∆T) are found to be 15.7 and 18.8 s, 65.85 cm2 C-1 and 69%, respectively. A coupled multilayer artificial neural network (ANN) model is framed to predict potential and current from red (R), green (G), and blue (B) color values. The optimized V-C3H NSs are used as the active materials in the fabrication of flexible/wearable electrochromic micro-supercapacitor devices (FEMSDs) through a cost-effective mask-assisted vacuum filtration method. The fabricated FEMSD exhibits an areal capacitance of 47.15 mF cm-2 at 1 mV s-1 and offers a maximum areal energy and power density of 104.78 Wh cm-2 and 0.04 mW cm-2, respectively. This material's interesting energy storage and electrochromic properties are promising in multifunctional electrochromic energy storage applications.
Collapse
Affiliation(s)
- Lingaraj Pradhan
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Swagatika Kamila
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Ganeswara Padhy
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
| | - Debi Prasad Das
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bikash Kumar Jena
- CSIR-Institute of Minerals and Materials Technology, Bhubaneswar, 751013, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Liu G, Wang Z, Wang J, Liu H, Li Z. Employing polyaniline/viologen complementarity to enhance coloration and charge dissipation in multicolor electrochromic display with wide modulation range. J Colloid Interface Sci 2024; 655:493-507. [PMID: 37976738 DOI: 10.1016/j.jcis.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Multicolor electrochromic devices have gained attention widely. To support the development of multicolor electrochromic devices, we studied complementary combinations of a multicolor switchable polyaniline (PANI) electrode and 1-methyl-4,4'-bipyridyl iodide (MBI). In particular, MBI acting as an electrolyte and cathodic electrochromic layer can not only simplify the architecture of a device, but also support the color richness of the device simultaneously. Wide band optical modulation in visible light (58.1% at 550 nm) and near-infrared light (35% at 800 nm) confirms the advantageous optical properties of the combination, possessing a wide color gamut range over a range of working voltages adjustable for red, yellow, green, blue, and purple, each having a high color contrast of up to 73.8. This is accompanied by the excellent electrochemical performances of the mentioned combination, such as a fast response time of 1 s/1.9 s (modulating 77%-colored/bleached) with good cycle stability, and high coloration efficiency of 140.63 cm2/C. In addition, utilizing a screen-printed polyvinyl alcohol (PVA) as a masking barrier layer, it is possible to display patterned anti-counterfeit information within the application. Given these electrochromic performance properties, it is considered a readily feasible strategy to utilize PANI and MBI combination to develop novel electrochromic devices, which can be used widely in the areas of smart packaging, smart labels, and flexible smart windows associated with specific application scenarios.
Collapse
Affiliation(s)
- Guodong Liu
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China; Key Laboratory of Functional Printing and Transport Packaging of China National Light Industry, Key Laboratory of Paper-based Functional Materials of China National Light Industry, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper, China.
| | - Zijian Wang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianing Wang
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hanbin Liu
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhijian Li
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
3
|
Li J, Cui J, Lv X, Zhang L, Xia M, Dong J, Ouyang M, Zhang C. Dual Polymer Complementarity Induced Truly Black Electrochromic Film and the Construction of Intelligent Eye-Protection Filters. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53984-53995. [PMID: 37934922 DOI: 10.1021/acsami.3c13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
This work presents a new strategy to achieve a truly black electrochromic film and develop available intelligent eye-protection filters with "day mode" and "night mode", promising to minimize the harmful effects of light on eyes. The soluble red-to-transparent electrochromic polymer P1 was constructed using quinacridone as the basic unit and introduced dual-donor proDOT and DTC units with similar electron-donating capabilities. The beneficial broader absorption associated with the dual-donor in P1 results in ideal spectrum complementarity with P2 (cyan-to-transparent) in the visible region (380-780 nm). In addition to complementary colors, both polymers exhibit good compatibility with respect to electrochemical and electrochromic properties. Therefore, a P1/P2 film with a mass ratio of 1:1.5 for blending is preferred to obtain truly black color with fast switching time and good cyclic stability. Furthermore, an electrochromic device for intelligent eye-protection filters was designed and assembled with the P1/P2 film as the electrochromic layer and P3 featuring a yellow (antiblue ray)-to-dark gray color change as the ion storage layer. The assembled prototype electrochromic device demonstrated promising applications in intelligent day-night optical adjustment for eye-protection filters.
Collapse
Affiliation(s)
- Jin Li
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiankun Cui
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Xiaojing Lv
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ling Zhang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Minao Xia
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Juncheng Dong
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Mi Ouyang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Cheng Zhang
- International Sci. & Tech. Cooperation Base of Energy Materials and Application, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
4
|
Pankow RM, Harbuzaru A, Zheng D, Kerwin B, Forti G, Duplessis ID, Musolino B, Ponce Ortiz R, Facchetti A, Marks TJ. Oxidative-Reductive Near-Infrared Electrochromic Switching Enabled by Porous Vertically Stacked Multilayer Devices. J Am Chem Soc 2023. [PMID: 37279083 DOI: 10.1021/jacs.3c03702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here, we demonstrate for the first time the ability of a porous π-conjugated semiconducting polymer film to enable facile electrolyte penetration through vertically stacked redox-active polymer layers, thereby enabling electrochromic switching between p-type and/or n-type polymers. The polymers P1 and P2, with structures diketopyrrolopyrrole (DPP)-πbridge-3,4,-ethylenedioxythiophene (EDOT)-πbridge [πbridge = 2,5-thienyl for P1 and πbridge = 2,5-thiazolyl for P2] are selected as the p-type polymers and N2200 (a known naphthalenediimide-dithiophene semiconductor) as the n-type polymer. Single-layer porous and dense (control) polymer films are fabricated and extensively characterized using optical microscopy, atomic force microscopy, scanning electron microscopy, and grazing incidence wide-angle X-ray scattering. The semiconducting films are then incorporated into single and multilayer electrochromic devices (ECDs). It is found that when a p-type (P2) porous top layer is used in a multilayer ECD, it enables electrolyte penetration to the bottom layer, enabling oxidative electrochromic switching of the P1 bottom layer at low potentials (+0.4 V versus +1.2 V with dense P2). Importantly, when using a porous P1 as the top layer with an n-type N2200 bottom layer, dynamic oxidative-reductive electrochromic switching is also realized. These results offer a proof of concept for development of new types of multilayer electrochromic devices where precise control of the semiconductor film morphology and polymer electronic structure is essential.
