1
|
Omidian H, Wilson RL, Dey Chowdhury S. Injectable Biomimetic Gels for Biomedical Applications. Biomimetics (Basel) 2024; 9:418. [PMID: 39056859 PMCID: PMC11274625 DOI: 10.3390/biomimetics9070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Biomimetic gels are synthetic materials designed to mimic the properties and functions of natural biological systems, such as tissues and cellular environments. This manuscript explores the advancements and future directions of injectable biomimetic gels in biomedical applications and highlights the significant potential of hydrogels in wound healing, tissue regeneration, and controlled drug delivery due to their enhanced biocompatibility, multifunctionality, and mechanical properties. Despite these advancements, challenges such as mechanical resilience, controlled degradation rates, and scalable manufacturing remain. This manuscript discusses ongoing research to optimize these properties, develop cost-effective production techniques, and integrate emerging technologies like 3D bioprinting and nanotechnology. Addressing these challenges through collaborative efforts is essential for unlocking the full potential of injectable biomimetic gels in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (R.L.W.); (S.D.C.)
| | | | | |
Collapse
|
2
|
Zhang Y, Yi K, Gong F, Tang Z, Feng Y, Tian Y, Xiang M, Zhou F, Liu M, Ji X, He Z. A simple, rapid and sensitive sandwich immunoassay based on poly(N-isopropylacrylamide) for the detection of alpha-fetoprotein. Talanta 2024; 274:125932. [PMID: 38537351 DOI: 10.1016/j.talanta.2024.125932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/03/2024] [Accepted: 03/14/2024] [Indexed: 05/04/2024]
Abstract
Alpha-fetoprotein (AFP), as a tumor marker, plays a vital role in the diagnosis of liver cancer. In this work, a novel sandwich immunoassay based on a thermosensitive polymer, poly(N-isopropylacrylamide) (PNIPAM), was developed for the detection of AFP. This immunoassay could realize one-step rapid reaction within 1 h, and facilitate the separation of the target molecules by incorporating PNIPAM. In this method, a conjugate of PNIPAM and capture antibody (Ab1) was successfully synthesized as a capture probe and the synthetic method of PNIPAM-Ab1 was simple, while the detection antibody (Ab2) was labeled with fluorescein isothiocyanate (FITC) to form a fluorescent detection probe. By employing a sandwich immunoassay, the method achieved quantitative determination of AFP, exhibiting a wide linear range from 5 ng/mL to 200 ng/mL and a low detection limit of 2.44 ng/mL. Furthermore, it was successfully applied to the analysis of spiked human serum samples and the screening of patients with hepatic diseases in clinical samples, indicating its potential application prospect in the diagnosis of liver cancer.
Collapse
Affiliation(s)
- Yaran Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kebing Yi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Feng Gong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ziwen Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Feng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yilong Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Ming Xiang
- Center for Single-Cell Omics and Tumor Liquid Biopsy, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Fuxiang Zhou
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430072, Wuhan, China
| | - Min Liu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xinghu Ji
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| | - Zhike He
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China; Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Province Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
3
|
Li A, Ma B, Hua S, Ping R, Ding L, Tian B, Zhang X. Chitosan-based injectable hydrogel with multifunction for wound healing: A critical review. Carbohydr Polym 2024; 333:121952. [PMID: 38494217 DOI: 10.1016/j.carbpol.2024.121952] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/08/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Different types of clinical wounds are difficult to treat while infected by bacteria. Wound repair involves multiple cellular and molecular interactions, which is a complicated process. However, wound repair often suffers from abnormal cellular functions or pathways that result in unavoidable side effects, so there is an urgent need for a material that can heal wounds quickly and with few side effects. Based on these needs, hydrogels with injectable properties have been confirmed to be able to undergo self-healing, which provides favorable conditions for wound healing. Notably, as a biopolymer with excellent easy-to-modify properties from a wide range of natural sources, chitosan can be used to prepare injectable hydrogel with multifunction for wound healing because of its outstanding flowability and injectability. Especially, chitosan-based hydrogels with marked biocompatibility, non-toxicity, and bio-adhesion properties are ideal for facilitating wound healing. In this review, the characteristics and healing mechanisms of different wounds are briefly summarized. In addition, the preparation and characterization of injectable chitosan hydrogels in recent years are classified. Additionally, the bioactive properties of this type of hydrogel in vitro and in vivo are demonstrated, and future trend in wound healing is prospected.
