1
|
Wang TP, Cheng TK, Chen PY, Lee CL. Sonoelectrochemical exfoliation of defective black phosphorus nanosheet with black phosphorus quantum dots as a uric acid sensor. ULTRASONICS SONOCHEMISTRY 2024; 104:106814. [PMID: 38382394 PMCID: PMC10900925 DOI: 10.1016/j.ultsonch.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/20/2023] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
To maintain human health, the development of rapid uric acid (UA) sensing is crucial. In this study, defective black phosphorus nanosheets with black phosphorus quantum dots (dBPN/BPQDs) were successfully and rapidly prepared by sonoelectrochemical exfoliation. In this process, the intercalation of phosphate ions into the black phosphorus working electrode was improved by coupling ultrasonic radiation with a high intercalating potential (8 V vs. Ag/AgCl/3M). The dBPN/BPQDs with various vacancies (5-9 defects, 5-7-7-5 defects, and 5-8-5 defect vacancies) exhibited a remarkable mass activity (jm, 1.22 × 10-3 mA μg-1) for uric acid oxidation, which was 5.92 times greater than that of reduced graphene oxide (rGO) (2.06 × 10-4 mA μg-1). In addition, the sensitivity of the dBPN/BPQD UA sensor was 474.2 μA mM-1 cm-2 in the linear analysis range of 0.1-1.3 mM. The sensitivity of the sensor was apparently higher than 67.7 μA mM-1cm-2 for rGO. The data from real sample experiments using serum showed that the dBPN/BPQD catalyst had high recoveries (97.3 %-100.2 %) and low related standard deviation (0.44 %-1.52 %). The dBPN/BPQDs exhibited the potential as an amperometric sensor to detect UA without needing enzymes.
Collapse
Affiliation(s)
- Tzu-Pei Wang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Tain-Kei Cheng
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan
| | - Po-Yu Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chien-Liang Lee
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 807, Taiwan.
| |
Collapse
|
2
|
Borup AB, Bertelsen AD, Kløve M, Christensen RS, Broge NLN, Dippel AC, Jørgensen MRV, Iversen BB. Unveiling the formation mechanism of Pb xPd y intermetallic phases in solvothermal synthesis using in situ X-ray total scattering. NANOSCALE 2023; 15:18481-18488. [PMID: 37942507 DOI: 10.1039/d3nr03901c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Pd possesses attractive catalytic properties and nano-structuring is an obvious way to enhance catalytic activity. Alloying Pd with Pb has been shown to enhance the catalytic effect of alcohol oxidation. Further optimization of the catalytic effect can be accomplished by controlling the particle size and key to this is understanding the formation mechanism. By monitoring solvothermal syntheses using in situ X-ray total scattering, this study unveils the formation mechanism of PbxPdy intermetallic nanoparticles. The formation occurs through a multi-step mechanism. Initially, Pd nanoparticles are formed, followed by incorporation of Pb into the Pd-structure, thus forming PbxPdy intermetallic nanoparticles. By varying the reaction time and temperature, the incorporation of Pb can be controlled, thereby tailoring the phase outcome. Based on the in situ solvothermal syntheses, ex situ autoclave syntheses were performed, resulting in the synthesis of Pb3Pd5 and Pb9Pd13 with a purity above 93%. The catalytic effect of these intermetallic phases towards the hydrogen evolution reaction (HER) is assessed. It is found that Pd, Pb3Pd5, and Pb9Pd13 have comparable stabilities, however, the overpotential increases with increasing amounts of Pb.
Collapse
Affiliation(s)
- Anders Bæk Borup
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, Aarhus 8000, Denmark.
| | - Andreas Dueholm Bertelsen
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, Aarhus 8000, Denmark.
| | - Magnus Kløve
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, Aarhus 8000, Denmark.
| | - Rasmus Stubkjær Christensen
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, Aarhus 8000, Denmark.
| | - Nils Lau Nyborg Broge
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, Aarhus 8000, Denmark.
| | - Ann-Christin Dippel
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Mads Ry Vogel Jørgensen
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, Aarhus 8000, Denmark.
- MAX IV Laboratory, Lund University, 224 84 Lund, Sweden
| | - Bo Brummerstedt Iversen
- Center for Integrated Materials Research, Department of Chemistry and iNANO, Aarhus University, Langelandsgade 140, Aarhus 8000, Denmark.
| |
Collapse
|
3
|
Zhang K, Wang C, Guo S, Li S, Wu Z, Hata S, Li J, Shiraishi Y, Du Y. Photoelectrocatalytic oxidation of ethylene glycol on trimetallic PdAgCu nanospheres enhanced by surface plasmon resonance. J Colloid Interface Sci 2023; 636:559-567. [PMID: 36669449 DOI: 10.1016/j.jcis.2023.01.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
The notable surface plasmon resonance (SPR) effect of some metals has been applied to improve the efficiency of alcohol oxidation reactions, whereas the comprehensive investigation of Cu-assisted photoelectrocatalysis remains challenging. We herein successfully prepared trimetallic PdAgCu nanospheres (NSs) with abundant surface bulges for the advanced ethylene glycol oxidation reaction (EGOR) and compared them with bimetallic PdAg NSs to investigate the performance enhancement mechanism. Impressively, the as-optimized PdAgCu NSs exhibited superb mass activity and electrochemical stability. Moreover, under visible light illumination, the mass activity of PdAgCu NSs increased to 1.62 times compared to that in the dark, and in contrast, the mass activity of PdAg NSs only increased to 1.48 times that in the dark. A mechanistic study indicated that the incorporation of Cu not only strengthens the whole SPR effect of PdAgCu NSs but also further modifies the electronic structure of Pd. This work highlighted that the incorporation of Cu into PdAg NSs further enhanced the photoelectrocatalytic performance and increased noble metal atom utilization, which may provide guidance to fabricate novel and promising nanocatalysts in the field of photoelectrocatalysis.