Collapse
Affiliation(s)
- Robert M Pankow
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Alexandra Harbuzaru
- Department of Physical Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| | - Ding Zheng
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brendan Kerwin
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Giacomo Forti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Isaiah D Duplessis
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | | | - Rocio Ponce Ortiz
- Department of Physical Chemistry, Faculty of Sciences, University of Málaga, 29071 Málaga, Spain
| | - Antonio Facchetti
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Flexterra Corporation, 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | - Tobin J Marks
- Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
5
|
Itoi H, Matsuura M, Tanabe Y, Kondo S, Usami T, Ohzawa Y. High utilization efficiencies of alkylbenzokynones hybridized inside the pores of activated carbon for electrochemical capacitor electrodes. RSC Adv 2023; 13:2587-2599. [PMID: 36741185 PMCID: PMC9844457 DOI: 10.1039/d2ra06634c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Benzoquinone derivatives (BQDs) are hybridized inside activated carbon (AC) pores via gas-phase adsorption to prepare electrochemical capacitor materials. In this study, 2 mmol of BQDs are hybridized with 1 g of AC. The hybridization of alkylbenzoquinones (ABQs) with AC enhances the volumetric capacitances of the hybrids from 117 to 201 F cm-3 at 0.05 A g-1 and the capacitances are retained up to 73% at 10 A g-1. Meanwhile, the volumetric capacitances are increased to 163 F cm-3 at 0.05 A g-1 by the hybridization of halobenzoquinones (HBQs) and the capacitance retentions at 0.05 A g-1 are ∼62%, which are higher than that of AC (46%). The results of electrochemical measurements suggest that HBQs exist as agglomerates while ABQs are finely dispersed inside the pores. The ABQs have good contact with the conductive carbon pore surface compared to the HBQs. Consequently, most of the ABQ molecules undergo reversible redox reactions (i.e., high utilization efficiencies), and a large contact area facilitates charge transfer at the large contact interface, thereby endowing the hybrids of ABQs with fast charging and discharging characteristics. HBQ molecules can be finely dispersed by liquid-phase adsorption, but the finely dispersed HBQ molecules are mobile inside the pores at room temperature and gradually form agglomerates. The difference in the existing form of BQDs is explained by the dominant interaction affecting the BQD molecules. ABQs have a strong interaction with the carbon pore surface while the intermolecular interaction is dominant for HBQs.
Collapse
Affiliation(s)
- Hiroyuki Itoi
- Department of Applied Chemistry, Aichi Institute of TechnologyYachigusa 1247, Yakusa-choToyota470-0392Japan
| | - Miku Matsuura
- Department of Applied Chemistry, Aichi Institute of TechnologyYachigusa 1247, Yakusa-choToyota470-0392Japan
| | - Yuichiro Tanabe
- Department of Applied Chemistry, Aichi Institute of TechnologyYachigusa 1247, Yakusa-choToyota470-0392Japan
| | - Shoya Kondo
- Graduate School of Chemical Sciences and Engineering, Hokkaido UniversityKita 13, Nishi 8, Kita-kuSapporo 060-8628Japan
| | - Takanori Usami
- Department of Applied Chemistry, Aichi Institute of TechnologyYachigusa 1247, Yakusa-choToyota470-0392Japan
| | - Yoshimi Ohzawa
- Department of Applied Chemistry, Aichi Institute of TechnologyYachigusa 1247, Yakusa-choToyota470-0392Japan
| |
Collapse
|
6
|
Pathak DK, Moon HC. Recent progress in electrochromic energy storage materials and devices: a minireview. MATERIALS HORIZONS 2022; 9:2949-2975. [PMID: 36239257 DOI: 10.1039/d2mh00845a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Integration of several functionalities into one isolated electrochemical body is necessary to realize compact and tiny smart electronics. Recently, two different technologies, electrochromic (EC) materials and energy storage, were combined to create a single system that supports and drives both functions simultaneously. In EC energy storage devices, the characteristic feature of EC materials, their optical modulation depending on the applied voltage, is used to visually identify the stored energy level in real time. Moreover, combining energy-harvesting and EC storage systems by sharing one electrode facilitates the realization of further compact multifunction systems. In this minireview, we highlight recent groundbreaking achievements in EC multifunction systems where the stored energy levels can be visualized using the color of the device.
