1
|
Fu L, He Y, Zheng J, Hu Y, Xue J, Li S, Ge C, Yang X, Peng M, Li K, Zeng X, Wei J, Xue DJ, Song H, Chen C, Tang J. Te x Se 1-x Photodiode Shortwave Infrared Detection and Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211522. [PMID: 36972712 DOI: 10.1002/adma.202211522] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/27/2023] [Indexed: 06/16/2023]
Abstract
Short-wave infrared detectors are increasingly important in the fields of autonomous driving, food safety, disease diagnosis, and scientific research. However, mature short-wave infrared cameras such as InGaAs have the disadvantage of complex heterogeneous integration with complementary metal-oxide-semiconductor (CMOS) readout circuits, leading to high cost and low imaging resolution. Herein, a low-cost, high-performance, and high-stability Tex Se1- x short-wave infrared photodiode detector is reported. The Tex Se1- x thin film is fabricated through CMOS-compatible low-temperature evaporation and post-annealing process, showcasing the potential of direct integration on the readout circuit. The device demonstrates a broad-spectrum response of 300-1600 nm, a room-temperature specific detectivity of 1.0 × 1010 Jones, a -3 dB bandwidth up to 116 kHz, and a linear dynamic range of over 55 dB, achieving the fastest response among Te-based photodiode devices and a dark current density 7 orders of magnitude smaller than Te-based photoconductive and field-effect transistor devices. With a simple Si3 N4 packaging, the detector shows high electric stability and thermal stability, meeting the requirements for vehicular applications. Based on the optimized Tex Se1- x photodiode detector, the applications in material identification and masking imaging is demonstrated. This work paves a new way for CMOS-compatible infrared imaging chips.
Collapse
Affiliation(s)
- Liuchong Fu
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yuming He
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jiajia Zheng
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yuxuan Hu
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jiayou Xue
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Sen Li
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Ciyu Ge
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Xuke Yang
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Meng Peng
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Kanghua Li
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Xiangbin Zeng
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jinchao Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ding-Jiang Xue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haisheng Song
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Chao Chen
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
2
|
Ruppert M, Bui H, Sagar LK, Geiregat P, Hens Z, Bester G, Huse N. Intraband dynamics of mid-infrared HgTe quantum dots. NANOSCALE 2022; 14:4123-4130. [PMID: 34874046 DOI: 10.1039/d1nr07007j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Femtosecond pump-probe spectroscopy reveals ultrafast carrier dynamics in mid-infrared (MIR) colloidal HgTe nanoparticles with a bandgap of 2.5 μm. We observe intraband relaxation processes after photoexcitation ranging from resonant excitation up to the multi-exciton generation (MEG) regime by identifying initially excited states from atomic effective pseudopotential calculations. Our study elucidates the earliest dynamics below 10 ps in this technologically relevant material. With increasing photon energy, we find carrier relaxation times as long as 2.1 ps in the MEG regime close to the ionization threshold of the particles. For all photon energies, we extract a constant mean carrier energy dissipation rate of 0.36 eV ps-1 from which we infer negligible impact of the density of states on carrier cooling.
Collapse
Affiliation(s)
- Matthias Ruppert
- Institute for Nanostructure and Solid-State Physics, Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.