Collapse
Affiliation(s)
- Kewang Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhengying Wu
- Jiangsu Key Laboratory for Environment Functional Materials, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Shinichi Hata
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Jie Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yukihide Shiraishi
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi 756-0884, Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China; School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China.
| |
Collapse
|
4
|
Chu X, Wang L, Li J, Xu H. Strategies for Promoting Catalytic Performance of Ru-based Electrocatalysts towards Oxygen/Hydrogen Evolution Reaction. CHEM REC 2023; 23:e202300013. [PMID: 36806446 DOI: 10.1002/tcr.202300013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/06/2023] [Indexed: 02/22/2023]
Abstract
Ru-based materials hold great promise for substituting Pt as potential electrocatalysts toward water electrolysis. Significant progress is made in the fabrication of advanced Ru-based electrocatalysts, but an in-depth understanding of the engineering methods and induced effects is still in their early stage. Herein, we organize a review that focusing on the engineering strategies toward the substantial improvement in electrocatalytic OER and HER performance of Ru-based catalysts, including geometric structure, interface, phase, electronic structure, size, and multicomponent engineering. Subsequently, the induced enhancement in catalytic performance by these engineering strategies are also elucidated. Furthermore, some representative Ru-based electrocatalysts for the electrocatalytic HER and OER applications are also well presented. Finally, the challenges and prospects are also elaborated for the future synthesis of more effective Ru-based catalysts and boost their future application.
Collapse
Affiliation(s)
- Xianxu Chu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Lu Wang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China
| | - Junru Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, Henan Province, PR China.,Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China
| |
Collapse
|
5
|
Chu X, Li J, Qian W, Xu H. Pd-Based Metallenes for Fuel Cell Reactions. CHEM REC 2023; 23:e202200222. [PMID: 36328757 DOI: 10.1002/tcr.202200222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/08/2022] [Indexed: 11/06/2022]
Abstract
Pd-based metallenes, atomically thin layers composed primarily of under-coordinated Pd atoms, have emerged as the newest members in the family of two-dimensional (2D) nanomaterials. Moreover, the unique physiochemical properties, high intrinsic activity associated with metallenes coupled with the ease of applying chemical modifications result in great potential in catalyst engineering for fuel cell reactions. Especially in recent years, interest in Pd-based metallenes is growing, as evidenced by surge in available literatures. Herein, we have reviewed the recent findings achieved in Pd-based metallenes in fuel cells by highlighting the technologies available for deriving metallenes and manifesting the modification strategies for designing them to better suit the application demand. Moreover, we also discuss the perspective insights of Pd-based metallenes for fuel cells regarding the surfactant-free synthesis method, strain engineering, constructing high-entropy alloy, and so on.
Collapse
Affiliation(s)
- Xianxu Chu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, 476000, Shangqiu, Henan Province, P. R. China
| | - Junru Li
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, 476000, Shangqiu, Henan Province, P. R. China
| | - Weiyu Qian
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 215123, Suzhou, Jiangsu Province, P. R. China
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, 213164, Changzhou, Jiangsu Province, P. R. China
| |
Collapse
|
6
|
Chu X, Wang K, Qian W, Xu H. Surface and interfacial engineering of 1D Pt-group nanostructures for catalysis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Zhao Z, Zhang L, Ma X, Min Y, Xu Q, Li Q. Pd3Pb1@Pt2 core–shell concave nanocubes to boost the ethanol oxidation reaction. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Wu J, Yang X, Gong M. Recent advances in glycerol valorization via electrooxidation: Catalyst, mechanism and device. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Zhang K, Wang C, Gao F, Guo S, Zhang Y, Wang X, Hata S, Shiraishi Y, Du Y. Recent progress in ultrafine 3D Pd-based nanocubes with multiple structures for advanced fuel cells electrocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
In-situ FTIR spectroscopy investigation of carbon-supported PdAuNi electrocatalysts for ethanol oxidation. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Wu Z, Zhong Y, Wang Z, Li L, Liu X. PdPbAg alloy NPs immobilized on reduced graphene oxide/In 2O 3 composites as highly active electrocatalysts for direct ethylene glycol fuel cells. RSC Adv 2022; 12:19929-19935. [PMID: 35865206 PMCID: PMC9262407 DOI: 10.1039/d2ra03248a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/21/2022] [Indexed: 12/04/2022] Open
Abstract
rGO-modified indium oxide (In2O3) anchored PdPbAg nanoalloy composites (PdPbAg@rGO/In2O3) were prepared by a facile hydrothermal, annealing and reduction method. Electrochemical tests showed that the as-prepared trimetallic catalyst exhibited excellent electrocatalytic activity and high resistance to CO poisoning compared with commercial Pd/C, mono-Pd and different bimetallic catalysts. Specifically, PdPbAg@rGO/In2O3 has the highest forward peak current density of 213.89 mA cm-2, which is 7.89 times that of Pd/C (27.07 mA cm-2). After 3600 s chronoamperometry (CA) test, the retained current density of PdPbAg@rGO/In2O3 reaches 78.15% of the initial value. Its excellent electrocatalytic oxidation performance is attributed to the support with large specific surface area and the strong synergistic effect of PdPbAg nanoalloys, which provide a large number of interfaces and achievable reactive sites. In addition, the introduction of rGO into the In2O3 matrix contributes to its excellent electron transfer and large specific surface area, which is beneficial to improving the catalytic ability of the catalyst. The study of this novel composite material provides a conceptual and applicable route for the development of advanced high electrochemical performance Pd-based electrocatalysts for direct ethylene glycol fuel cells.