Collapse
Affiliation(s)
- Devesh K Pathak
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| | - Hong Chul Moon
- Department of Chemical Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
7
|
Li H, Liang H, Li R, Lu Z, Hou C, Zhang Q, Li Y, Li K, Wang H. Ultrafast, Stable Electrochromics Enabled by Hierarchical Assembly of V 2O 5@C Microrod Network. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48037-48044. [PMID: 36245123 DOI: 10.1021/acsami.2c14286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Vanadium pentoxide (V2O5) with multicolor transition is widely studied in the electrochromic (EC) field to enrich color species of transition-metal oxides; yet, it always suffers from slow switching speed caused by poor electron conductivity and slow ion diffusion, poor cycling stability induced by large volume change during the EC reaction process. Herein, hierarchical network assembly of V2O5@C microrods is introduced to develop an ultrafast, stable, multicolor EC film. Using a two-step pyrolysis that involves metal-organic framework templates, porous microrods with a well-preserved one-dimensional structure are prepared through the assembly of V2O5@C nanocrystals at nanoscale, providing more active sites for ionic insertion and accessible pathways for electron transport. After spray-coating the V2O5@C microrods on conductive substrates, interconnected networks composed of V2O5@C microrods at microscale ensures the infiltration of electrolyte and provide ion transport channels. In addition, the nanoscale porous structure and coated carbon layer can accommodate volumetric changes during ion insertion/extraction process, ensuring high electrochemical stability. As a result, EC electrode with V2O5@C microrods network performed rapid switching speed (1.1/1.0 s) and stable cycle ability (96% after 2000 cycles). At last, flexible large-scale devices and multicolor digital displays were assembled to demonstrate potential application in next-generation wearable electronics.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Hao Liang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto6068502, Japan
| | - Ran Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Ziqiu Lu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Qinghong Zhang
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai201620, China
| | - Yaogang Li
- Engineering Research Center of Advanced Glasses Manufacturing Technology, Ministry of Education, Donghua University, Shanghai201620, China
| | - Kerui Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai201620, China
| |
Collapse
|
8
|
Lu X, Zhang L, Zhang J, Wang C, Zhang A. Facile Preparation of Dual Functional Wearable Devices Based on Hindered Urea Bond-Integrated Reprocessable Polyurea and AgNWs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41421-41432. [PMID: 36049051 DOI: 10.1021/acsami.2c11875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the advancement of material science and electronic technology, wearable devices have been integrated into daily lives, no longer just a stirring idea in science fiction. In the future, robust multifunctionalized wearable devices with low cost and long-term service life are urgently required. However, preparing multifunctional wearable devices robust enough to resist harsh conditions using a commercially available raw material through a simple process still remains challenging. In this work, reprocessable polyurea (HUBTPU) with a hard segment of hindered urea bonds (HUBs) and a soft segment of polyether is synthesized via a facile one-pot method. The robust dual functional wearable devices were obtained by simply spray-coating silver nanowires (AgNWs) on HUBTPU elastomer substrates. Due to the dynamic combination and decomposition of the HUBs and hydrogen bonds at 130 °C, the robust elastomer demonstrates favorable adhesion to various substrates. Especially, the partially embedded AgNW structure is also achieved by using ethanol as a spray solvent. The adhesion of HUBTPU substrates and embedded structure leads to stronger interfacial adhesion and stability compared to non-adhesive substrates. The as-obtained HUBTPU electrodes are able to be heated to 115 °C by applying a low voltage and sensing the strain deformation caused by human movement, which means that the electrodes are endowed with both electrical heating capability and strain sensing functionality. Therefore, this strategy reveals a potential way to prepare multifunctional wearable devices using other conductive particles and adhesive functional polymer substrates.
Collapse
Affiliation(s)
- Xingyuan Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chendu 610065, China
| | - Lun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chendu 610065, China
| | - Jihai Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chendu 610065, China
| | - Chao Wang
- National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, SINOPEC, Beijing Research Institute of Chemical Industry, Yanshan Branch, Beijing 102500, China
| | - Aimin Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chendu 610065, China
| |
Collapse
|
9
|
Simple electrochromic sensor for the determination of amines based on the proton sensitivity of polyaniline film. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Ko TF, Chen PW, Li KM, Young HT. Applied IrO 2 Buffer Layer as a Great Promoter on Ti-Doping V 2O 5 Electrode to Enhance Electrochromic Device Properties. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5179. [PMID: 35897609 PMCID: PMC9369766 DOI: 10.3390/ma15155179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022]
Abstract
Electrochromic devices (ECDs) are a promising material for smart windows that are capable of transmittance variation. However, ECDs are still too expensive to achieve a wide market reach. Reducing fabrication cost remains a challenge. In this study, we inserted an IrO2 buffer layer on Ti-doped V2O5 (Ti:V2O5) as a counter electrode using various Ar/O2 gas flow ratios (1/2, 1/2.5, 1/3 and 1/3.5) in the fabrication process. The buffered-ECD resulted in a larger cyclic voltammetry (CV) area and the best surface average roughness (Ra = 3.91 nm) to promote electrochromic performance. It was fabricated using the low-cost, fast deposition process of vacuum cathodic arc plasma (CAP). This study investigates the influence of the IrO2 buffer/Ti:V2O5 electrode on ECD electrochemical and optical properties, in terms of color efficiency (CE) and cycle durability. The buffered ECD (glass/ITO/WO3/liquid electrolyte/IrO2 buffer/Ti:V2O5/ITO/glass) demonstrated excellent optical transmittance modulation; ∆T = 57% (from Tbleaching (67%) to Tcoloring (10%)) at 633 nm, which was higher than without the buffer (ITO/WO3/liquid electrolyte/Ti:V2O5/ITO) (∆T = 36%). In addition, by means of an IrO2 buffer, the ECD exhibited high coloration efficiency of 96.1 cm2/mC and good durability, which decayed by only 2% after 1000 cycles.
Collapse
Affiliation(s)
- Tien-Fu Ko
- Department of Mechanical Engineering, National Taiwan University, Taipei City 10617, Taiwan; (T.-F.K.); (H.-T.Y.)
- Division of Physics, Institute of Nuclear Energy Research, Taoyuan City 32546, Taiwan
| | - Po-Wen Chen
- Division of Physics, Institute of Nuclear Energy Research, Taoyuan City 32546, Taiwan
| | - Kuan-Ming Li
- Department of Mechanical Engineering, National Taiwan University, Taipei City 10617, Taiwan; (T.-F.K.); (H.-T.Y.)
| | - Hong-Tsu Young
- Department of Mechanical Engineering, National Taiwan University, Taipei City 10617, Taiwan; (T.-F.K.); (H.-T.Y.)
| |
Collapse
|
11
|
Wu C, Shao Z, Zhai W, Zhang X, Zhang C, Zhu C, Yu Y, Liu W. Niobium Tungsten Oxides for Electrochromic Devices with Long-Term Stability. ACS NANO 2022; 16:2621-2628. [PMID: 35081308 DOI: 10.1021/acsnano.1c09234] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is a keen interest in the use of electrochromic materials because they can regulate light and heat, thereby reducing the cooling and heating energy. However, the long response time, short cycle life, and high power consumption of an electrochromic film hinder its development. Here, we report an electrochromic material of complex niobium tungsten oxides. The Nb18W16O93 thin films in the voltage range of 0 to -1.5 V show good redox kinetics with the coloration time of 4.7 s and bleaching time of 4.0 s, respectively. The electrochromic device based on the Nb18W16O93 thin film has an optical modulation of 53.1% at a wavelength of 633 nm, with the coloration efficiency of ∼46.57 cm2 C-1. An excellent electrochemical stability of 78.1% retention after 8000 cycles is also achieved. These good performances are due to the fast and stable Li-ion intercalation/extraction in the open framework of Nb18W16O93 with multiple ion positions. Our work provides a strategy for electrochromic materials with fast response time and good cycle stability.