Collapse
Affiliation(s)
- Aiqin Li
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China; Department of Day Ward, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, China
| | - Bin Ma
- Department of Spine Surgery, Yinchuan Guolong Orthopedic Hospital, Yinchuan, Ningxia 750001, China
| | - Shiyao Hua
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR 999078, China.
| | - Rui Ping
- Department of Endocrinology, The First People's Hospital of Yinchuan, Yinchuan, Ningxia 750001, China
| | - Lu Ding
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| | - Xu Zhang
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
4
|
Fan P, Li S, Yang J, Yang K, Wu P, Dong Q, Zhou Y. Injectable, self-healing hyaluronic acid-based hydrogels for spinal cord injury repair. Int J Biol Macromol 2024; 263:130333. [PMID: 38408580 DOI: 10.1016/j.ijbiomac.2024.130333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/05/2024] [Accepted: 02/19/2024] [Indexed: 02/28/2024]
Abstract
The cystic cavity that develops following spinal cord injury is a major obstacle for repairing spinal cord injury (SCI). The injectable self-healing biomaterials treatment is a promising strategy to enhance tissue repair after traumatic spinal cord injury. Herein, a natural extracellular matrix (ECM) biopolymer hyaluronic acid-based hydrogel was developed based on multiple dynamic covalent bonds. The hydrogels exhibited excellent injectable and self-healing properties, could be effectively injected into the injury site, and filled the lesion cavity to accelerate the tissue repair of traumatic SCI. Moreover, the hydrogels were compatible with cells and various tissues and possessed proper stiffness matched with nervous tissue. Additionally, when implanted into the injured spinal cord site, the hyaluronic acid-based hydrogel promoted axonal regeneration and functional recovery by accelerating remyelination, axon regeneration, and angiogenesis. Overall, the injectable self-healing hyaluronic acid-based hydrogels are ideal biomaterials for treating traumatic SCI.
Collapse
Affiliation(s)
- Penghui Fan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430073 Wuhan, China
| | - Shangzhi Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430073 Wuhan, China
| | - Junfeng Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430073 Wuhan, China
| | - Kaidan Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430073 Wuhan, China
| | - Ping Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Qi Dong
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430073 Wuhan, China.
| | - Yingshan Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, 430073 Wuhan, China.
| |
Collapse
|
5
|
Grosjean M, Berne D, Caillol S, Ladmiral V, Nottelet B. Dynamic PEG-PLA/Hydroxyurethane Networks Based on Imine Bonds as Reprocessable Elastomeric Biomaterials. Biomacromolecules 2023; 24:3472-3483. [PMID: 37458381 DOI: 10.1021/acs.biomac.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The development of dynamic covalent chemistry opens the way to the design of materials able to be reprocessed by an internal exchange reaction under thermal stimulus. Imine exchange differs from other exchange reactions by its relatively low temperature of activation. In this study, amine-functionalized star-shaped PEG-PLA and an aldehyde-functionalized hydroxyurethane modifier were combined to produce PEG-PLA/hydroxyurethane networks incorporating imine bonds. The thermal and mechanical properties of these new materials were evaluated as a function of the initial ratio of amine/aldehyde used during synthesis. Rheological analyses highlighted the dynamic behavior of these vitrimers at moderate temperature (60-85 °C) and provided the flow activation energies. Additionally, the reprocessability of these PEG-PLA/hydroxyurethane vitrimers was assessed by comparing the material properties before reshaping and after three reprocessing cycles (1 ton, 1 h, 70 °C). Hence, these materials can easily be designed to satisfy a specific medical application without properties loss. This work opens the way to the development of a new generation of dynamic materials combining degradable PEG-PLA copolymers and hydroxyurethane modifiers, which could find applications in the shape of medical devices on-demand under mild conditions.