Collapse
Affiliation(s)
- Zhirui Wu
- School of Chemistry and Chemical Engineering, Hubei University Hubei Wuhan 430000 P. R. China
| | - Yuting Zhong
- School of Chemistry and Chemical Engineering, Hubei University Hubei Wuhan 430000 P. R. China
| | - Zhiguo Wang
- School of Chemistry and Chemical Engineering, Hubei University Hubei Wuhan 430000 P. R. China
| | - Ling Li
- School of Chemistry and Chemical Engineering, Hubei University Hubei Wuhan 430000 P. R. China
| | - Xiaoguang Liu
- School of Chemistry and Chemical Engineering, Hubei University Hubei Wuhan 430000 P. R. China
| |
Collapse
|
12
|
Sun T, Chen J, Lao X, Zhang X, Fu A, Wang W, Guo P. Unveiling the Synergistic Effects of Monodisperse Sea Urchin-like PdPb Alloy Nanodendrites as Stable Electrocatalysts for Ethylene Glycol and Glycerol Oxidation Reactions. Inorg Chem 2022; 61:10220-10227. [PMID: 35729745 DOI: 10.1021/acs.inorgchem.2c01566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In recent times, the fabrication of noble metal-based catalysts with controllable morphologies has become a research hotspot. Electrocatalytic devices with excellent catalytic performance and enhanced durability for the ethylene glycol oxidation reaction (EGOR) and the glycerol oxidation reaction (GOR) are significant for commercial direct fuel cells. Herein, a series of PdPb sea urchin-like nanodendrite (ND) structures with controllable molar ratios were synthesized as EGOR and GOR electrocatalysts of high efficiency. The optimized structurally regular Pd3Pb NDs exhibit the best electrocatalytic activity and outstanding stability compared to other samples and commercial Pt/C. In addition, the integrated Pb on Pd3Pb NDs can mitigate the bond energy the intermediates generate and further boost the electrooxidation of the intermediates by supplying enough active sites without considering its intrinsic structure, which is beneficial to the enhanced EGOR and GOR activity and stability. With the assistance of electrochemical measurement, the mechanism of the enhanced alloy was further investigated. This paper presents a promising strategy to fabricate catalysts with stable structures, which will elucidate a very promising approach for developing Pd-based catalysts for further applications in fuel cells.
Collapse
Affiliation(s)
- Tong Sun
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jianyu Chen
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xianzhuo Lao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xingxue Zhang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Aiping Fu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Wei Wang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
13
|
3D bismuth/tin dual-doped palladium modified prism-folding layered graphene/MOF-74 composites as highly active electrocatalyst for ethylene glycol electrooxidation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Cheng W, Sun L, He X, Tian L. Recent advances in fuel cell reaction electrocatalysis based on porous noble metal nanocatalysts. Dalton Trans 2022; 51:7763-7774. [PMID: 35508098 DOI: 10.1039/d2dt00841f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As the center of fuel cells, electrocatalysts play a crucial role in determining the conversion efficiency from chemical energy to electrical energy. Therefore, the development of advanced electrocatalysts with both high activity and stability is significant but challenging. Active site, mass transport, and charge transfer are three central factors influencing the catalytic performance of electrocatalysts. Endowed with rich available surface active sites, facilitated electron transfer and mass diffusion channels, and highly active components, porous noble metal nanomaterials are widely considered as promising electrocatalysts toward fuel cell-related reactions. The past decade has witnessed great achievements in the design and fabrication of advanced porous noble metal nanocatalysts in the field of electrocatalytic fuel oxidation reaction (FOR) and oxygen reduction reaction (ORR). Herein, the recent research advances regarding porous noble metal nanocatalysts for fuel cell-related reactions are reviewed. In the discussions, the inherent structural features of porous noble metal nanostructures for electrocatalytic reactions, advanced synthetic strategies for the fabrication of porous noble metal nanostructures, and the structure-performance relationships are also provided.
Collapse
Affiliation(s)
- Wenjing Cheng
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China. .,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Limei Sun
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Xiaoyan He
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China.
| | - Lin Tian
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China. .,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| |
Collapse
|
15
|
Moreira TFM, Andrade AR, Kokoh KB, Morais C, Napporn TW, Olivi P. An FTIR study of the electrooxidation of C2 and C3 alcohols on carbon‐supported PdxRhy in alkaline medium. ChemElectroChem 2022. [DOI: 10.1002/celc.202200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Claudia Morais
- University of Poitiers: Universite de Poitiers Chemistry FRANCE
| | - Teko Wilhelmin Napporn
- Universite de Poitiers Chemistry IC2MP UMR 7285 CNRSUniversite de Poitiers4, rue Michel Brunet B27 TSA 51106 86073 Poitiers FRANCE
| | - Paulo Olivi
- University of Sao Paulo: Universidade de Sao Paulo FFCLRP BRAZIL
| |
Collapse
|
16
|
Zhang Q, Zhang M, Chen T, Li L, Shi S, Jiang R. Unconventional Phase Engineering of Fuel-Cell Electrocatalysts. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116363] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Xu H, Huang B, Zhao Y, He G, Chen H. Engineering Heterostructured Pd-Bi 2Te 3 Doughnut/Pd Hollow Nanospheres for Ethylene Glycol Electrooxidation. Inorg Chem 2022; 61:4533-4540. [PMID: 35236071 DOI: 10.1021/acs.inorgchem.2c00296] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The electrooxidation of ethylene glycol (EG) is of vital significance for the conversion from biomass energy into electrical energy via direct fuel cells. However, the EG oxidation reaction (EGOR) suffers from poor efficiency due to the limitation of high-performance electrocatalysts for cleaving the C-C bonds. Herein, this limitation is successfully addressed by fabricating the doughnut-shaped Pd-Bi2Te3 heterostructured catalyst. Notably, the heterojunction Pd-Bi2Te3 nanocatalyst has been demonstrated to be highly active toward the EGOR with superb activity and durability, in which a mass activity as high as 2420.8 mA mg-1 is achieved in alkaline media, being 1.7 times higher than that of the commercial Pd/C catalyst. Upon combination of experimental results with mechanism studies, it is indicated that the remarkable EGOR performance is attributed to the enlarged active areas that stemmed from the doughnut-like structure, as well as the strong synergistic effect from Pd-Bi2Te3 and Pd. More importantly, the highly electroactive Pd-Bi2Te3 can accelerate charge transfer and boost the oxidation of CO-like intermediates, which are conducive to the enhancement in electrochemical stability.