| | - Hanh Bui
- Physical Chemistry and Physics departments, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee, 149, 22761 Hamburg, Germany
| | - Laxmi Kishore Sagar
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, Krijgslaan 281 - S3, B-9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, Technologiepark Zwijnaarde 15, B-9052 Gent, Belgium
| | - Pieter Geiregat
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, Krijgslaan 281 - S3, B-9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, Technologiepark Zwijnaarde 15, B-9052 Gent, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, Krijgslaan 281 - S3, B-9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, Technologiepark Zwijnaarde 15, B-9052 Gent, Belgium
| | - Gabriel Bester
- Physical Chemistry and Physics departments, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee, 149, 22761 Hamburg, Germany
| | - Nils Huse
- Institute for Nanostructure and Solid-State Physics, Department of Physics, University of Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, University of Hamburg, Luruper Chaussee, 149, 22761 Hamburg, Germany
| |
Collapse
|
3
|
Schedel C, Strauß F, Kumar K, Maier A, Wurst KM, Michel P, Scheele M. Substrate Effects on the Bandwidth of CdSe Quantum Dot Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47954-47961. [PMID: 34605623 DOI: 10.1021/acsami.1c13581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We investigate the time-resolved photocurrent response of CdSe quantum dot (QD) thin films sensitized with zinc β-tetraaminophthalocyanine (Zn4APc) (Kumar , ACS Appl. Mater. Interfaces, 2019, 11, 48271-48280) on three different substrates, namely, silicon with 230 nm SiO2 dielectric, glass, and polyimide. While Si/SiO2 (230 nm) is not suitable for any transient photocurrent characterization due to an interfering photocurrent response of the buried silicon, we find that polyimide substrates invoke the larger optical bandwidth with 85 kHz vs 67 kHz for the same quantum dot thin film on glass. Upon evaluation of the transient photocurrent, we find that the photoresponse of the CdSe quantum dot films can be described as a combination of carrier recombination and fast trapping within 2.7 ns followed by slower multiple trapping events. The latter are less pronounced on polyimide, which leads to the higher bandwidth. We show that all devices are resistance-capacitance (RC)-time limited and that improvements of photoresistance are the key to further increasing the bandwidth.
Collapse
Affiliation(s)
- Christine Schedel
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Tübingen 72076, Germany
| | - Fabian Strauß
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Tübingen 72076, Germany
| | - Krishan Kumar
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Tübingen 72076, Germany
| | - Andre Maier
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Tübingen 72076, Germany
| | - Kai M Wurst
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Tübingen 72076, Germany
| | - Patrick Michel
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Tübingen 72076, Germany
| | - Marcus Scheele
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Tübingen 72076, Germany
- Center for Light-Matter Interaction, Sensors and Analytics LISA+, University of Tübingen, Tübingen 72076, Germany
| |
Collapse
|
4
|
Infrared photoconduction at the diffusion length limit in HgTe nanocrystal arrays. Nat Commun 2021; 12:1794. [PMID: 33741921 PMCID: PMC7979921 DOI: 10.1038/s41467-021-21959-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/20/2021] [Indexed: 12/02/2022] Open
Abstract
Narrow band gap nanocrystals offer an interesting platform for alternative design of low-cost infrared sensors. It has been demonstrated that transport in HgTe nanocrystal arrays occurs between strongly-coupled islands of nanocrystals in which charges are partly delocalized. This, combined with the scaling of the noise with the active volume of the film, make case for device size reduction. Here, with two steps of optical lithography we design a nanotrench which effective channel length corresponds to 5–10 nanocrystals, matching the carrier diffusion length. We demonstrate responsivity as high as 1 kA W−1, which is 105 times higher than for conventional µm-scale channel length. In this work the associated specific detectivity exceeds 1012 Jones for 2.5 µm peak detection under 1 V at 200 K and 1 kHz, while the time response is as short as 20 µs, making this performance the highest reported for HgTe NC-based extended short-wave infrared detection. Infrared nanocrystals have become an enabling building block for the design of low-cost infrared sensors. Here, Chu et al. design a nanotrench device geometry at the diffusion length limit in HgTe nanocrystals and demonstrate the record high sensing performance operated in the short-wave infrared.
