1
|
Pei X, Hu X, Xu T, Sun L. The Contact Properties of Monolayer and Multilayer MoS 2-Metal van der Waals Interfaces. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1075. [PMID: 38998679 PMCID: PMC11243427 DOI: 10.3390/nano14131075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024]
Abstract
The contact resistance formed between MoS2 and metal electrodes plays a key role in MoS2-based electronic devices. The Schottky barrier height (SBH) is a crucial parameter for determining the contact resistance. However, the SBH is difficult to modulate because of the strong Fermi-level pinning (FLP) at MoS2-metal interfaces. Here, we investigate the FLP effect and the contact types of monolayer and multilayer MoS2-metal van der Waals (vdW) interfaces using density functional theory (DFT) calculations based on Perdew-Burke-Ernzerhof (PBE) level. It has been demonstrated that, compared with monolayer MoS2-metal close interfaces, the FLP effect can be significantly reduced in monolayer MoS2-metal vdW interfaces. Furthermore, as the layer number of MoS2 increases from 1L to 4L, the FLP effect is first weakened and then increased, which can be attributed to the charge redistribution at the MoS2-metal and MoS2-MoS2 interfaces. In addition, the p-type Schottky contact can be achieved in 1L-4L MoS2-Pt, 3L MoS2-Au, and 2L-3L MoS2-Pd vdW interfaces, which is useful for realizing complementary metal oxide semiconductor (CMOS) logic circuits. These findings indicated that the FLP and contact types can be effectively modulated at MoS2-metal vdW interfaces by selecting the layer number of MoS2.
Collapse
Affiliation(s)
- Xin Pei
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaohui Hu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, China
- Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing 211816, China
| | - Tao Xu
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Litao Sun
- SEU-FEI Nano-Pico Center, Key Laboratory of MEMS of Ministry of Education, Southeast University, Nanjing 210096, China
| |
Collapse
|
2
|
Zhao H, Liang D, Zhang Q, Zhang Z, Ma X, Zhang N, Zhao M, Wang Y, Meng Z, Cong H. Polyelectrolyte modified black phosphorus/titania nanosheet heterojunction enhanced photocatalysis: Synergistic enhancement effect of interface affinity and electron transport channel. J Colloid Interface Sci 2024; 664:520-532. [PMID: 38484520 DOI: 10.1016/j.jcis.2024.03.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 04/07/2024]
Abstract
The instability and high electron-hole recombination have limited the application of black phosphorus (BP) as an excellent photocatalyst. To address these challenges, poly dimethyl diallyl ammonium chloride (PDDA), poly (allylamine hydrochloride) (PAH), and polyethyleneimine (PEI) are introduced to the functionalization of BP (F-BP), which can not only enhance its stability, but also boost the carrier transfer. Furthermore, a high-performance heterojunction photocatalyst is fabricated using F-BP and titania nanosheets (TNs) via a layer-by-layer self-assembly approach. The experimental outcomes unequivocally indicate that F-BP exhibits fast charge migration compared to BP. The density functional theory (DFT), in situ Kelvin-probe force microscopy (KPFM) and other advanced characterization techniques collectively unfold that PDDA modified BP can notably boost separation and propagation of charges, along with an enhanced carrier abundance. In summary, this novel strategy of using polyelectrolytes to enhance the electron transfer and the stability of BP permits immense potential in building next-generation BP-based high efficiency photocatalysts.
Collapse
Affiliation(s)
- Hui Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Derui Liang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Qian Zhang
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, China.
| | - Zihan Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Xu Ma
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Ning Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Menglan Zhao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Yu Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, China
| | - Zilin Meng
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, China.
| | - Hailin Cong
- School of Resources and Environmental Engineering, Shandong University of Technology, Zibo, China.
| |
Collapse
|
3
|
Goren AY, Gungormus E, Vatanpour V, Yoon Y, Khataee A. Recent Progress on Synthesis and Properties of Black Phosphorus and Phosphorene As New-Age Nanomaterials for Water Decontamination. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38604807 DOI: 10.1021/acsami.3c19230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Concerted efforts have been made in recent years to find solutions to water and wastewater treatment challenges and eliminate the difficulties associated with treatment methods. Various techniques are used to ensure the recycling and reuse of water resources. Owing to their excellent chemical, physical, and biological properties, nanomaterials play an important role when integrated into water/wastewater treatment technologies. Black phosphorus (BP) is a potential nanomaterial candidate for water and wastewater treatment, especially its monolayer 2D derivative called phosphorene. Phosphorene offers relative adjustability in its direct bandgap, high charge carrier mobility, and improved in-plane anisotropy compared to the most extensively studied 2D nanomaterials. In this study, we examined the physical and chemical characteristics and synthetic processes of BP and phosphorene. We provide an overview of the latest advancements in the main applications of BP and phosphorene in water/wastewater treatment, which are categorized as photocatalytic, adsorption, and membrane filtration processes. Additionally, we explore the existing difficulties in the integration of BP and phosphorene into water/wastewater treatment technologies and prospects for future research in this field. In summary, this review highlights the ongoing necessity for significant research efforts on the integration of BP and phosphorene in water and wastewater applications.