Collapse
Affiliation(s)
| | - Dimitri Berne
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | - Sylvain Caillol
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier 34090, France
| | | | | |
Collapse
|
6
|
Cheng QP, Hsu SH. A self-healing hydrogel and injectable cryogel of gelatin methacryloyl-polyurethane double network for 3D printing. Acta Biomater 2023; 164:124-138. [PMID: 37088162 DOI: 10.1016/j.actbio.2023.04.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Three-dimensional (3D) printing of soft biomaterials facilitates the progress of personalized medicine. The development for different forms of 3D-printable biomaterials can promotes the potential manufacturing for artificial organs and provides biomaterials with the required properties. In this study, gelatin methacryloyl (GelMA) and dialdehyde-functionalized polyurethane (DFPU) were combined to create a double crosslinking system and develop 3D-printable GelMA-PU biodegradable hydrogel and cryogel. The GelMA-PU system demonstrates a combination of self-healing ability and 3D printability and provides two distinct forms of 3D-printable biomaterials with smart functions, high printing resolution, and biocompatibility. The hydrogel was printed into individual modules through an 80 µm or larger nozzle and further assembled into complex structures through adhesive and self-healing abilities, which could be stabilized by secondary photocrosslinking. The 3D-printed hydrogel was adhesive, light transmittable, and could embed a light emitting diode (LED). Furthermore, the hydrogel laden with human mesenchymal stem cells (hMSCs) was successfully printed and showed cell proliferation. Meanwhile, 3D-printed cryogel was achieved by printing on a subzero temperature platform through a 210 µm nozzle. After secondary photocrosslinking and drying, the cryogel was deliverable through a 16-gauge (1194 µm) syringe needle and can promote the proliferation of hMSCs. The GelMA-PU system extends the ink pool for 3D printing of biomaterials and has potential applications in tissue engineering scaffolds, minimally invasive surgery devices, and electronic wound dressings. STATEMENT OF SIGNIFICANCE: The 3D-printable biomaterials developed in this work are GelMA-based ink with smart funcitons and have potentials for various customized medical applications. The synthesized GelMA-polyurethane double network hydrogel can be 3D-printed into individual modules (e.g., 11 × 11 × 5 mm3) through an 80 μm or larger size nozzle, which are then assembled into a taller structure over five times of the initial height by self-healing and secondary photocrosslinking. The hydrogel is adhesive, light transmittable, and biocompatible that can either carry human mesenchymal stem cells (hMSCs) as bioink or embed a red light LED (620 nm) with potential applications in electronic skin dressing. Meanwhile, the 3D-printed highly compressible cryogel (e.g., 6 × 6 × 1 mm3) is deliverable by a 16-gauge (1194 μm) syringe needle and supports the proliferation of hMSCs also.
Collapse
Affiliation(s)
- Qian-Pu Cheng
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.
| |
Collapse
|
7
|
Liu C, Hayat U, Raza A, Jia CW, Wang JY. Zein-based injectable biomaterial and angiogenic activity through peptides produced by enzymatic degradation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Pardeshi S, Damiri F, Zehravi M, Joshi R, Kapare H, Prajapati MK, Munot N, Berrada M, Giram PS, Rojekar S, Ali F, Rahman MH, Barai HR. Functional Thermoresponsive Hydrogel Molecule to Material Design for Biomedical Applications. Polymers (Basel) 2022; 14:polym14153126. [PMID: 35956641 PMCID: PMC9371082 DOI: 10.3390/polym14153126] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/18/2022] [Accepted: 07/22/2022] [Indexed: 02/04/2023] Open
Abstract
Temperature-induced, rapid changes in the viscosity and reproducible 3-D structure formation makes thermos-sensitive hydrogels an ideal delivery system to act as a cell scaffold or a drug reservoir. Moreover, the hydrogels’ minimum invasiveness, high biocompatibility, and facile elimination from the body have gathered a lot of attention from researchers. This review article attempts to present a complete picture of the exhaustive arena, including the synthesis, mechanism, and biomedical applications of thermosensitive hydrogels. A special section on intellectual property and marketed products tries to shed some light on the commercial potential of thermosensitive hydrogels.
Collapse
Affiliation(s)
- Sagar Pardeshi
- Department of Pharmaceutical Technology, University Institute of Chemical Technology, KBC North Maharashtra University, Jalgaon 425001, Maharashtra, India;
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University Alkharj, Al-Kharj 11942, Saudi Arabia;
| | - Rohit Joshi
- Precision Nanosystems Inc., Vancouver, BC V6P 6T7, Canada;
| | - Harshad Kapare
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 41118, Maharashtra, India;
| | - Mahendra Kumar Prajapati
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKM’s NMIMS, Shirpur 425405, Maharashtra, India;
| | - Neha Munot
- Department of Pharmaceutics, School of Pharmacy, Vishwakarma University, Pune 411048, Maharashtra, India;
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’sick, University Hassan II of Casablanca, Casablanca 20000, Morocco; (F.D.); (M.B.)
| | - Prabhanjan S. Giram
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pune 41118, Maharashtra, India;
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Correspondence: (P.S.G.); (S.R.); (H.R.B.)