Collapse
Affiliation(s)
- Cong Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zewei Shao
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, China
| | - Wenbo Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xinshui Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chang Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chengyu Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
12
|
Affiliation(s)
- Wu Zhang
- Ultrafast Optics and Nanophotonics Laboratory Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta T6G 2V4 Canada
| | - Haizeng Li
- Institute of Frontier & Interdisciplinary Science Shandong University Qingdao 266237 China
| | - William W. Yu
- Institute of Frontier & Interdisciplinary Science Shandong University Qingdao 266237 China
| | - Abdulhakem Y. Elezzabi
- Ultrafast Optics and Nanophotonics Laboratory Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta T6G 2V4 Canada
| |
Collapse
|
13
|
Fakharuddin A, Li H, Di Giacomo F, Zhang T, Gasparini N, Elezzabi AY, Mohanty A, Ramadoss A, Ling J, Soultati A, Tountas M, Schmidt‐Mende L, Argitis P, Jose R, Nazeeruddin MK, Mohd Yusoff ARB, Vasilopoulou M. Fiber‐Shaped Electronic Devices. ADVANCED ENERGY MATERIALS 2021; 11. [DOI: 10.1002/aenm.202101443] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Indexed: 09/02/2023]
Abstract
AbstractTextile electronics embedded in clothing represent an exciting new frontier for modern healthcare and communication systems. Fundamental to the development of these textile electronics is the development of the fibers forming the cloths into electronic devices. An electronic fiber must undergo diverse scrutiny for its selection for a multifunctional textile, viz., from the material selection to the device architecture, from the wearability to mechanical stresses, and from the environmental compatibility to the end‐use management. Herein, the performance requirements of fiber‐shaped electronics are reviewed considering the characteristics of single electronic fibers and their assemblies in smart clothing. Broadly, this article includes i) processing strategies of electronic fibers with required properties from precursor to material, ii) the state‐of‐art of current fiber‐shaped electronics emphasizing light‐emitting devices, solar cells, sensors, nanogenerators, supercapacitors storage, and chromatic devices, iii) mechanisms involved in the operation of the above devices, iv) limitations of the current materials and device manufacturing techniques to achieve the target performance, and v) the knowledge gap that must be minimized prior to their deployment. Lessons learned from this review with regard to the challenges and prospects for developing fiber‐shaped electronic components are presented as directions for future research on wearable electronics.
Collapse
Affiliation(s)
| | - Haizeng Li
- Institute of Frontier and Interdisciplinarity Science Shandong University Qingdao 266237 China
| | - Francesco Di Giacomo
- Centre for Hybrid and Organic Solar Energy (CHOSE) Department of Electronic Engineering University of Rome Tor Vergata Rome 00133 Italy
| | - Tianyi Zhang
- Department of Chemistry and Centre for Processable Electronics Imperial College London London W120BZ UK
| | - Nicola Gasparini
- Department of Chemistry and Centre for Processable Electronics Imperial College London London W120BZ UK
| | - Abdulhakem Y. Elezzabi
- Ultrafast Optics and Nanophotonics Laboratory Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta T6G 2V4 Canada
| | - Ankita Mohanty
- School for Advanced Research in Petrochemicals Laboratory for Advanced Research in Polymeric Materials Central Institute of Petrochemicals Engineering and Technology Bhubaneswar Odisha 751024 India
| | - Ananthakumar Ramadoss
- School for Advanced Research in Petrochemicals Laboratory for Advanced Research in Polymeric Materials Central Institute of Petrochemicals Engineering and Technology Bhubaneswar Odisha 751024 India
| | - JinKiong Ling
- Nanostructured Renewable Energy Material Laboratory Faculty of Industrial Sciences and Technology Universiti Malaysia Pahang Pahang Darul Makmur Kuantan 26300 Malaysia
| | - Anastasia Soultati
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research Demokritos Agia Paraskevi Attica 15341 Greece
| | - Marinos Tountas
- Department of Electrical and Computer Engineering Hellenic Mediterranean University Estavromenos Heraklion Crete GR‐71410 Greece
| | | | - Panagiotis Argitis
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research Demokritos Agia Paraskevi Attica 15341 Greece
| | - Rajan Jose
- Nanostructured Renewable Energy Material Laboratory Faculty of Industrial Sciences and Technology Universiti Malaysia Pahang Pahang Darul Makmur Kuantan 26300 Malaysia
| | - Mohammad Khaja Nazeeruddin
- Group for Molecular Engineering of Functional Materials Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) Rue de l'Industrie 17 Sion CH‐1951 Switzerland
| | - Abd Rashid Bin Mohd Yusoff
- Department of Chemical Engineering Pohang University of Science and Technology (POSTECH) Pohang Gyeongbuk 37673 Republic of Korea
| | - Maria Vasilopoulou
- Institute of Nanoscience and Nanotechnology National Center for Scientific Research Demokritos Agia Paraskevi Attica 15341 Greece
| |
Collapse
|
14
|
Ko TF, Chen PW, Li KM, Young HT, Chang CT, Hsu SC. High-Performance Complementary Electrochromic Device Based on Iridium Oxide as a Counter Electrode. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1591. [PMID: 33805178 PMCID: PMC8036697 DOI: 10.3390/ma14071591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 12/20/2022]
Abstract
In complementary electrochromic devices (ECDs), nickel oxide (NiO) is generally used as a counter electrode material for enhancing the coloration efficiency. However, an NiO film as a counter electrode in ECDs is susceptible to degradation upon prolonged electrochemical cycling, which leads to an insufficient device lifetime. In this study, a type of counter electrode iridium oxide (IrO2) layer was fabricated using vacuum cathodic arc plasma (CAP). We focused on the comparison of IrO2 and NiO deposited on a 5 × 5 cm2 indium tin oxide (ITO) glass substrate with various Ar/O2 gas-flow ratios (1/2, 1/2.5, and 1/3) in series. The optical performance of IrO2-ECD (glass/ITO/WO3/liquid electrolyte/IrO2/ITO/glass) was determined by optical transmittance modulation; ∆T = 50% (from Tbleaching (75%) to Tcoloring (25%)) at 633 nm was higher than that of NiO-ECD (ITO/NiO/liquid electrolyte/WO3/ITO) (∆T = 32%). Apart from this, the ECD device demonstrated a fast coloring time of 4.8 s, a bleaching time of 1.5 s, and good cycling durability, which remained at 50% transmittance modulation even after 1000 cycles. The fast time was associated with the IrO2 electrode and provided higher diffusion coefficients and a filamentary shape as an interface that facilitated the transfer of the Li ions into/out of the interface electrodes and the electrolyte. In our result of IrO2-ECD analyses, the higher optical transmittance modulation was useful for promoting electrochromic application to a cycle durability test as an alternative to NiO-ECD.