Collapse
Affiliation(s)
- A Yagmur Goren
- Department of Environmental Engineering, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Elif Gungormus
- Department of Chemical Engineering, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- Environmental Engineering Department & National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University, Istanbul 34469, Turkey
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Alireza Khataee
- Department of Chemical Engineering & ITU Synthetic Fuels and Chemicals Technology Center (ITU-SENTEK), Istanbul Technical University, Istanbul 34469, Turkey
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| |
Collapse
|
4
|
Suk SH, Seo SB, Cho YS, Wang J, Sim S. Ultrafast optical properties and applications of anisotropic 2D materials. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:107-154. [PMID: 39635300 PMCID: PMC11501201 DOI: 10.1515/nanoph-2023-0639] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/27/2023] [Indexed: 12/07/2024]
Abstract
Two-dimensional (2D) layered materials exhibit strong light-matter interactions, remarkable excitonic effects, and ultrafast optical response, making them promising for high-speed on-chip nanophotonics. Recently, significant attention has been directed towards anisotropic 2D materials (A2DMs) with low in-plane crystal symmetry. These materials present unique optical properties dependent on polarization and direction, offering additional degrees of freedom absent in conventional isotropic 2D materials. In this review, we discuss recent progress in understanding the fundamental aspects and ultrafast nanophotonic applications of A2DMs. We cover structural characteristics and anisotropic linear/nonlinear optical properties of A2DMs, including well-studied black phosphorus and rhenium dichalcogenides, as well as emerging quasi-one-dimensional materials. Then, we discuss fundamental ultrafast anisotropic phenomena occurring in A2DMs, such as polarization-dependent ultrafast dynamics of charge carriers and excitons, their direction-dependent spatiotemporal diffusion, photo-induced symmetry switching, and anisotropic coherent acoustic phonons. Furthermore, we review state-of-the-art ultrafast nanophotonic applications based on A2DMs, including polarization-driven active all-optical modulations and ultrafast pulse generations. This review concludes by offering perspectives on the challenges and future prospects of A2DMs in ultrafast nanophotonics.
Collapse
Affiliation(s)
- Sang Ho Suk
- School of Electrical Engineering, Hanyang University, Ansan15588, South Korea
| | - Sung Bok Seo
- School of Electrical Engineering, Hanyang University, Ansan15588, South Korea
| | - Yeon Sik Cho
- School of Electrical Engineering, Hanyang University, Ansan15588, South Korea
| | - Jun Wang
- Photonic Integrated Circuits Center, Key Laboratory of Materials for High-Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai201800, China
| | - Sangwan Sim
- School of Electrical Engineering, Hanyang University, Ansan15588, South Korea
| |
Collapse
|
5
|
Li X, Shi F, Wang L, Zhang S, Yan L, Zhang X, Sun W. Electrochemical Biosensor Based on Horseradish Peroxidase and Black Phosphorene Quantum Dot Modified Electrode. Molecules 2023; 28:6151. [PMID: 37630403 PMCID: PMC10459736 DOI: 10.3390/molecules28166151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/09/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Black phosphorene quantum dots (BPQDs) were prepared by ultrasonic-assisted liquid-phase exfoliation and centrifugation with morphologies proved by TEM results. Furthermore, an electrochemical enzyme sensor was prepared by co-modification of BPQDs with horseradish peroxidase (HRP) on the surface of a carbon ionic liquid electrode (CILE) for the first time. The direct electrochemical behavior of HRP was studied with a pair of well-shaped voltammetric peaks that appeared, indicating that the existence of BPQDs was beneficial to accelerate the electron transfer rate between HRP and the electrode surface. This was due to the excellent properties of BPQDs, such as small particle size, high interfacial reaction activity, fast conductivity, and good biocompatibility. The presence of BPQDs on the electrode surface provided a fast channel for direct electron transfer of HRP. Therefore, the constructed electrochemical HRP biosensor was firstly used to investigate the electrocatalytic behavior of trichloroacetic acid (TCA) and potassium bromate (KBrO3), and the wide linear detection ranges of TCA and KBrO3 were 4.0-600.0 mmol/L and 2.0-57.0 mmol/L, respectively. The modified electrode was applied to the actual samples detection with satisfactory results.
Collapse
Affiliation(s)
- Xiaoqing Li
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (F.S.); (L.W.); (S.Z.); (L.Y.); (X.Z.)