Collapse
Affiliation(s)
- Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Bingji Huang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Yitao Zhao
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Guangyu He
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Haiqun Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, Jiangsu Province, China
| |
Collapse
|
18
|
Facilitation of PdPb nanoalloy anchored on rGO/MOF-derived δ-Ga2O3 nanorod for electrocatalytic oxidation of methanol, ethanol and ethylene glycol. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139935] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Qiao Z, Ding C. Recent Progress on Polyvinyl Alcohol-Based Materials for Energy Conversion. NEW J CHEM 2022. [DOI: 10.1039/d1nj04344g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrocatalytic energy conversion shows a promising “bridge” to mitigate energy shortage issues and minimizes the ecological implications by synergy with the sustainable energy sources, which calls for low-cost, highly active,...
Collapse
|
20
|
Sun J, Lao X, Yang M, Fu A, Chen J, Pang M, Gao F, Guo P. Alloyed Palladium-Lead Nanosheet Assemblies for Electrocatalytic Ethanol Oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:14930-14940. [PMID: 34910478 DOI: 10.1021/acs.langmuir.1c02816] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthesizing alloyed bimetallic electrocatalysts with a three-dimensional (3D) structure assembly have arouse great interests in electrocatalysis. We synthesized a class of alloyed Pd3Pb/Pd nanosheet assemblies (NSAs) composed of a two-dimensional (2D) sheet structure with adjustable compositions via an oil bath approach at a low temperature. Both the scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images reveal the successful formation of the nanosheet structure, where the morphology of Pd3Pb/Pd NSAs can be regulated by adjusting the atomic mole ratio of Pb and Pb metal precursors. The power X-ray diffraction (XRD) pattern shows that Pd3Pb/Pd NSA catalysts are homogeneously alloyed. Electrochemical analysis and the density functional theory (DFT) method demonstrate that the electrocatalytic activity of the alloyed Pd3Pb/Pd NSAs can be improved by the doping of the Pb element. As a result of the addition of element Pb and change of the electron structure, the electrocatalytic activity toward ethanol oxidation of alloyed Pd3Pb/Pd-15 NSA can reach up to 2886 mA mg-1, which is approximately 2.8 times that of the pure Pd NSA counterpart (1020 mA mg-1). The Pd3Pb/Pd NSAs are favorable in a high catalytic temperature, high KOH concentration, and high ethanol concentration.
Collapse
Affiliation(s)
- Jing Sun
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Xianzhuo Lao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Min Yang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Aiping Fu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Jianyu Chen
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Mingyuan Pang
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Fahui Gao
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
21
|
Wang P, Wang B. Designing Self-Supported Electrocatalysts for Electrochemical Water Splitting: Surface/Interface Engineering toward Enhanced Electrocatalytic Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:59593-59617. [PMID: 34878246 DOI: 10.1021/acsami.1c17448] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electrochemical water splitting is regarded as the most attractive technique to store renewable electricity in the form of hydrogen fuel. However, the corresponding anodic oxygen evolution reaction (OER) and cathodic hydrogen evolution reaction (HER) remain challenging, which exhibit complex reactions and sluggish kinetic behaviors at the triple-phase interface. Material surface and interface engineering provide a feasible approach to improve catalytic activity. Besides, self-supported electrocatalysts have been proven to be highly efficient toward water splitting, because of the regulated catalyst/substrate interface. In this Review, the state-of-the-art achievements in self-supported electrocatalyst for HER/OER have demonstrated the feasibility of surface and interface engineering strategies to boost performance. The six key effective surface/interface engineering approaches for rational catalysts design are systematically reviewed, including defect engineering, morphology engineering, crystallographic tailoring, heterostructure design, catalyst/substrate interface engineering, and catalyst/electrolyte interface regulation. Finally, the challenges and opportunities on the valuable directions are proposed to inspire future investigation of highly active and durable HER/OER electrocatalysts.
Collapse
Affiliation(s)
- Peican Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No. 30 Shuang-Qing Road, Hai-Dian District, Beijing 100084, People's Republic of China
| | - Baoguo Wang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, No. 30 Shuang-Qing Road, Hai-Dian District, Beijing 100084, People's Republic of China
| |
Collapse
|
22
|
Shi R, Liu KS, Liu F, Yang X, Hou CC, Chen Y. Electrocatalytic reforming of waste plastics into high value-added chemicals and hydrogen fuel. Chem Commun (Camb) 2021; 57:12595-12598. [PMID: 34724523 DOI: 10.1039/d1cc05032j] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The upcycling of waste plastic offers an attractive way to protect the environment and turn waste into value-added chemicals and H2 fuel. Herein, we report a novel electroreforming strategy to upcycle waste polyethylene terephthalate into high value-added chemicals, such as terephthalate and carbonate, over a Pd modified Ni foam catalyst. This system exhibits excellent electrocatalytic activity (400 mA cm-2 at 0.7 V vs. RHE) and high selectivity (95%)/faradaic efficiency (93%) for the product carbonate. Our work demonstrates a technology that can not only transform waste polyethylene terephthalate into value-added chemicals but also generate H2 fuel via an all-in-one electro-driven process.