Collapse
Affiliation(s)
- Tien-Fu Ko
- Department of Mechanical Engineering, National Taiwan University, Taipei City 10617, Taiwan; (T.-F.K.); (H.-T.Y.)
- Division of Physics, Institute of Nuclear Energy Research, Taoyuan City 32546, Taiwan; (C.-T.C.); (S.-C.H.)
| | - Po-Wen Chen
- Division of Physics, Institute of Nuclear Energy Research, Taoyuan City 32546, Taiwan; (C.-T.C.); (S.-C.H.)
| | - Kuan-Ming Li
- Department of Mechanical Engineering, National Taiwan University, Taipei City 10617, Taiwan; (T.-F.K.); (H.-T.Y.)
| | - Hong-Tsu Young
- Department of Mechanical Engineering, National Taiwan University, Taipei City 10617, Taiwan; (T.-F.K.); (H.-T.Y.)
| | - Chen-Te Chang
- Division of Physics, Institute of Nuclear Energy Research, Taoyuan City 32546, Taiwan; (C.-T.C.); (S.-C.H.)
| | - Sheng-Chuan Hsu
- Division of Physics, Institute of Nuclear Energy Research, Taoyuan City 32546, Taiwan; (C.-T.C.); (S.-C.H.)
| |
Collapse
|
15
|
Song Y, Cho J. Interfacial control and design of conductive nanomaterials for transparent nanocomposite electrodes. NANOSCALE 2020; 12:20141-20157. [PMID: 33020788 DOI: 10.1039/d0nr05961g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A few critical issues in preparing transparent conductive electrodes (TCEs) based on solution-processable conductive nanomaterials are their low electrical conductivity and the unfavorable trade-off between electrical conductivity and optical transparency, which are closely related to the organic ligands bound to the nanomaterial surface. In particular, bulky/insulating organic ligands bound to the surface of conductive nanomaterials unavoidably act as high contact resistance sites at the interfaces between neighboring nanomaterials, which adversely affects the charge transfer kinetics of the resultant TCEs. This article reviews the latest research status of various interfacial control approaches for solution-processable TCEs. We describe how these approaches can be effectively applied to conductive nanomaterials and how interface-controlled conductive nanomaterials can be employed to improve the electrical and/or electrochemical performance of various transparent nanocomposite electrodes, including TCEs, energy storage electrodes, and electrochromic electrodes. Last, we provide perspectives on the development direction for next-generation transparent nanocomposite electrodes and breakthroughs for significantly mitigating the complex trade-off between their electrical/electrochemical performance and optical transparency.
Collapse
Affiliation(s)
- Yongkwon Song
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
16
|
Fluorinated Oleophilic Electrochromic Copolymer Based on 3‐(N‐Trifluoroacetamido)thiophene and 3,4‐Ethylenedioxythiophene (EDOT). ChemElectroChem 2020. [DOI: 10.1002/celc.202000530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
17
|
Zhang W, Li H, Yu WW, Elezzabi AY. Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. LIGHT, SCIENCE & APPLICATIONS 2020; 9:121. [PMID: 32695318 PMCID: PMC7360616 DOI: 10.1038/s41377-020-00366-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/15/2020] [Accepted: 07/03/2020] [Indexed: 05/03/2023]
Abstract
Electrochromic displays have been the subject of extensive research as a promising colour display technology. The current state-of-the-art inorganic multicolour electrochromic displays utilize nanocavity structures that sacrifice transparency and thus limit their diverse applications. Herein, we demonstrate a transparent inorganic multicolour display platform based on Zn-based electrochromic devices. These devices enable independent operation of top and bottom electrochromic electrodes, thus providing additional configuration flexibility of the devices through the utilization of dual electrochromic layers under the same or different colour states. Zn-sodium vanadium oxide (Zn-SVO) electrochromic displays were assembled by sandwiching Zn between two SVO electrodes, and they could be reversibly switched between multiple colours (orange, amber, yellow, brown, chartreuse and green) while preserving a high optical transparency. These Zn-SVO electrochromic displays represent the most colourful transparent inorganic-based electrochromic displays to date. In addition, the Zn-SVO electrochromic displays possess an open-circuit potential (OCP) of 1.56 V, which enables a self-colouration behaviour and compelling energy retrieval functionality. This study presents a new concept integrating high transparency and high energy efficiency for inorganic multicolour displays.