- College of Health Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Fan Shi
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (F.S.); (L.W.); (S.Z.); (L.Y.); (X.Z.)
| | - Lisi Wang
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (F.S.); (L.W.); (S.Z.); (L.Y.); (X.Z.)
| | - Siyue Zhang
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (F.S.); (L.W.); (S.Z.); (L.Y.); (X.Z.)
| | - Lijun Yan
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (F.S.); (L.W.); (S.Z.); (L.Y.); (X.Z.)
| | - Xiaoping Zhang
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (F.S.); (L.W.); (S.Z.); (L.Y.); (X.Z.)
| | - Wei Sun
- Key Laboratory of Functional Materials and Photoelectrochemistry of Haikou, Key Laboratory of Laser Technology and Optoelectronic Functional Materials of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China; (X.L.); (F.S.); (L.W.); (S.Z.); (L.Y.); (X.Z.)
| |
Collapse
|
6
|
Li H, Li C, Zhao H, Tao B, Wang G. Two-Dimensional Black Phosphorus: Preparation, Passivation and Lithium-Ion Battery Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185845. [PMID: 36144580 PMCID: PMC9504651 DOI: 10.3390/molecules27185845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022]
Abstract
As a new type of single element direct-bandgap semiconductor, black phosphorus (BP) shows many excellent characteristics due to its unique two-dimensional (2D) structure, which has great potential in the fields of optoelectronics, biology, sensing, information, and so on. In recent years, a series of physical and chemical methods have been developed to modify the surface of 2D BP to inhibit its contact with water and oxygen and improve the stability and physical properties of 2D BP. By doping and coating other materials, the stability of BP applied in the anode of a lithium-ion battery was improved. In this work, the preparation, passivation, and lithium-ion battery applications of two-dimensional black phosphorus are summarized and reviewed. Firstly, a variety of BP preparation methods are summarized. Secondly, starting from the environmental instability of BP, different passivation technologies are compared. Thirdly, the applications of BP in energy storage are introduced, especially the application of BP-based materials in lithium-ion batteries. Finally, based on preparation, surface functionalization, and lithium-ion battery of 2D BP, the current research status and possible future development direction are put forward.
Collapse
Affiliation(s)
- Hongda Li
- Correspondence: (H.L.); (B.T.); (G.W.)
| | | | | | - Boran Tao
- Correspondence: (H.L.); (B.T.); (G.W.)
| | | |
Collapse
|
7
|
Yu Q, Guo K, Dai Y, Deng H, Wang T, Wu H, Xu Y, Shi X, Wu J, Zhang K, Zhou P. Black phosphorus for near-infrared ultrafast lasers in the spatial/temporal domain. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:503001. [PMID: 34544055 DOI: 10.1088/1361-648x/ac2862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Two-dimensional (2D) materials have attracted extensive interests due to their wide range of electronic and optical properties. After continuous and extensive research, black phosphorus (BP), a novel member of 2D layered semiconductor material, benefit for the unique in-plane anisotropic structure, controllable direct bandgap characteristic, and high charge carrier mobility, has attracted tremendous attention and successfully applied in ultrafast pulse generation. This article, which focuses on near-infrared ultrafast laser demonstration of BP, present discussion of preparation methods for high quality BP nanosheet, various BP based ultrafast lasers in the spatial/temporal domain, and the future research needs.
Collapse
Affiliation(s)
- Qiang Yu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
- I-Lab & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Kun Guo
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
| | - Yongping Dai
- I-Lab & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, People's Republic of China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Haiqin Deng
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
| | - Tao Wang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
| | - Hanshuo Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
| | - Yijun Xu
- I-Lab & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Xinyao Shi
- Institute of Quantum Sensing of Wuxi, Wuxi, People's Republic of China
| | - Jian Wu
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
| | - Kai Zhang
- I-Lab & Key Laboratory of Nanophotonic Materials and Devices, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou, People's Republic of China
| | - Pu Zhou
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha, People's Republic of China
| |
Collapse
|
8
|
Zhang Y, Ma C, Xie J, Ågren H, Zhang H. Black Phosphorus/Polymers: Status and Challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100113. [PMID: 34323318 DOI: 10.1002/adma.202100113] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/30/2021] [Indexed: 06/13/2023]
Abstract
As a newly emerged mono-elemental nanomaterial, black phosphorus (BP) has been widely investigated for its fascinating physical properties, including layer-dependent tunable band gap (0.3-1.5 eV), high ON/OFF ratio (104 ), high carrier mobility (103 cm2 V-1 s-1 ), excellent mechanical resistance, as well as special in-plane anisotropic optical, thermal, and vibrational characteristics. However, the instability caused by chemical degradation of its surface has posed a severe challenge for its further applications. A focused BP/polymer strategy has more recently been developed and implemented to hurdle this issue, so at present BP/polymers have been developed that exhibit enhanced stability, as well as outstanding optical, thermal, mechanical, and electrical properties. This has promoted researchers to further explore the potential applications of black phosphorous. In this review, the preparation processes and the key properties of BP/polymers are reviewed, followed by a detailed account of their diversified applications, including areas like optoelectronics, bio-medicine, and energy storage. Finally, in accordance with the current progress, the prospective challenges and future directions are highlighted and discussed.