Collapse
|
5
|
Gréboval C, Chu A, Goubet N, Livache C, Ithurria S, Lhuillier E. Mercury Chalcogenide Quantum Dots: Material Perspective for Device Integration. Chem Rev 2021; 121:3627-3700. [DOI: 10.1021/acs.chemrev.0c01120] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Charlie Gréboval
- CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France
| | - Audrey Chu
- CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France
| | - Nicolas Goubet
- CNRS, Laboratoire de la Molécule aux Nano-objets; Réactivité, Interactions et Spectroscopies, MONARIS, Sorbonne Université, 4 Place Jussieu, Case Courier 840, F-75005 Paris, France
| | - Clément Livache
- CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France
| | - Sandrine Ithurria
- Laboratoire de Physique et d’Etude des Matériaux, ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213, 10 rue Vauquelin 75005 Paris, France
| | - Emmanuel Lhuillier
- CNRS, Institut des NanoSciences de Paris, INSP, Sorbonne Université, F-75005 Paris, France
| |
Collapse
|
6
|
Gréboval C, Noumbe U, Goubet N, Livache C, Ramade J, Qu J, Chu A, Martinez B, Prado Y, Ithurria S, Ouerghi A, Aubin H, Dayen JF, Lhuillier E. Field-Effect Transistor and Photo-Transistor of Narrow-Band-Gap Nanocrystal Arrays Using Ionic Glasses. NANO LETTERS 2019; 19:3981-3986. [PMID: 31059646 DOI: 10.1021/acs.nanolett.9b01305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The gating of nanocrystal films is currently driven by two approaches: either the use of a dielectric such as SiO2 or the use of electrolyte. SiO2 allows fast bias sweeping over a broad range of temperatures but requires a large operating bias. Electrolytes, thanks to large capacitances, lead to the significant reduction of operating bias but are limited to slow and quasi-room-temperature operation. None of these operating conditions are optimal for narrow-band-gap nanocrystal-based phototransistors, for which the necessary large-capacitance gate has to be combined with low-temperature operation. Here, we explore the use of a LaF3 ionic glass as a high-capacitance gating alternative. We demonstrate for the first time the use of such ionic glasses to gate thin films made of HgTe and PbS nanocrystals. This gating strategy allows operation in the 180 to 300 K range of temperatures with capacitance as high as 1 μF·cm-2. We unveil the unique property of ionic glass gate to enable the unprecedented tunability of both magnitude and dynamics of the photocurrent thanks to high charge-doping capability within an operating temperature window relevant for infrared photodetection. We demonstrate that by carefully choosing the operating gate bias, the signal-to-noise ratio can be improved by a factor of 100 and the time response accelerated by a factor of 6. Moreover, the good transparency of LaF3 substrate allows back-side illumination in the infrared range, which is highly valuable for the design of phototransistors.
Collapse
Affiliation(s)
- Charlie Gréboval
- Sorbonne Université, CNRS , Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
| | - Ulrich Noumbe
- Université de Strasbourg, CNRS , Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 , F-67000 Strasbourg , France
| | - Nicolas Goubet
- Sorbonne Université, CNRS , Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
- Laboratoire de Physique et d'Étude des Matériaux , ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213 , 10 rue Vauquelin , 75005 Paris , France
| | - Clément Livache
- Sorbonne Université, CNRS , Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
- Laboratoire de Physique et d'Étude des Matériaux , ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213 , 10 rue Vauquelin , 75005 Paris , France
| | - Julien Ramade
- Sorbonne Université, CNRS , Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
| | - Junling Qu
- Sorbonne Université, CNRS , Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
| | - Audrey Chu
- Sorbonne Université, CNRS , Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
| | - Bertille Martinez
- Sorbonne Université, CNRS , Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
- Laboratoire de Physique et d'Étude des Matériaux , ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213 , 10 rue Vauquelin , 75005 Paris , France
| | - Yoann Prado
- Sorbonne Université, CNRS , Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
| | - Sandrine Ithurria
- Laboratoire de Physique et d'Étude des Matériaux , ESPCI-Paris, PSL Research University, Sorbonne Université Univ Paris 06, CNRS UMR 8213 , 10 rue Vauquelin , 75005 Paris , France
| | - Abdelkarim Ouerghi
- Centre de Nanosciences et de Nanotechnologies, CNRS , Univ. Paris-Sud, Université Paris-Saclay, C2N-Palaiseau , 91120 Palaiseau , France
| | - Herve Aubin
- Centre de Nanosciences et de Nanotechnologies, CNRS , Univ. Paris-Sud, Université Paris-Saclay, C2N-Palaiseau , 91120 Palaiseau , France
| | - Jean-Francois Dayen
- Université de Strasbourg, CNRS , Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 , F-67000 Strasbourg , France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS , Institut des NanoSciences de Paris, INSP , F-75005 Paris , France
| |
Collapse
|
7
|
A colloidal quantum dot infrared photodetector and its use for intraband detection. Nat Commun 2019; 10:2125. [PMID: 31073132 PMCID: PMC6509134 DOI: 10.1038/s41467-019-10170-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/18/2019] [Indexed: 11/09/2022] Open
Abstract
Wavefunction engineering using intraband transition is the most versatile strategy for the design of infrared devices. To date, this strategy is nevertheless limited to epitaxially grown semiconductors, which lead to prohibitive costs for many applications. Meanwhile, colloidal nanocrystals have gained a high level of maturity from a material perspective and now achieve a broad spectral tunability. Here, we demonstrate that the energy landscape of quantum well and quantum dot infrared photodetectors can be mimicked from a mixture of mercury selenide and mercury telluride nanocrystals. This metamaterial combines intraband absorption with enhanced transport properties (i.e. low dark current, fast time response and large thermal activation energy). We also integrate this material into a photodiode with the highest infrared detection performances reported for an intraband-based nanocrystal device. This work demonstrates that the concept of wavefunction engineering at the device scale can now be applied for the design of complex colloidal nanocrystal-based devices. The field of wavefunction engineering using intraband transition to design infrared devices has been limited to epitaxially grown semiconductors. Here the authors demonstrate that a device with similar energy landscape can be obtained from a mixture of colloidal quantum dots made of HgTe and HgSe.