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (P.S.G.); (S.R.); (H.R.B.)
| | - Faraat Ali
- Laboratory Services, Department of Licensing and Enforcement, Botswana Medicines Regulatory Authority (BoMRA), Gaborone 999106, Botswana;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (P.S.G.); (S.R.); (H.R.B.)
| |
Collapse
|
9
|
Chitosan/guar gum-based thermoreversible hydrogels loaded with pullulan nanoparticles for enhanced nose-to-brain drug delivery. Int J Biol Macromol 2022; 215:579-595. [PMID: 35779651 DOI: 10.1016/j.ijbiomac.2022.06.161] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/02/2022] [Accepted: 06/25/2022] [Indexed: 11/21/2022]
Abstract
The biopolymers-based two-fold system could provide a sustained release platform for drug delivery to the brain resisting the mucociliary clearance, enzymatic degradation, bypassing the first-pass hepatic metabolism, and BBB thus providing superior bioavailability through intranasal administration. In this study, poloxamers PF-127/PF-68 grafted chitosan HCl-co-guar gum-based thermoresponsive hydrogel loaded with eletriptan hydrobromide laden pullulan nanoparticles was synthesized and subjected to dynamic light scattering, Fourier transform infrared spectroscopy, thermal analysis, x-ray diffraction, scanning electron microscopy, stability studies, mucoadhesive strength and time, gel strength, cloud point assessment, rheological assessment, ex-vivo permeation, cell viability assay, histology studies, and in-vivo Pharmacokinetics studies, etc. It is quite evident that CSG-EH-NPs T-Hgel has an enhanced sustained release drug profile where approximately 86 % and 84 % of drug released in phosphate buffer saline and simulated nasal fluid respectively throughout 48 h compared to EH-NPs where 99.44 % and 97.53 % of the drug was released in PBS and SNF for 8 h. In-vivo PKa parameters i.e., mean residence time (MRT) of 11.9 ± 0.83 compared to EH-NPs MRT of 10.2 ± 0.92 and area under the curve (AUCtot) of 42,540.5 ± 5314.14 comparing to AUCtot of EH-NPs 38,026 ± 6343.1 also establish the superiority of CSG-EH-NPs T-Hgel.
Collapse
|
10
|
Khan M, Koivisto JT, Kellomäki M. Injectable and self‐healing biobased composite hydrogels as future anticancer therapeutic biomaterials. NANO SELECT 2022. [DOI: 10.1002/nano.202100354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Musammir Khan
- Biomaterials and Tissue Engineering Group, BioMediTech Institute, Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Department of Chemistry University of Wah Quaid Avenue, Wah Cantt Rawalpindi Punjab 47040 Pakistan
| | - Janne T. Koivisto
- Biomaterials and Tissue Engineering Group, BioMediTech Institute, Faculty of Medicine and Health Technology Tampere University Tampere Finland
- Department of Laboratory Medicine Karolinska Institute Huddinge Stockholm Sweden
| | - Minna Kellomäki
- Biomaterials and Tissue Engineering Group, BioMediTech Institute, Faculty of Medicine and Health Technology Tampere University Tampere Finland
| |
Collapse
|
11
|
Wan T, Fan P, Zhang M, Shi K, Chen X, Yang H, Liu X, Xu W, Zhou Y. Multiple Crosslinking Hyaluronic Acid Hydrogels with Improved Strength and 3D Printability. ACS APPLIED BIO MATERIALS 2022; 5:334-343. [PMID: 35014821 DOI: 10.1021/acsabm.1c01141] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hyaluronic acid (HA) hydrogel is preferred for biomedicine applications, as it possesses biodegradability, biocompatibility, and cell-regulated capacity as well as high hydration nature similar to the native extracellular matrix. However, HA hydrogel fabricated via a 3D printing technique often faces poor printing properties. In this study, maleiated sodium hyaluronate (MHA) with a high substituted degree of the acrylate group (i.e., 2.27) and thiolated sodium hyaluronate (SHHA) were synthesized. By blending these modified HAs, the MHA/SHHA hydrogels were prepared via pre-crosslinking through thiol-acrylate Michael addition and subsequently covalent crosslinking using thiol-acrylate and acrylate-acrylate photopolymerization mechanisms. Rheological properties, swelling behaviors, and mechanical properties can be modulated by altering the molar ratio of the thiol group and acrylate group. The results showed that the MHA/SHHA hydrogel precursors have rapidly gelling capacity and improved compressive strength. Based on these results, high-resolution hydrogel scaffolds with good structural stability were prepared by extrusion-based 3D printing. This HA hydrogel is cytocompatible and capable of supporting adherence of L929 cells, indicating its great potential for tissue engineering scaffolds.