Collapse
Affiliation(s)
- Ye Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, China
| | - Chunyang Ma
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Jianlei Xie
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
9
|
Qiu S, Zhou Y, Xing W, Ren X, Zou B, Hu Y. Conceptually Novel Few-Layer Black Phosphorus/Supramolecular Coalition: Noncovalent Functionalization Toward Fire Safety Enhancement. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shuilai Qiu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - Yifan Zhou
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - Weiyi Xing
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - Xiyun Ren
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - Bin Zou
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| | - Yuan Hu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
10
|
Mitrović A, Abellán G, Hirsch A. Covalent and non-covalent chemistry of 2D black phosphorus. RSC Adv 2021; 11:26093-26101. [PMID: 34381597 PMCID: PMC8320089 DOI: 10.1039/d1ra04416h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/12/2021] [Indexed: 01/16/2023] Open
Abstract
The post-graphene era is undoubtedly marked by two-dimensional (2D) sheet polymers, such as black phosphorus (BP). This emerging material has a fascinating structure and outstanding electronic properties and has been postulated for a plethora of applications. The need to circumvent the pronounced oxophilicity of P atoms has dominated the research on this material in recent years, with the objective of finding the most effective method to improve its environmental stability. When it comes to chemical functionalization, the few approaches reported so far involve some drawbacks such as low degree of addition and low production ability. This review presents the concepts and strategies of our studies on the chemical functionalization of BP, both non-covalent and covalent, emphazising the current synthetic challenges. Moreover, we also provide some effective pathways for the chemical activation of the unreactive basal plane, the identification of the effective binding strategies, and the concept to overcome hurdles associated with characterization tools. This work will provide fundamental insights into the controlled chemical functionalization and characterization of BP, fostering the research on this appealing 2D material.
Collapse
Affiliation(s)
- Aleksandra Mitrović
- University of Belgrade-Faculty of Chemistry Studentski trg 12-16 Belgrade Serbia
| | - Gonzalo Abellán
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia Catedrático José Beltrán 2, Paterna Valencia Spain
| | - Andreas Hirsch
- Department of Chemistry, Pharmacy and Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University of Erlangen-Nürnberg Nikolaus-Fiebiger Straße 10 91058 Erlangen Germany
| |
Collapse
|
11
|
Double S-scheme AgBr heterojunction co-modified with g-C3N4 and black phosphorus nanosheets greatly improves the photocatalytic activity and stability. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115540] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Song X, Li B, Peng W, Wang C, Li K, Zhu Y, Mei Y. A palladium doped 1T-phase molybdenum disulfide-black phosphorene two-dimensional van der Waals heterostructure for visible-light enhanced electrocatalytic hydrogen evolution. NANOSCALE 2021; 13:5892-5900. [PMID: 33725049 DOI: 10.1039/d0nr09133b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The electrocatalytic hydrogen evolution reaction (HER) is a green chemistry route for sustainable energy production. Compared to 2H-phase molybdenum disulfide (MoS2), the 1T-phase MoS2 (1T-MoS2) has higher theoretical activity and faster charge transfer kinetics, but the HER performance of 1T-MoS2 is commonly hindered by limited active edge/defect as well as poor structural stability. Herein, we synthesize a well-defined 2D vdW heterostructure composed of Pd doped 1T-MoS2 and black phosphorus (BP) nanosheets via electrostatic self-assembly. The spontaneous Pd doping under mild reaction conditions could introduce catalytically active sulfur vacancies in MoS2 without triggering a wide range of 1T to 2H phase transformation. The hetero-interfacial charge transfer from BP to Pd-1T-MoS2 can effectively improve the intrinsic activity of Pd-1T-MoS2 with a relatively low S vacancy concentration and simultaneously stabilize the 1T-phase structure. Due to the wide-range light absorption of BP nanosheets and the high carrier mobilities of 2D materials, the HER activity of the obtained Pd-1T-MoS2/BP could be further enhanced under ≥420 nm visible light illumination.
Collapse
Affiliation(s)
- Xiancheng Song
- Faculty of Chemical Engineering, Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, Yunnan, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Li S, Wang P, Zhao H, Wang R, Jing R, Meng Z, Li W, Zhang Z, Liu Y, Zhang Q, Li Z. Fabrication of black phosphorus nanosheets/BiOBr visible light photocatalysts via the co-precipitation method. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Han C, Li Y, Li J, Qi M, Tang Z, Xu Y. Cooperative Syngas Production and C−N Bond Formation in One Photoredox Cycle. Angew Chem Int Ed Engl 2021; 60:7962-7970. [DOI: 10.1002/anie.202015756] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/12/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Chuang Han
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 China
- College of Chemistry New Campus Fuzhou University Fuzhou 350116 China
| | - Yue‐Hua Li
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 China
- College of Chemistry New Campus Fuzhou University Fuzhou 350116 China
| | - Jing‐Yu Li
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 China
- College of Chemistry New Campus Fuzhou University Fuzhou 350116 China
| | - Ming‐Yu Qi
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 China
- College of Chemistry New Campus Fuzhou University Fuzhou 350116 China
| | - Zi‐Rong Tang
- College of Chemistry New Campus Fuzhou University Fuzhou 350116 China
| | - Yi‐Jun Xu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 China
- College of Chemistry New Campus Fuzhou University Fuzhou 350116 China
| |
Collapse
|
15
|
Han C, Li Y, Li J, Qi M, Tang Z, Xu Y. Cooperative Syngas Production and C−N Bond Formation in One Photoredox Cycle. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015756] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chuang Han