Collapse
Affiliation(s)
- Wu Zhang
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 Canada
| | - Haizeng Li
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 Canada
| | - William W. Yu
- Department of Chemistry and Physics, Louisiana State University, Shreveport, LA 71115 USA
| | - Abdulhakem Y. Elezzabi
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 2V4 Canada
| |
Collapse
|
18
|
Chen PW, Chang CT, Ko TF, Hsu SC, Li KD, Wu JY. Fast response of complementary electrochromic device based on WO 3/NiO electrodes. Sci Rep 2020; 10:8430. [PMID: 32439890 PMCID: PMC7242463 DOI: 10.1038/s41598-020-65191-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/28/2020] [Indexed: 11/12/2022] Open
Abstract
Nanoporous structures have proven as an effective way for enhanced electrochromic performance by providing a large surface area can get fast ion/electron transfer path, leading to larger optical modulation and fast response time. Herein, for the first time, application of vacuum cathodic arc plasma (CAP) deposition technology to the synthesis of WO3/NiO electrode films on ITO glass for use in fabricating complementary electrochromic devices (ECDs) with a ITO/WO3/LiClO4-Perchlorate solution/NiO/ITO structure. Our objective was to optimize electrochromic performance through the creation of electrodes with a nanoporous structure. We also examined the influence of WO3 film thickness on the electrochemical and optical characteristics in terms of surface charge capacity and diffusion coefficients. The resulting 200-nm-thick WO3 films achieved ion diffusion coefficients of (7.35 × 10-10 (oxidation) and 4.92 × 10-10 cm2/s (reduction)). The complementary charge capacity ratio of WO3 (200 nm thickness)/NiO (60 nm thickness) has impressive reversibility of 98%. A demonstration ECD device (3 × 4 cm2) achieved optical modulation (ΔT) of 46% and switching times of 3.1 sec (coloration) and 4.6 sec (bleaching) at a wavelength of 633 nm. In terms of durability, the proposed ECD achieved ΔT of 43% after 2500 cycles; i.e., 93% of the initial device.
Collapse
Affiliation(s)
- Po-Wen Chen
- Division of Physics, Institute of Nuclear Energy Research, Taoyuan County, 32546, Taiwan.
| | - Chen-Te Chang
- Division of Physics, Institute of Nuclear Energy Research, Taoyuan County, 32546, Taiwan
| | - Tien-Fu Ko
- Division of Physics, Institute of Nuclear Energy Research, Taoyuan County, 32546, Taiwan
| | - Sheng-Chuan Hsu
- Division of Physics, Institute of Nuclear Energy Research, Taoyuan County, 32546, Taiwan
| | - Ke-Ding Li
- Department of Materials Science and Engineering, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Jin-Yu Wu
- Division of Physics, Institute of Nuclear Energy Research, Taoyuan County, 32546, Taiwan
| |
Collapse
|
19
|
Lv X, Bi Q, Tameev A, Zhang Y, Qian L, Ouyang M, Zhang C. A new green‐to‐transmissive polymer with electroactive poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate) as an interface layer for achieving high‐performance electrochromic device. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20190284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Xiaojing Lv
- International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical EngineeringZhejiang University of Technology Hangzhou People's Republic of China
| | - Qian Bi
- International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical EngineeringZhejiang University of Technology Hangzhou People's Republic of China
| | - Alexey Tameev
- The Laboratory for Electronic and Photonic Processes in Polymer NanomaterialsA.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences Moscow Russia
| | - Yujian Zhang
- Department of Materials ChemistryHuzhou University Huzhou People's Republic of China
| | - Liang Qian
- International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical EngineeringZhejiang University of Technology Hangzhou People's Republic of China
| | - Mi Ouyang
- International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical EngineeringZhejiang University of Technology Hangzhou People's Republic of China
| | - Cheng Zhang
- International Science and Technology Cooperation Base of Energy Materials and Application, College of Chemical EngineeringZhejiang University of Technology Hangzhou People's Republic of China
| |
Collapse
|
20
|
De Keersmaecker M, Reynolds JR. Simple Interface Modification of Electroactive Polymer Film Electrodes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:47131-47142. [PMID: 31799819 DOI: 10.1021/acsami.9b16045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding the role of interface properties is crucial in the search for alternative design strategies to optimize the efficiency, performance, and lifetime of both solid-state and redox active organic semiconductor devices. Recent advances have focused on controlling and tailoring interfacial effects on the morphology and molecular structure of the active film in multilayer devices triggering new developments in the area of interface engineering. Here, we demonstrate that an inorganic electrode/organic semiconductor interface modification using PEDOT:PSS as an interfacial material influences the charge and ion transport, capacitive, morphological, and color switching properties of a solution processed purple-to-clear switching electrochromic PProDOT-(CH2OEtHx)2 polymer film. We find that the barrier to charge transport from electrode to active material is lowered when adding this PEDOT:PSS film, allowing us to present a fully roll-to-roll compatible, simple, and versatile battery-type electrochromic device (ECD) design without the need for oxidizing the charge storage film, in combination with improved processing reproducibility. In addition to producing ECDs with minimal color differences compared to devices prepared in the more traditional and complicated manner, this new ECD design strategy provides competitive performance showing a consistent optical contrast of 50-55% and switching times of 2-4 s.