Collapse
Affiliation(s)
- Rui Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Ke-Sheng Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Fulai Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Xiao Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Chun-Chao Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.
| | - Yong Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials & HKU-CAS Joint Laboratory on New Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
23
|
Zang L, Yan J, Pang M, Zhang B, Chen J, Guo P. Enhanced Electrocatalytic Activity of Alloyed Palladium-Lead Nanoparticles toward Electrooxidation of Ethanol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13132-13140. [PMID: 34714658 DOI: 10.1021/acs.langmuir.1c02324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although many researchers have made great efforts to pursue promising high-efficiency electrocatalysts, a formidable challenge remains for designing excellent palladium-based electrocatalysts for commercializing direct liquid fuel cells. This study reports the synthesis of bimetallic PdPb nanoparticles (NPs) via a mixed solution containing cetyl trimethyl ammonium bromide as the capping agent. Alloyed PdPb NPs are formed, where the size of the NPs increases as Pb atoms are introduced gradually. However, Pd3Pb NPs are obtained with the same molar ratio of Pd and Pb in the raw systems. Among all of the as-made NPs, Pd9Pb1 NPs exhibit superior catalytic activity (2620 mA mg-1) toward ethanol electrooxidation, 4.3 times higher than commercial Pd/C catalysts (613 mA mg-1). The overall rate of the EOR for PdPb NPs is determined, demonstrating that the electrocatalytic activity of the PdPb NPs increases at high catalytic temperatures, in high pH environments, and/or at high ethanol concentrations.
Collapse
Affiliation(s)
- Lei Zang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jie Yan
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Mingyuan Pang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Ben Zhang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Jianyu Chen
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
24
|
Li M, Xia Z, Luo M, He L, Tao L, Yang W, Yu Y, Guo S. Structural Regulation of Pd‐Based Nanoalloys for Advanced Electrocatalysis. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100061] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Menggang Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Zhonghong Xia
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Mingchuan Luo
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Lin He
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Lu Tao
- School of Materials Science and Engineering Peking University Beijing 100871 China
| | - Weiwei Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Yongsheng Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin Heilongjiang 150001 China
| | - Shaojun Guo
- School of Materials Science and Engineering Peking University Beijing 100871 China
| |
Collapse
|
25
|
Pd-based intermetallic nanocrystals: From precise synthesis to electrocatalytic applications in fuel cells. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214085] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
Li Z, Lu X, Teng J, Zhou Y, Zhuang W. Nonmetal-doping of noble metal-based catalysts for electrocatalysis. NANOSCALE 2021; 13:11314-11324. [PMID: 34184008 DOI: 10.1039/d1nr02019f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In response to the shortage of fossil fuels, efficient electrochemical energy conversion devices are attracting increasing attention, while the limited electrochemical performance and high cost of noble metal-based electrode materials remain a daunting challenge. The electrocatalytic performance of electrode materials is closely bound with their intrinsic electronic/ionic states and crystal structures. Apart from the nanoscale design and conductive composite strategies, heteroatom doping, particularly for nonmetal doping (e.g., hydrogen, boron, sulfur, selenium, phosphorus, and tellurium), is also another effective strategy to greatly promote the intrinsic activity of the electrode materials by tuning their atomic structures. From the perspective of electrocatalytic reactions, the effective atomic structure regulation could induce additional active sites, create rich defects, and optimize the adsorption capability, thereby contributing to the promotion of the electrocatalytic performance of noble metal-based electrocatalysts. Encouraged by the great progress achieved in this field, we have reviewed recent advancements in nonmetal doping for electrocatalytic energy conversion. Specifically, the doping effect on the atomic structure and intrinsic electronic/ionic state is also systematically illustrated and the relationship with the electrocatalytic performance is also investigated. It is believed that this review will provide guidance for the development of more efficient electrocatalysts.
Collapse
Affiliation(s)
- Zhao Li
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Xinhua Lu
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Jingrui Teng
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Yingmei Zhou
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| | - Wenchang Zhuang
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China.
| |
Collapse
|
27
|
Li Z, Song M, Zhu W, Zhuang W, Du X, Tian L. MOF-derived hollow heterostructures for advanced electrocatalysis. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213946] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Wang C, Jin L, Shang H, Xu H, Shiraishi Y, Du Y. Advances in engineering RuO2 electrocatalysts towards oxygen evolution reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.051] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
29
|
Wang C, Shang H, Jin L, Xu H, Du Y. Advances in hydrogen production from electrocatalytic seawater splitting. NANOSCALE 2021; 13:7897-7912. [PMID: 33881101 DOI: 10.1039/d1nr00784j] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As one of the most abundant resources on the Earth, seawater is not only a promising electrolyte for industrial hydrogen production through electrolysis, but also of great significance for the refining of edible salt. Despite the great potential for large-scale hydrogen production, the implementation of water electrolysis requires efficient and stable electrocatalysts that can maintain high activity for water splitting without chloride corrosion. Recent years have witnessed great achievements in the development of highly efficient electrocatalysts toward seawater splitting. Starting from the historical background to the most recent achievements, this review will provide insights into the current state, challenges, and future perspectives of hydrogen production through seawater electrolysis. In particular, the mechanisms of overall water splitting, key features of seawater electrolysis, noble-metal-free electrocatalysts for seawater electrolysis and the underlying mechanisms are also highlighted to provide guidance for fabricating more efficient electrocatalysts toward seawater splitting.