Collapse
Affiliation(s)
- Tingting Wan
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Penghui Fan
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Mengfan Zhang
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Kai Shi
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Xiao Chen
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Hongjun Yang
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Xin Liu
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Weilin Xu
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China
| | - Yingshan Zhou
- Key Laboratory of Green Processing and Functional Textiles of New Textile Materials, Ministry of Education, Wuhan Textile University, Wuhan 430073, People's Republic of China.,College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, People's Republic of China.,Humanwell Healthcare Group Medical Supplies Company Ltd., Wuhan 430073, People's Republic of China
| |
Collapse
|
12
|
Sahajpal K, Sharma S, Shekhar S, Kumar A, Meena MK, Bhagi AK, Sharma B. Dynamic Protein and Polypeptide Hydrogels Based on Schiff Base Co-assembly for Biomedicine. J Mater Chem B 2022; 10:3173-3198. [DOI: 10.1039/d2tb00077f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Stimuli-responsive hydrogels are promising building blocks for biomedical devices, attributable to their excellent hydrophilicity, biocompatibility, and dynamic responsiveness to temperature, light, pH, and water content. Although hydrogels find interesting applications...
Collapse
|
13
|
Li M, Han X, Fan Z, Zhang Y, Li Q, Xie G. Autonomous ultrafast-self-healing hydrogel for application in multiple environments. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Hafezi M, Nouri Khorasani S, Zare M, Esmaeely Neisiany R, Davoodi P. Advanced Hydrogels for Cartilage Tissue Engineering: Recent Progress and Future Directions. Polymers (Basel) 2021; 13:4199. [PMID: 34883702 PMCID: PMC8659862 DOI: 10.3390/polym13234199] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Cartilage is a tension- and load-bearing tissue and has a limited capacity for intrinsic self-healing. While microfracture and arthroplasty are the conventional methods for cartilage repair, these methods are unable to completely heal the damaged tissue. The need to overcome the restrictions of these therapies for cartilage regeneration has expanded the field of cartilage tissue engineering (CTE), in which novel engineering and biological approaches are introduced to accelerate the development of new biomimetic cartilage to replace the injured tissue. Until now, a wide range of hydrogels and cell sources have been employed for CTE to either recapitulate microenvironmental cues during a new tissue growth or to compel the recovery of cartilaginous structures via manipulating biochemical and biomechanical properties of the original tissue. Towards modifying current cartilage treatments, advanced hydrogels have been designed and synthesized in recent years to improve network crosslinking and self-recovery of implanted scaffolds after damage in vivo. This review focused on the recent advances in CTE, especially self-healing hydrogels. The article firstly presents the cartilage tissue, its defects, and treatments. Subsequently, introduces CTE and summarizes the polymeric hydrogels and their advances. Furthermore, characterizations, the advantages, and disadvantages of advanced hydrogels such as multi-materials, IPNs, nanomaterials, and supramolecular are discussed. Afterward, the self-healing hydrogels in CTE, mechanisms, and the physical and chemical methods for the synthesis of such hydrogels for improving the reformation of CTE are introduced. The article then briefly describes the fabrication methods in CTE. Finally, this review presents a conclusion of prevalent challenges and future outlooks for self-healing hydrogels in CTE applications.