Collapse
Affiliation(s)
- Michel De Keersmaecker
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - John R Reynolds
- School of Chemistry and Biochemistry, School of Materials Science and Engineering, Center for Organic Photonics and Electronics, Georgia Tech Polymer Network , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
21
|
Jiramitmongkon K, Chotsuwan C, Asawapirom U, Hirunsit P. Cyclopentadithiophene and Diketo-pyrrolo-pyrrole fused rigid copolymer for high optical contrast electrochromic polymer. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1989-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Eskandari K, Pourshojaei Y, Haghani F, Shabani M, Asadipour A. Synthesis, and molecular modeling of bis(3-(piperazine-1-yl)propyl)tungstate (BPPT) nanoparticles, and its first catalytic application for one-pot synthesis of 4 H-chromene derivatives. Heliyon 2019; 5:e02426. [PMID: 31687546 PMCID: PMC6819809 DOI: 10.1016/j.heliyon.2019.e02426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 08/26/2019] [Accepted: 09/02/2019] [Indexed: 01/26/2023] Open
Abstract
A novel, nano-sized, bis(3-(piperazine-1-yl)propyl)tungstate (BPPT) is introduced as an efficient and reusable organometallic catalyst which is considered as a heterogeneous Bronsted-Lowry base and applied successfully for one-pot synthesis of methyl 2-amino-4-aryl substituted-4H-chromene derivatives with good to excellent yields. BPPT has been prepared via a two-step route from natrium tungstate salt. At first, the oxygens of Na2WO4 react with 1-bromo-3-chloropropane via nucleophilic substitution to produce bis(3-choloro propyl)tungstate. Then nucleophilic substitution of piperazine with chlorines produced bis(3-(piperazine-1-yl)propyl) tungstate. Bis(3-(piperazine-1-yl)propyl) tungstate, which was called BPPT, characterized by fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermal gravimetric analysis (TGA), transmission electron microscopy (TEM) and scanning electron microscope (SEM). The catalyst is heterogeneous, green and recyclable. It is a thermally stable and its handling is easy. Its catalytic activity is very high and leads to the production of 4H-pyran derivatives with good to excellent yields in short reaction times. Furthermore, molecular modeling studies and ADMETox prediction revealed that not only it can inhibit acetylcholinesterase enzyme and act as an anti-Alzheimer agent but also has no variation from Lipinski's rule of five and can be a good candidate as anti-Alzheimer agents. These above-mentioned facts can be countered as advantages of the current protocol.
Collapse
Affiliation(s)
- Khalil Eskandari
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Yaghoub Pourshojaei
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Corresponding author.
| | - Fatemeh Haghani
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahnaz Shabani
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Asadipour
- Department of Medicinal Chemistry, Faculty of Pharmacy & Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
23
|
Yun J, Song Y, Cho I, Ko Y, Kwon CH, Cho J. High-performance electrochromic films with fast switching times using transparent/conductive nanoparticle-modulated charge transfer. NANOSCALE 2019; 11:17815-17830. [PMID: 31552994 DOI: 10.1039/c9nr06259a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
One of the most critical issues in electrochromic (EC) films based on transition metal oxides such as tungsten oxides (WOx) is their poor charge transfer property, which is closely related to EC performance. Herein, high-performance EC films with enhanced charge transport are prepared using small-molecule linkers and transparent/conductive nanoparticles (NPs). In this work, oleylamine (OAm)-stabilized WO2.72 nanorods (NRs) and OAm-stabilized indium tin oxide (ITO) NPs are layer-by-layer (LbL)-assembled with small-molecule linkers (tris(2-aminoethyl)amine, TREN) using a ligand-exchange reaction between bulky/insulating OAm ligands and TREN molecules. In this case, there is only one TREN layer between neighboring inorganic components (WO2.72 NRs and/or ITO NPs), resulting in a dramatic decrease in the separation distance. This minimized separation distance as well as the periodic insertion of transparent/conductive ITO NPs can significantly reduce the charge transfer resistance within WO2.72 NR-based EC films, which remarkably improves their EC performance. Compared to EC films without ITO NPs, the formed EC films with ITO NPs exhibit faster switching responses (4.1 times in coloration time and 3.5 times in bleaching time) and a maximum optical modulation of approximately 55.8%. These results suggest that electrochemical performance, including EC performance, can be significantly improved through structural/interfacial designing of nanocomposites.
Collapse
Affiliation(s)
- Junsang Yun
- Department of Chemical & Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
24
|
Zhang W, Li H, Firby CJ, Al-Hussein M, Elezzabi AY. Oxygen-Vacancy-Tunable Electrochemical Properties of Electrodeposited Molybdenum Oxide Films. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20378-20385. [PMID: 31094499 DOI: 10.1021/acsami.9b04386] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Molybdenum oxides have been widely studied in recent years, owing to their electrochromic properties, electrocatalytic activities for hydrogen evolution reactions (HERs) and excellent energy storage performance. These characteristics strongly depend on the valence states of Mo in the oxides such as IV, V, and VI, which can be efficiently altered through oxygen deficiencies within the oxides. Here, we present a colloidal electrodeposition method to introduce oxygen vacancies in such Mo oxide films. We prepared uniform MoO x films and investigated their electrochemical characteristics under different valence states IV, V, and VI. In this paper, we demonstrate that MoO2+ x films, where Mo in valence states IV and V, can be used for high-performance supercapacitor electrodes. Due to their high conductivity, they exhibit an areal capacitance of 89 mF cm-2 at 1 mA cm-2 and negligible capacitance loss within 600 cycles. Additionally, we demonstrate that, in a complementary electrochromic device configuration, the introduction of an MoO2+ x counter electrode remarkably lowers the activation potential of WO3 from -2 to -0.5 V and achieves a fully bleached state at 0.5 V. These properties make the MoO2+ x film an ideal counter electrode to store ions for an electrochromic device. Furthermore, MoO3- y films, where Mo in the valence states V and VI, are obtained by annealing the electrodeposited MoO2+ x film under 200 °C for 24 h. Such films exhibit an excellent catalytic for the HER with an overpotential of 201 mV. Furthermore, we show that MoO3 films, where Mo at its highest oxidation state (VI), can be obtained via annealing the MoO2+ x film at 300 °C for 6 h, and the resulting films exhibit battery characteristics. Our research provides a new and facile strategy to fabricate substoichiometric molybdenum oxide nanofilms and reveals the effect of different valences on the electrochemical performance of molybdenum oxide films, which opens new doorways for future research in the electrochemical applications of transition metal oxides.