Collapse
Affiliation(s)
- Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Hongyuan Shang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
30
|
Zheng X, Wang G, Zhao Y, Wu L, Wang Y, Song Y, Tian P, Wang X. Controllable morphology of Pd-loaded potassium tantalates with high catalytic performance for ethylene glycol electrooxidation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
|
32
|
Wan Z, Bai X, Mo H, Yang J, Wang Z, Zhou L. Multi-porous NiAg-doped Pd alloy nanoparticles immobilized on reduced graphene oxide/CoMoO4 composites as a highly active electrocatalyst for direct alcohol fuel cell. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
Zhao G, Fang C, Hu J, Zhang D. Platinum-Based Electrocatalysts for Direct Alcohol Fuel Cells: Enhanced Performances toward Alcohol Oxidation Reactions. Chempluschem 2021; 86:574-586. [PMID: 33830678 DOI: 10.1002/cplu.202000811] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/20/2021] [Indexed: 12/28/2022]
Abstract
In the past few decades, Pt-based electrocatalysts have attracted great interests due to their high catalytic performances toward the direct alcohol fuel cell (DAFC). However, the high cost, poor stability, and the scarcity of Pt have markedly hindered their large-scale utilization in commerce. Therefore, enhancing the activity and durability of Pt-based electrocatalysts, reducing the Pt amount and thus the cost of DAFC have become the keys for their practical applications. In this minireview, we summarized some basic concepts to evaluate the catalytic performances in electrocatalytic alcohol oxidation reaction (AOR) including electrochemical active surface area, activity and stability, the effective approaches for boosting the catalytic AOR performance involving size decrease, structure and morphology modulation, composition effect, catalyst supports, and assistance under other external energies. Furthermore, we also presented the remaining challenges of the Pt-based electrocatalysts to achieve the fabrication of a real DAFC.
Collapse
Affiliation(s)
- Guili Zhao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Caihong Fang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
- Institute of Synthesis and Application of Medical Materials, Wannan Medical College, Wuhu, 241000, P. R. China
| | - Jinwu Hu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Deliang Zhang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, Center for Nano Science and Technology, Key Laboratory of Electrochemical Clean Energy of Anhui Higher Education Institutes, Anhui Provincial Engineering Laboratory for New-Energy Vehicle Battery Energy-Storage Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| |
Collapse
|
34
|
Efficient electrocatalytic formic acid oxidation over PdAu-manganese oxide/carbon. J Colloid Interface Sci 2021; 593:244-250. [PMID: 33744534 DOI: 10.1016/j.jcis.2021.02.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/21/2022]
Abstract
Developing high efficient Palladium-metal-based electrocatalysts is of great significance for formic acid oxidation (FAO) reaction. Here, we experimentally synthesize PdAu alloy composited with MnOx electrocatalyst (PdAu-MnOx/C) and illustrate its remarkable FAO performance. By virtue of theory studies, we find that Pd-Au bridges have superior adsorption ability towards HCOO* and oxygen vacancies in MnOx make HCOO* formation from HCOOH easier, synergistically lead to the outstanding FAO performance with specific activity and mass activity of 19.0 mA cm-2 and 4539 mA mg-1Pd+Au respectively, which are 2.6 times and 3.5 times higher than commercial Pd/C. This work shed some light toward development of high-performance Pd-based electrocatalysts for FAO.
Collapse
|
35
|
Qi L, Guo X, Zheng X, Wang Y, Zhao Y, Wang X. Enhanced electrocatalytic activity of urchin-like Nb2O5 microspheres by synergistic effects with Pd toward electrooxidation of ethylene glycol in an alkaline medium. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Song T, Gao F, Guo S, Zhang Y, Li S, You H, Du Y. A review of the role and mechanism of surfactants in the morphology control of metal nanoparticles. NANOSCALE 2021; 13:3895-3910. [PMID: 33576356 DOI: 10.1039/d0nr07339c] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although great progress has been made in the synthesis of metal nanoparticles, good repeatability and accurate predictability are still difficult to achieve. This difficulty can be attributed to the synthetic method based primarily on observation and subjective experience, and the role of many surfactants remains unclear. It should be noted that surfactants play an important role in the synthetic process. Understanding their function and mechanism in the synthetic process is a prerequisite for the rational design of nanocatalysts with ideal morphology and performance. In this review article, the function of surfactants is introduced first, and then the mechanism of action of surfactants in controlling the morphology of nanoparticles is discussed according to the types of surfactants, and the promoting and sealing effects of surfactants on the crystal surface is revealed. The relationship between surfactants and the morphology structure of nanoparticles is studied. The removal methods of surfactants are discussed, and the existing problems in the current development strategy are summarized. Finally, the application of surfactants in controlling the morphology of metal nanocrystals is prospected. It is hoped that the review can open up new avenues for the synthesis of nanocrystals.
Collapse
Affiliation(s)
- Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Shujin Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Huaming You
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| |
Collapse
|
37
|
Li X, You H, Wang C, Liu D, Yu R, Guo S, Wang Y, Du Y. 3D Taraxacum-like porous Pd nanocages with Bi doping: High-performance non-Pt electrocatalysts for ethanol oxidation reaction. J Colloid Interface Sci 2021; 591:203-210. [PMID: 33609892 DOI: 10.1016/j.jcis.2021.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/12/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Modifying the electronic structure and optimizing the geometric structure can expeditiously tune the electrocatalytic properties of catalysts, resulting in considerably enhanced electrocatalytic performance towards electrocatalytic oxidation of liquid fuels. We herein report a simple synthetic strategy to prepare Bi-doped 3D taraxacum-like Pd nanocages (NCs) composed of porous nanosheets, which possess high surface areas and strong synergistic effects. Notably, a trace of Bi diffuses into the lattice of Pd and increases the electronic effects of the surface of Pd, endowing PdBi-0.5 NCs/C with superior electrocatalytic performance towards ethanol oxidation reaction (EOR). The mass activity and specific activity of PdBi-0.5 NCs/C were 3494.8 mA mgPd-1 and 10.37 mA cm-2, being 4.08- and 4.82- fold enhancements as compared with commercial Pd/C, respectively. Moreover, the highly open porous 3D nanocages structure with rich active sites and defects can also facilitate the mass/electron transfer to favor the EOR kinetics.