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 China
- College of Chemistry New Campus Fuzhou University Fuzhou 350116 China
| | - Yue‐Hua Li
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 China
- College of Chemistry New Campus Fuzhou University Fuzhou 350116 China
| | - Jing‐Yu Li
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 China
- College of Chemistry New Campus Fuzhou University Fuzhou 350116 China
| | - Ming‐Yu Qi
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 China
- College of Chemistry New Campus Fuzhou University Fuzhou 350116 China
| | - Zi‐Rong Tang
- College of Chemistry New Campus Fuzhou University Fuzhou 350116 China
| | - Yi‐Jun Xu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350116 China
- College of Chemistry New Campus Fuzhou University Fuzhou 350116 China
| |
Collapse
|
16
|
Huang X, Zhou Y, Woo CM, Pan Y, Nie L, Lai P. Multifunctional layered black phosphorene-based nanoplatform for disease diagnosis and treatment: a review. FRONTIERS OF OPTOELECTRONICS 2020; 13:327-351. [PMID: 36641565 PMCID: PMC9743864 DOI: 10.1007/s12200-020-1084-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/01/2020] [Indexed: 05/05/2023]
Abstract
As an outstanding two-dimensional material, black phosphorene, has attracted significant attention in the biomedicine field due to its large surface area, strong optical absorption, distinct bioactivity, excellent biocompatibility, and high biodegradability. In this review, the preparation and properties of black phosphorene are summarized first. Thereafter, black phosphorene-based multifunctional platforms employed for the diagnosis and treatment of diseases, including cancer, bone injuries, brain diseases, progressive oxidative diseases, and kidney injury, are reviewed in detail. This review provides a better understanding of the exciting properties of black phosphorene, such as its high drug-loading efficiency, photothermal conversion capability, high 1O2 generation efficiency, and high electrical conductivity, as well as how these properties can be exploited in biomedicine. Finally, the research perspectives of black phosphorene are discussed.
Collapse
Affiliation(s)
- Xiazi Huang
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yingying Zhou
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Chi Man Woo
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Puxiang Lai
- Department of Biomedical Engineering, Hong Kong Polytechnic University, Hong Kong, China.
- Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
17
|
Feng J, Li X, Zhu G, Wang QJ. Emerging High-Performance SnS/CdS Nanoflower Heterojunction for Ultrafast Photonics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43098-43105. [PMID: 32864948 DOI: 10.1021/acsami.0c12907] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal sulfide nanomaterials show many unique photoelectric properties when they are constructed as heterojunction materials, which have made them attractive in recent years. Among various applications of these heterojunction materials, nonlinear optical properties and related applications are promising research fields. Herein, a novel high performance SnS/CdS nanoflower heterostructure is successfully prepared by a water bath method. Scanning electron microscopy (SEM) images suggest the formation of a nanoheterojunction between SnS and CdS. In addition, a large modulation depth (13.6%) and a low saturation intensity (230.6 MW/cm2) of the SnS/CdS heterostructure are demonstrated, which indicates the outstanding potential of the SnS/CdS heterostructure in photonics among the other emerging novel nonlinear optical (NLO) materials. Meanwhile, the surface morphology, structures, and optical characteristics of the as-prepared SnS/CdS nanoflower sample are systemically analyzed. Furthermore, an ultrashort pulse laser with a fundamental repetition rate of 34.3 MHz, a pulse width of 558 fs, and a spectral width of 8.6 nm is realized at a central wavelength of 1560.8 nm. More importantly, we have successfully realized a soliton molecule with controllable pulse-pulse separation from 2.8 to 10.2 ps by controlling the phase difference of the cavity. This work reveals the excellent nonlinear optical properties of the SnS/CdS heterostructure and lays a foundation for its development in advanced optical modulators, saturable absorbers, and optical switching devices.
Collapse
Affiliation(s)
- Jiangjiang Feng
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Xiaohui Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Gangqiang Zhu
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China
| | - Qi Jie Wang
- Center for OptoElectronics and Biophotonics, School of Electrical and Electronic Engineering and the Photonics Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 Singapore
| |
Collapse
|
18
|
Liu Y, Zhu D, Zhu X, Cai G, Wu J, Chen M, Du P, Chen Y, Liu W, Yang S. Enhancing the photodynamic therapy efficacy of black phosphorus nanosheets by covalently grafting fullerene C 60. Chem Sci 2020; 11:11435-11442. [PMID: 34094386 PMCID: PMC8162772 DOI: 10.1039/d0sc03349a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
Few-layer black phosphorus (BP) nanosheets show potential application in biomedicine such as photodynamic therapy (PDT), and are therefore commonly used in anticancer therapy and nanomedicine due to being relatively less invasive. However, they suffer from low ambient stability and poor therapeutic efficacy. Herein, C60 was covalently grafted onto the edges of BP nanosheets, and the resultant BP-C60 hybrid was applied as a novel endocytosing photosensitizer, resulting in not only significantly enhanced PDT efficacy relative to that of the pristine BP nanosheets, but also drastically improved stability in a physiological environment, as confirmed by both in vitro and in vivo studies. Such improved stability was due to shielding effect of the stable hydrophobic C60 molecules. The enhanced PDT efficacy is interpreted from the photoinduced electron transfer from BP to C60, leading to the promoted generation of ˙OH radicals, acting as a reactive oxygen species (ROS) that is effective in killing tumor cells. Furthermore, the BP-C60 hybrid exhibited low systemic toxicity in the major organs of mice. The BP-C60 hybrid represents the first BP-fullerene hybrid nanomaterial fulfilling promoted ROS generation and consequently enhanced PDT efficacy.