Collapse
Affiliation(s)
- Wu Zhang
- Department of Civil and Environmental Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Haizeng Li
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering , University of Alberta , Edmonton , Alberta T6G 2V4 , Canada
| | - Curtis J Firby
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering , University of Alberta , Edmonton , Alberta T6G 2V4 , Canada
| | - Mohamed Al-Hussein
- Department of Civil and Environmental Engineering , University of Alberta , Edmonton , Alberta T6G 1H9 , Canada
| | - Abdulhakem Y Elezzabi
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering , University of Alberta , Edmonton , Alberta T6G 2V4 , Canada
| |
Collapse
|
25
|
Li H, McRae L, Firby CJ, Elezzabi AY. Rechargeable Aqueous Electrochromic Batteries Utilizing Ti-Substituted Tungsten Molybdenum Oxide Based Zn 2+ Ion Intercalation Cathodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807065. [PMID: 30803069 DOI: 10.1002/adma.201807065] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/30/2019] [Indexed: 05/20/2023]
Abstract
Batteries are used in every facet of human lives. Desirable battery architectures demand high capacity, rechargeability, rapid charging speed, and cycling stability, all within an environmentally friendly platform. Many applications are limited by opaque batteries; thus, new functionalities can be unlocked by introducing transparent battery architectures. This can be achieved by incorporating electrochromic and energy storage functions. Transparent electrochromic batteries enable new applications, including variable optical attenuators, optical switches, addressable displays, touch screen devices, and most importantly smart windows for energy-efficient buildings. However, this technology is in the incipient state due to limited electrochromic materials having satisfactory optical contrast and capacity. As such, triggering electrochromism via Zn2+ intercalation is advantageous: Zn is abundant, safe, easily processed in aqueous electrolytes and provides two electrons during redox reactions. Here, enhanced Zn2+ intercalation is demonstrated in Ti-substituted tungsten molybdenum oxide, yielding improved capacity and electrochromic performance. This technique is employed to engineer cathodes exhibiting an areal capacity of 260 mAh m-2 and high optical contrast (76%), utilized in the fabrication of aqueous Zn-ion electrochromic batteries. Remarkably, these batteries can be charged by external voltages and self-recharged by spontaneously extracting Zn2+ , providing a new technology for practical electrochromic devices.
Collapse
Affiliation(s)
- Haizeng Li
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Liam McRae
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Curtis J Firby
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Abdulhakem Y Elezzabi
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| |
Collapse
|
26
|
Li H, McRae L, Firby CJ, Elezzabi AY. Rechargeable Aqueous Electrochromic Batteries Utilizing Ti-Substituted Tungsten Molybdenum Oxide Based Zn 2+ Ion Intercalation Cathodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807065. [PMID: 30803069 DOI: 10.1016/j.joule.2019.06.021] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/30/2019] [Indexed: 05/26/2023]
Abstract
Batteries are used in every facet of human lives. Desirable battery architectures demand high capacity, rechargeability, rapid charging speed, and cycling stability, all within an environmentally friendly platform. Many applications are limited by opaque batteries; thus, new functionalities can be unlocked by introducing transparent battery architectures. This can be achieved by incorporating electrochromic and energy storage functions. Transparent electrochromic batteries enable new applications, including variable optical attenuators, optical switches, addressable displays, touch screen devices, and most importantly smart windows for energy-efficient buildings. However, this technology is in the incipient state due to limited electrochromic materials having satisfactory optical contrast and capacity. As such, triggering electrochromism via Zn2+ intercalation is advantageous: Zn is abundant, safe, easily processed in aqueous electrolytes and provides two electrons during redox reactions. Here, enhanced Zn2+ intercalation is demonstrated in Ti-substituted tungsten molybdenum oxide, yielding improved capacity and electrochromic performance. This technique is employed to engineer cathodes exhibiting an areal capacity of 260 mAh m-2 and high optical contrast (76%), utilized in the fabrication of aqueous Zn-ion electrochromic batteries. Remarkably, these batteries can be charged by external voltages and self-recharged by spontaneously extracting Zn2+ , providing a new technology for practical electrochromic devices.
Collapse
Affiliation(s)
- Haizeng Li
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Liam McRae
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Curtis J Firby
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Abdulhakem Y Elezzabi
- Ultrafast Optics and Nanophotonics Laboratory, Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| |
Collapse
|
27
|
|
28
|
Laschuk NO, Ebralidze II, Poisson J, Egan JG, Quaranta S, Allan JTS, Cusden H, Gaspari F, Naumkin FY, Easton EB, Zenkina OV. Ligand Impact on Monolayer Electrochromic Material Properties. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35334-35343. [PMID: 30230313 DOI: 10.1021/acsami.8b10666] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we present a range of efficient highly durable electrochromic materials that demonstrate excellent redox and lifetime stability, sufficient coloration contrast ratios, and the best-in-class electron-transfer constants. The materials were formed by anchoring as little as a monolayer of predefined iron complexes on a surface-enhanced conductive solid support. The thickness of the substrate was optimized to maximize the change in optical density. We demonstrate that even a slight change in molecular sterics and electronics results in materials with sufficiently different properties. Thus, minor changes in the ligand design give access to materials with a wide range of color variations, including green, purple, and brown. Moreover, ligand architecture dictates either orthogonal or parallel alignment of corresponding metal complexes on the surface due to mono- or bis-quaternization. We demonstrate that monoquaternization of the complexes during anchoring to the surface-bound template layer results in redshifts of the photoabsorption peak. The results of in-solution bis-methylation supported by density functional theory calculations show that the second quaternization may lead to an opposite blueshift (in comparison with monomethylated analogs), depending on the ligand electronics and the environmental change. It is shown that the variations of the photoabsorption peak position for different ligands upon attachment to the surface can be related to the calculated charge distribution and excitation-induced redistribution. Overall, the work demonstrates a well-defined method of electrochromic material color tuning via manipulation of sterics and electronics of terpyridine-based ligands.
Collapse
Affiliation(s)
- Nadia O Laschuk
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - Iraklii I Ebralidze
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - Jade Poisson
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - Jacquelyn G Egan
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - Simone Quaranta
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - Jesse T S Allan
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - Hannah Cusden
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - Franco Gaspari
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - Fedor Y Naumkin
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - E Bradley Easton
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - Olena V Zenkina
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| |
Collapse
|