Collapse
Affiliation(s)
- Xingchi Li
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Huaming You
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Dongmei Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Rui Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Siyu Guo
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China.
| | - Yuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, PR China.
| |
Collapse
|
38
|
Xu H, Shang H, Wang C, Du Y. Recent Progress of Ultrathin 2D Pd-Based Nanomaterials for Fuel Cell Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005092. [PMID: 33448126 DOI: 10.1002/smll.202005092] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/07/2020] [Indexed: 06/12/2023]
Abstract
Pd- and Pd-based catalysts have emerged as potential alternatives to Pt- and Pt-based catalysts for numerous electrocatalytic reactions, particularly fuel cell-related reactions, including the anodic fuel oxidation reaction (FOR) and cathodic oxygen reduction reaction (ORR). The creation of Pd- and Pd-based architectures with large surface areas, numerous low-coordinated atoms, and high density of defects and edges is the most promising strategy for improving the electrocatalytic performance of fuel cells. Recently, 2D Pd-based nanomaterials with single or few atom thickness have attracted increasing interest as potential candidates for both the ORR and FOR, owing to their remarkable advantages, including high intrinsic activity, high electron mobility, and straightforward surface functionalization. In this review, the recent advances in 2D Pd-based nanomaterials for the FOR and ORR are summarized. A fundamental understanding of the FOR and ORR is elaborated. Subsequently, the advantages and latest advances in 2D Pd-based nanomaterials for the FOR and ORR are scientifically and systematically summarized. A systematic discussion of the synthesis methods is also included which should guide researchers toward more efficient 2D Pd-based electrocatalysts. Lastly, the future outlook and trends in the development of 2D Pd-based nanomaterials toward fuel cell development are also presented.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Hongyuan Shang
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Cheng Wang
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| | - Yukou Du
- College of Chemistry Chemical Engineering and Materials Science Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
39
|
Ren F, Chen X, Xing R, Du Y. Rod-like MnO 2 boost Pd/reduced graphene oxide nanocatalyst for ethylene glycol electrooxidation. J Colloid Interface Sci 2021; 582:561-568. [PMID: 32911405 DOI: 10.1016/j.jcis.2020.07.133] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 01/19/2023]
Abstract
Anode catalyst is one of the core components of fuel cell, but its poor catalytic activity, short lifespan, and high price are tricky problems to the commercialization of fuel cell. Herein, a novel rod-like MnO2 decorated reduced graphene oxide (RGO) supported Pd hybrid (Pd/RGO-MnO2) has been designed, which manifests more negative onset oxidation potential, higher peak current density, and better long-term stability relative to Pd/RGO and pure Pd catalysts when serving for ethylene glycol electrooxidation. This enhancement may be due to the addition of MnO2, which can effectively promote the adsorption of hydroxyl at a lower potential and produce a strong electronic interaction with Pd, as confirmed by X-ray photoelectron spectroscopy (XPS) technique. In view of its excellent performance and low cost, Pd/RGO-MnO2 is considered to be a potential and effective anode catalyst for DEGFCs.
Collapse
Affiliation(s)
- Fangfang Ren
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, China.
| | - Xuanrong Chen
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Rong Xing
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
40
|
Sun W, Lin P, Tang Q, Jing F, Cao Q, Fang W. Sustainable synthesis of vanillin through base-free selective oxidation using synergistic AgPd nanoparticles loaded on ZrO 2. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01526e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sustainable synthesis of vanillin was realized over a synergistic AgPd/ZrO2 catalyst through the base-free selective oxidation of vanillyl alcohol.
Collapse
Affiliation(s)
- Weixiao Sun
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, 2 North Cuihu Road, 650091 Kunming, China
| | - Peng Lin
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, 2 North Cuihu Road, 650091 Kunming, China
| | - Qinghu Tang
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007 Xinxiang, China
| | - Fangli Jing
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, 8 Xindu Avenue, 610500 Chengdu, China
| | - Qiue Cao
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, 2 North Cuihu Road, 650091 Kunming, China
| | - Wenhao Fang
- School of Chemical Science and Technology, Key Laboratory of Medicinal Chemistry for Natural Resource – Ministry of Education, National Demonstration Center for Experimental Chemistry and Chemical Engineering Education, Yunnan University, 2 North Cuihu Road, 650091 Kunming, China
| |
Collapse
|
41
|
Fu Q, Gan M, Ma L, Wei S, Wu T, Yang Y, Li T, Zhan W, Xie F, Zhong X. One-step fabrication of CuO-doped TiO 2 nanotubes enhanced the catalytic activity of Pt nanoparticles towards the methanol oxidation reaction in acid media. NEW J CHEM 2021. [DOI: 10.1039/d1nj00095k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To meet the requirements for the potential applications of fuel cells, it is of vital importance to search for advanced electrocatalysts toward the methanol oxidation reaction that have both high electrocatalytic activity and great CO resistance.
Collapse
Affiliation(s)
- Qinglan Fu
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Mengyu Gan
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Li Ma
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Shuang Wei
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Taichun Wu
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Yanling Yang
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Tingting Li
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Wang Zhan
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Fei Xie
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Xiujuan Zhong
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| |
Collapse
|
42
|
Facile synthesis of porous iridium-palladium-plumbum wire-like nanonetworks with boosted catalytic performance for hydrogen evolution reaction. J Colloid Interface Sci 2020; 580:99-107. [DOI: 10.1016/j.jcis.2020.06.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 11/18/2022]
|
43
|
Xie YX, Cen SY, Ma YT, Chen HY, Wang AJ, Feng JJ. Facile synthesis of platinum-rhodium alloy nanodendrites as an advanced electrocatalyst for ethylene glycol oxidation and hydrogen evolution reactions. J Colloid Interface Sci 2020; 579:250-257. [DOI: 10.1016/j.jcis.2020.06.061] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/29/2020] [Accepted: 06/13/2020] [Indexed: 02/01/2023]
|
44
|
Hierarchical defective palladium-silver alloy nanosheets for ethanol electrooxidation. J Colloid Interface Sci 2020; 586:200-207. [PMID: 33208247 DOI: 10.1016/j.jcis.2020.10.084] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/09/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022]
Abstract
Tuning the chemical composition and surface structure of electrodes is demonstrated as a feasible and effective strategy to tailor advanced catalysts for energy electrocatalysis. In this work, hierarchical palladium-silver alloy nanosheets (PdAg NS) with the thickness ~7 atoms and rich atomic defects are successfully prepared, using the carbon monoxide (CO) confinement approach. The optimized Pd7Ag3 NS/C exhibits 8.8 times higher catalytic peak current density and much better stability toward ethanol electrooxidation than Pd NS/C catalyst. The catalytic enhancement mechanism could be attributed to the synergetic effects among optimized electronic structure of Pd, novel architecture, and rich atomic defects.