Collapse
|
8
|
Hafiz SB, Scimeca M, Sahu A, Ko DK. Colloidal quantum dots for thermal infrared sensing and imaging. NANO CONVERGENCE 2019; 6:7. [PMID: 30834471 PMCID: PMC6399364 DOI: 10.1186/s40580-019-0178-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 02/22/2019] [Indexed: 05/15/2023]
Abstract
Colloidal quantum dots provide a powerful materials platform to engineer optoelectronics devices, opening up new opportunities in the thermal infrared spectral regions where no other solution-processed material options exist. This mini-review collates recent research reports that push the technological envelope of colloidal quantum dot-based photodetectors toward mid- and long-wavelength infrared. We survey the synthesis and characterization of various thermal infrared colloidal quantum dots reported to date, discuss the basic theory of device operation, review the fabrication and measurement of photodetectors, and conclude with the future prospect of this emerging technology.
Collapse
Affiliation(s)
- Shihab Bin Hafiz
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| | - Michael Scimeca
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY 11201 USA
| | - Ayaskanta Sahu
- Department of Chemical and Biomolecular Engineering, New York University, Brooklyn, NY 11201 USA
| | - Dong-Kyun Ko
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102 USA
| |
Collapse
|
9
|
Livache C, Martinez B, Goubet N, Ramade J, Lhuillier E. Road Map for Nanocrystal Based Infrared Photodetectors. Front Chem 2018; 6:575. [PMID: 30547026 PMCID: PMC6279848 DOI: 10.3389/fchem.2018.00575] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/05/2018] [Indexed: 11/22/2022] Open
Abstract
Infrared (IR) sensors based on epitaxially grown semiconductors face two main challenges which are their prohibitive cost and the difficulty to rise the operating temperature. The quest for alternative technologies which will tackle these two difficulties requires the development of new IR active materials. Over the past decade, significant progresses have been achieved. In this perspective, we summarize the current state of the art relative to nanocrystal based IR sensing and stress the main materials, devices and industrial challenges which will have to be addressed over the 5 next years.
Collapse
Affiliation(s)
- Clément Livache
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, Paris, France
| | - Bertille Martinez
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, Paris, France
| | - Nicolas Goubet
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, Paris, France
| | - Julien Ramade
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, Paris, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP, Paris, France
| |
Collapse
|
10
|
Ilyas N, Li D, Song Y, Zhong H, Jiang Y, Li W. Low-Dimensional Materials and State-of-the-Art Architectures for Infrared Photodetection. SENSORS (BASEL, SWITZERLAND) 2018; 18:E4163. [PMID: 30486432 PMCID: PMC6308609 DOI: 10.3390/s18124163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/22/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022]
Abstract
Infrared photodetectors are gaining remarkable interest due to their widespread civil and military applications. Low-dimensional materials such as quantum dots, nanowires, and two-dimensional nanolayers are extensively employed for detecting ultraviolet to infrared lights. Moreover, in conjunction with plasmonic nanostructures and plasmonic waveguides, they exhibit appealing performance for practical applications, including sub-wavelength photon confinement, high response time, and functionalities. In this review, we have discussed recent advances and challenges in the prospective infrared photodetectors fabricated by low-dimensional nanostructured materials. In general, this review systematically summarizes the state-of-the-art device architectures, major developments, and future trends in infrared photodetection.
Collapse
Affiliation(s)
- Nasir Ilyas
- School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Dongyang Li
- School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Yuhao Song
- School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Hao Zhong
- School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Yadong Jiang
- School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, China.
| | - Wei Li
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|