Collapse
Affiliation(s)
- Yajuan Liu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 China
| | - Daoming Zhu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University Wuhan 430072 China
| | - Xianjun Zhu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 China
| | - Gaoke Cai
- Department of Clinical Oncology, Renmin Hospital of Wuhan University Wuhan 430072 China
| | - Jianhua Wu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 China
| | - Muqing Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 China
| | - Pingwu Du
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 China
| | - Yongshun Chen
- Department of Clinical Oncology, Renmin Hospital of Wuhan University Wuhan 430072 China
| | - Wei Liu
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University Wuhan 430072 China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Anhui Laboratory of Advanced Photon Science and Technology, Department of Materials Science and Engineering, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
19
|
Jing R, Yang J, Li S, Zhao S, Wang P, Liu Y, Liu A, Meng Z, Huang H, Zhang Z, Zhang Q. Construction of PDDA functionalized black phosphorus nanosheets/BiOI Z-scheme photocatalyst with enhanced visible light photocatalytic activity. J Colloid Interface Sci 2020; 576:34-46. [DOI: 10.1016/j.jcis.2020.04.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022]
|
20
|
Recent insights into the robustness of two-dimensional black phosphorous in optoelectronic applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Chen X, Ponraj JS, Fan D, Zhang H. An overview of the optical properties and applications of black phosphorus. NANOSCALE 2020; 12:3513-3534. [PMID: 31904052 DOI: 10.1039/c9nr09122j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since the year 2014, when scientists first obtained black phosphorus using a sticky tape to peel the layers off, it has attracted tremendous interest as a novel two-dimensional material. After it was successfully produced, its outstanding optical properties have been unveiled. Various applications based on these properties have been reported. This study mainly reviews the unique optical properties and potential applications of black phosphorus. The optical performances of black phosphorus mainly include linear optical properties and nonlinear optical properties. Some examples include the anisotropic optical response, saturable absorption effect and Kerr effect. The researchers found that the nonlinear saturable absorption coefficients of black phosphorus are better than that of MoS2 and WS2 from the visible region to the near-infrared region. Compared with graphene, black phosphorus has a better nonlinear saturable absorption performance. After passivation or surface modification, black phosphorus is stable when exposed to oxygen and water. Herein, black phosphorus has the potential to be used in detector/sensors, solar energy harvesting, photocatalysts, optical saturable absorbers in ultrafast lasers, all optical switches, optical modulation, nanomedicine and some others in the near future.
Collapse
Affiliation(s)
- Xing Chen
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P.R. China.
| | | | - Dianyuan Fan
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P.R. China.
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen 518060, P.R. China.
| |
Collapse
|
22
|
Yan S, Song H, Wan LF, Lin S, Wu H, Shi Y, Yao J. Hydroxyl-Assisted Phosphorene Stabilization with Robust Device Performances. NANO LETTERS 2020; 20:81-87. [PMID: 31821007 DOI: 10.1021/acs.nanolett.9b03115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phosphorene (few-layer black phosphorus) has been widely investigated for its unique optical and electronic properties. However, it is challenging to synthesize and process stable phosphorene as it degrades rapidly upon exposure to oxygen and moisture under ambient conditions, which has limited its use in practical applications. Herein, we propose an alkali-assisted stabilization process to produce high-quality phosphorene nanosheets. Our morphology measurements show that alkali-treated phosphorene remains stable for over 7 days in air. Electrical measurements on alkali-treated BP devices further proved its stable electrical property under ambient conditions. We further demonstrate superior light-assisted electrochemical water splitting performance using stable phosphorene. We attribute the stabilization effect to the chemical modification of the surface of phosphorene with P-OH bond formation. This study paves the avenue for the implementation of phosphorene devices in ambient conditions.
Collapse
Affiliation(s)
- Shancheng Yan
- Department of Materials Science and Engineering , University of California , Berkeley , California 94720 , United States
- School of Geography and Biological Information , Nanjing University of Posts and Telecommunications , Nanjing 210023 , People's Republic of China
| | - Haizeng Song
- School of Electronic Science and Engineering , Nanjing University , Nanjing 210093 , People's Republic of China
| | - Liwen F Wan
- Lawrence Livermore National Laboratory , Livermore , California 94550 , United States
| | - Shuren Lin
- Department of Materials Science and Engineering , University of California , Berkeley , California 94720 , United States
| | - Han Wu
- School of Electronic Science and Engineering , Nanjing University , Nanjing 210093 , People's Republic of China
| | - Yi Shi
- School of Electronic Science and Engineering , Nanjing University , Nanjing 210093 , People's Republic of China
| | - Jie Yao
- Department of Materials Science and Engineering , University of California , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
23
|
Thurakkal S, Zhang X. Recent Advances in Chemical Functionalization of 2D Black Phosphorous Nanosheets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902359. [PMID: 31993294 PMCID: PMC6974947 DOI: 10.1002/advs.201902359] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/10/2019] [Indexed: 05/25/2023]
Abstract
Owing to their tunable direct bandgap, high charge carrier mobility, and unique in-plane anisotropic structure, black phosphorus nanosheets (BPNSs) have emerged as one of the most important candidates among the 2D materials beyond graphene. However, the poor ambient stability of black phosphorus limits its practical application, due to the chemical degradation of phosphorus atoms to phosphorus oxides in the presence of oxygen and/or water. Chemical functionalization is demonstrated as an efficient approach to enhance the ambient stability of BPNSs. Herein, various covalent strategies including radical addition, nitrene addition, nucleophilic substitution, and metal coordination are summarized. In addition, efficient noncovalent functionalization methods such as van der Waals interactions, electrostatic interactions, and cation-π interactions are described in detail. Furthermore, the preparations, characterization, and diverse applications of functionalized BPNSs in various fields are recapped. The challenges faced and future directions for the chemical functionalization of BPNSs are also highlighted.