Collapse
|
45
|
Xu H, Shang H, Wang C, Du Y. Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213374] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
46
|
Mangeli A, Mostafavi A, Shamspur T, Fathirad F. Binary nanostructured catalysts to facilitate electricity generation from ethylene glycol electrooxidation. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Yuan M, Xu H, Wang Y, Jin L, Wang C, Chen C, Wang Y, Shang H, Du Y. Three‐Dimensional PdCuRu Alloy Porous Nanosheets as Efficient Electrocatalysts for Hydrogen Evolution Reaction in Varied Electrolytes. ChemElectroChem 2020. [DOI: 10.1002/celc.202000764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mengyu Yuan
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Hui Xu
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Yuan Wang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Liujun Jin
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Cheng Wang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Chunyan Chen
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Yong Wang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Hongyuan Shang
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials ScienceSoochow University Suzhou 215123 P.R. China
| |
Collapse
|
48
|
Sun Q, Xu H, Du Y. Recent Achievements in Noble Metal Catalysts with Unique Nanostructures for Liquid Fuel Cells. CHEMSUSCHEM 2020; 13:2540-2551. [PMID: 32096317 DOI: 10.1002/cssc.201903381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/29/2020] [Indexed: 06/10/2023]
Abstract
In recent years, research efforts have been focused on the design and fabrication of highly efficient catalysts for liquid fuel cells, because the use of these cells is an important approach for alleviating environmental pollution and energy crises. However, the limitations of the catalytic performance of industrial Pt/C have strongly hindered the development of these fuel cells. The catalyst morphology has a strong impact on its performance; nanostructured catalysts are preferred as they offer large specific surface area and more exposed active centers. In view of this, many catalysts with unique structures have been synthesized in recent years, all of which show excellent catalytic performance characteristics. Despite these achievements, few efforts have been made to survey this field comprehensively. Herein, the recent advances in catalysts for liquid fuel cells are summarized, with a focus on noble metal catalysts with unique morphologies such as nanowires, nanosheets, and assembly structures. Their formation mechanisms are discussed critically. The relationship between the unique morphologies and excellent performance of these catalysts is also explored. This work may provide guidelines for the further development of liquid fuel cells.
Collapse
Affiliation(s)
- Qiwen Sun
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
49
|
Zhang Q, Chen T, Jiang R, Jiang F. Comparison of electrocatalytic activity of Pt 1-x Pd x /C catalysts for ethanol electro-oxidation in acidic and alkaline media. RSC Adv 2020; 10:10134-10143. [PMID: 35498612 PMCID: PMC9050211 DOI: 10.1039/d0ra00483a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 02/24/2020] [Indexed: 12/16/2022] Open
Abstract
In this paper, a comparision of Pt1-x Pd x /C catalysts for ethanol-oxidation in acidic and alkaline media has been investigated. We prepared Pt1-x Pd x /C catalysts with different ratios of Pt/Pd (x at% = 0, 27, 53, 77 and 100) by the formic acid reduction method. The obtained Pt1-x Pd x /C catalysts were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), induced coupled plasma-atomic emission spectroscopy (ICP-AES), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Structural and morphological investigations of the as-prepared catalysts revealed that the metallic particle size increases with increasing Pd content in the catalyst. The electrocatalytic performances and stabilities of Pt1-x Pd x /C catalysts were tested by cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperometry (CA) measurements for ethanol oxidation in acidic and alkaline media. The electrochemical measurements demonstrate that Pt1-x Pd x /C catalysts exhibit much higher electrocatalytic activity for alcohol oxidation in alkaline media than that in acidic media. The composition of Pt/Pd has a significant impact on the ethanol-oxidation in both acidic and alkaline media. The Pt23Pd77/C catalyst shows the highest electrocatalytic performance with a mass specific peak current of 2453.7 mA mgPtPd -1 in alkaline media, which is higher than the Pt77Pd23/C with the maximum of peak current of 339.7 mA mgPtPd -1 in acidic media. Meanwhile, the effect of electrolyte, CH3CH2OH concentrations and scan rates was also studied for ethanol-oxidation in acidic and alkaline media.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Science, Shandong Jianzhu University Jinan 250101 China
| | - Ting Chen
- School of Science, Shandong Jianzhu University Jinan 250101 China
| | - Rongyan Jiang
- School of Materials Science and Engineering, Shandong Jianzhu University Jinan 250101 China
| | - Fengxing Jiang
- Department of Physics, Jiangxi Science and Technology Normal University Nanchang 330013 P. R. China
| |
Collapse
|
50
|
Wang C, Xu H, Shang H, Jin L, Chen C, Wang Y, Yuan M, Du Y. Ir-Doped Pd Nanosheet Assemblies as Bifunctional Electrocatalysts for Advanced Hydrogen Evolution Reaction and Liquid Fuel Electrocatalysis. Inorg Chem 2020; 59:3321-3329. [DOI: 10.1021/acs.inorgchem.0c00132] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Hongyuan Shang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chunyan Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Mengyu Yuan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|