Collapse
Affiliation(s)
- Shameel Thurakkal
- Division of Chemistry and BiochemistryDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 4SE‐412 96GöteborgSweden
| | - Xiaoyan Zhang
- Division of Chemistry and BiochemistryDepartment of Chemistry and Chemical EngineeringChalmers University of TechnologyKemigården 4SE‐412 96GöteborgSweden
| |
Collapse
|
24
|
Lee WG, Chae S, Chung YK, Yoon WS, Choi JY, Huh J. Indirect-To-Direct Band Gap Transition of One-Dimensional V 2Se 9: Theoretical Study with Dispersion Energy Correction. ACS OMEGA 2019; 4:18392-18397. [PMID: 31720541 PMCID: PMC6844153 DOI: 10.1021/acsomega.9b02655] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/14/2019] [Indexed: 05/23/2023]
Abstract
Recently, we synthesized a one-dimensional (1D) structure of V2Se9. The 1D V2Se9 resembles another 1D material, Nb2Se9, which is expected to have a direct band gap. To determine the potential applications of this material, we calculated the band structures of 1D and bulk V2Se9 using density functional theory by varying the number of chains and comparing their band structures and electronic properties with those of Nb2Se9. The results showed that a small number of V2Se9 chains have a direct band gap, whereas bulk V2Se9 possesses an indirect band gap, like Nb2Se9. We expect that V2Se9 nanowires with diameters less than ∼20 Å would have direct band gaps. This indirect-to-direct band gap transition could lead to potential optoelectronic applications for this 1D material because materials with direct band gaps can absorb photons without being disturbed by phonons.
Collapse
Affiliation(s)
- Weon-Gyu Lee
- Department
of Chemistry, School of Advanced Materials Science & Engineering, Department of Energy
Science, and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Sudong Chae
- Department
of Chemistry, School of Advanced Materials Science & Engineering, Department of Energy
Science, and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - You Kyoung Chung
- Department
of Chemistry, School of Advanced Materials Science & Engineering, Department of Energy
Science, and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Won-Sub Yoon
- Department
of Chemistry, School of Advanced Materials Science & Engineering, Department of Energy
Science, and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae-Young Choi
- Department
of Chemistry, School of Advanced Materials Science & Engineering, Department of Energy
Science, and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Joonsuk Huh
- Department
of Chemistry, School of Advanced Materials Science & Engineering, Department of Energy
Science, and SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
25
|
Wang T, Jin X, Yang J, Wu J, Yu Q, Pan Z, Shi X, Xu Y, Wu H, Wang J, He T, Zhang K, Zhou P. Oxidation-Resistant Black Phosphorus Enable Highly Ambient-Stable Ultrafast Pulse Generation at a 2 μm Tm/Ho-Doped Fiber Laser. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36854-36862. [PMID: 31535548 DOI: 10.1021/acsami.9b12415] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Black phosphorus (BP) ranks among the most promising saturable absorber materials for ultrafast pulse generations at 2 μm. However, the easy-to-degrade characteristic of BP seriously limits the long-term operation of ultrafast fiber lasers and hence becomes a bottleneck for its relevant practical applications. In this paper, a modified electrochemical delamination exfoliation process was explored to produce high-performance, large-size, and oxidation-resistant BP nanosheets, where BP nanosheets in high yield with evenly coated tetra-n-butyl-ammonium organics by precisely controlling the intercalation chemistry can be obtained. A mode-locked Tm/Ho co-doped fiber laser with high temporal stability and long-term operation capability was demonstrated based on the innovatively fabricated BP saturable absorber. The self-starting mode-locking operation featuring a high signal-to-noise ratio of 58 dB and long-term stability has been verified for at least 3 weeks, which indicates the successful passivation of the employed synthesis method. These results fully indicated that passivated BP is an efficient candidate in a 2 μm range ultrafast photonic field, which will promote the ultrafast optical application of BP and also other infrared photonic and photoelectronic devices.
Collapse
Affiliation(s)
- Tao Wang
- College of Advanced Interdisciplinary Studies , National University of Defense Technology , Changsha 410073 , China
| | - Xiaoxi Jin
- College of Advanced Interdisciplinary Studies , National University of Defense Technology , Changsha 410073 , China
| | | | - Jian Wu
- College of Advanced Interdisciplinary Studies , National University of Defense Technology , Changsha 410073 , China
| | | | - Zhenghui Pan
- Department of Materials Science and Engineering , National University of Singapore , Singapore 117574 , Singapore
| | - Xinyao Shi
- School of Nano Technology and Nano Bionics , University of Science and Technology of China , Hefei 230026 , China
| | | | - Hanshuo Wu
- College of Advanced Interdisciplinary Studies , National University of Defense Technology , Changsha 410073 , China
| | - Jin Wang
- College of Advanced Interdisciplinary Studies , National University of Defense Technology , Changsha 410073 , China
| | - Tingchao He
- College of Physics and Energy , Shenzhen University , Shenzhen 518060 , China
| | | | - Pu Zhou
- College of Advanced Interdisciplinary Studies , National University of Defense Technology , Changsha 410073 , China
| |
Collapse
|
26
|
Guo J, Zhao J, Huang D, Wang Y, Zhang F, Ge Y, Song Y, Xing C, Fan D, Zhang H. Two-dimensional tellurium-polymer membrane for ultrafast photonics. NANOSCALE 2019; 11:6235-6242. [PMID: 30874696 DOI: 10.1039/c9nr00736a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Tellurium (Te) exhibits many intriguing properties including thermoelectricity, photoelectricity, piezoelectricity, and photoconductivity, and is widely used in detectors, sensors, transistors, and energy devices. Herein, ultrathin two-dimensional (2D) Te nanosheets were fabricated using a facile and cost-effective liquid-phase exfoliation method. Mixing the as-prepared 2D Te nanosheets with polyvinylpyrrolidone (PVP) provided a uniform 2D Te/PVP membrane. The 2D Te/PVP membrane exhibited excellent mechanical properties, thermal properties, and stability. The nonlinear optical properties of the membrane were characterized over the spectral range of 800 to 1550 nm using open-aperture Z-scan technology. A large nonlinear absorption coefficient of about 10-1 cm GW-1 over the whole tested wavelength range demonstrated the efficient broadband saturable absorptivity of the 2D Te/PVP membrane. Using the 2D Te/PVP membrane as a saturable absorber (SA), a highly stable femtosecond laser with a pulse duration of 829 fs in the communication band was obtained. This work highlights the promise of 2D Te/PVP membranes in ultrafast photonics and Te as a new 2D material for use in photonic devices such as all-optical modulators, switches, and thresholds.
Collapse
Affiliation(s)
- Jia Guo
- Shenzhen Engineering Laboratory of phosphorene and Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Zhuge Z, Tang Y, Tao J, Zhao Y. Functionalized Black Phosphorus Nanocomposite for Biosensing. ChemElectroChem 2019. [DOI: 10.1002/celc.201801439] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen Zhuge
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai 201418 China
| | - Yi‐Hong Tang
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai 201418 China
| | - Jian‐Wei Tao
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai 201418 China
| | - Yun Zhao
- School of Chemical and Environmental EngineeringShanghai Institute of Technology Shanghai 201418 China
| |
Collapse
|
28
|
Hu X, Huang P, Jin B, Zhang X, Li H, Zhou X, Zhai T. Halide-Induced Self-Limited Growth of Ultrathin Nonlayered Ge Flakes for High-Performance Phototransistors. J Am Chem Soc 2018; 140:12909-12914. [PMID: 30213186 DOI: 10.1021/jacs.8b07383] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
2D nonlayered materials have attracted intensive attention due to their unique surface structure and novel physical properties. However, it is still a great challenge to realize the 2D planar structures of nonlayered materials owing to the naturally intrinsic covalent bonds. Ge is one of them with cubic structure impeding its 2D anisotropic growth. Here, the ultrathin single-crystalline Ge flakes as thin as 8.5 nm were realized via halide-assisted self-limited CVD growth. The growth mechanism has been confirmed by experiments and theoretical calculations, which can be attributed to the preferential growth of the (111) plane with the lowest formation energy and the giant interface distortion effect of the Cl-Ge motif. Excitingly, a Ge flake-based phototransistor shows excellent performances such as a high hole mobility of ∼263 cm2 V-1 s-1, a high responsivity of ∼200 A/W, and fast response rates (τrise = 70 ms, τdecay = 6 ms), suggesting its great potential in the applications of electronics and optoelectronics.
Collapse
Affiliation(s)
- Xiaozong Hu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
| | - Pu Huang
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Electronic Science and Technology , Shenzhen University , Nanhai Avenue 3688 , Shenzhen , Guangdong 518060 , P. R. China
| | - Bao Jin
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
| | - Xiuwen Zhang
- Shenzhen Key Laboratory of Flexible Memory Materials and Devices, College of Electronic Science and Technology , Shenzhen University , Nanhai Avenue 3688 , Shenzhen , Guangdong 518060 , P. R. China
| | - Huiqiao Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
| | - Xing Zhou
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , P. R. China
| |
Collapse
|