Collapse
Affiliation(s)
- Mahshid Hafezi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran;
| | - Mohadeseh Zare
- School of Metallurgy and Materials, University of Birmingham, Birmingham B15 2TT, UK;
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 96179-76487, Iran;
| | - Pooya Davoodi
- School of Pharmacy and Bioengineering, Hornbeam Building, Keele University, Staffordshire ST5 5BG, UK
- Guy Hilton Research Centre, Institute of Science and Technology in Medicine, Keele University, Staffordshire ST4 7QB, UK
| |
Collapse
|
15
|
Zhang Q, Xu H, Wu C, Shang Y, Wu Q, Wei Q, Zhang Q, Sun Y, Wang Q. Tissue Fluid Triggered Enzyme Polymerization for Ultrafast Gelation and Cartilage Repair. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qi Zhang
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai China
- Collage of Chemistry and Chemical Engineering Liaocheng University 1 Hunan Road Shandong China
| | - Huaxing Xu
- Department of endodontics, Shanghai Stomatological Hospital Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases Fudan University 356 Beijing Road Shanghai China
| | - Chu Wu
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai China
| | - Yinghui Shang
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai China
| | - Qing Wu
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai China
| | - Qingcong Wei
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai China
| | - Qi Zhang
- School & Hospital of Stomatology Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration 399 Yanchang Road Shanghai China
| | - Yao Sun
- School & Hospital of Stomatology Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration 399 Yanchang Road Shanghai China
| | - Qigang Wang
- School of Chemical Science and Engineering Tongji University 1239 Siping Road Shanghai China
| |
Collapse
|
16
|
Jia F, Kubiak JM, Onoda M, Wang Y, Macfarlane RJ. Design and Synthesis of Quick Setting Nonswelling Hydrogels via Brush Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100968. [PMID: 34151547 PMCID: PMC8373163 DOI: 10.1002/advs.202100968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Indexed: 05/25/2023]
Abstract
Brush polymers have emerged as components of novel materials that show huge potential in multiple disciplines and applications, including self-assembling photonic crystals, drug delivery vectors, biomimetic lubricants, and ultrasoft elastomers. However, an understanding of how this unique topology can affect the properties of highly solvated materials like hydrogels remain under investigated. Here, it is investigated how the high functionality and large overall size of brush polymers enhances the gelation kinetics of low polymer weight percent gels, enabling 100-fold faster gelation rates and 15-fold higher stiffness values than gels crosslinked by traditional star polymers of the same composition and polymer chain length. This work demonstrates that brush polymer topology provides a useful means to control gelation kinetics without the need to manipulate polymer composition or crosslinking chemistry. The unique architecture of brush polymers also results in restrained or even nonswelling behavior at different temperatures, regardless of the polymer concentration. Brush polymers therefore are an interesting tool for examining how high-functionality polymer building blocks can affect structure-property relationships and chemical kinetics in hydrogel materials, and also provide a useful rapidly-setting hydrogel platform with tunable properties and great potential for multiple material applications.
Collapse
Affiliation(s)
- Fei Jia
- Department of Materials Science and EngineeringMassachusetts Institute of Technology (MIT)77 Massachusetts AvenueCambridgeMA02139USA
| | - Joshua M. Kubiak
- Department of Materials Science and EngineeringMassachusetts Institute of Technology (MIT)77 Massachusetts AvenueCambridgeMA02139USA
| | - Michika Onoda
- Department of Materials Science and EngineeringMassachusetts Institute of Technology (MIT)77 Massachusetts AvenueCambridgeMA02139USA
| | - Yuping Wang
- Department of Materials Science and EngineeringMassachusetts Institute of Technology (MIT)77 Massachusetts AvenueCambridgeMA02139USA
| | - Robert J. Macfarlane
- Department of Materials Science and EngineeringMassachusetts Institute of Technology (MIT)77 Massachusetts AvenueCambridgeMA02139USA
| |
Collapse
|
17
|
Zhang Q, Xu H, Wu C, Shang Y, Wu Q, Wei Q, Zhang Q, Sun Y, Wang Q. Tissue Fluid Triggered Enzyme Polymerization for Ultrafast Gelation and Cartilage Repair. Angew Chem Int Ed Engl 2021; 60:19982-19987. [PMID: 34173310 DOI: 10.1002/anie.202107789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Indexed: 01/16/2023]
Abstract
The in situ gelation of injectable precursors is desirable in the field of tissue regeneration, especially in the context of irregular defect filling. The current driving forces for fast gelation include the phase-transition of thermally sensitive copolymers, click chemical reactions with tissue components, and metal coordination effect. However, the rapid formation of tough hydrogels remains a challenge. Inspired by aerobic metabolism, we herein propose a tissue-fluid-triggered cascade enzymatic polymerization process catalyzed by glucose oxidase and ferrous glycinate for the ultrafast gelation of acryloylated chondroitin sulfates and acrylamides. The highly efficient production of carbon radicals and macromolecules contribute to rapid polymerization for soft tissue augmentation in bone defects. The copolymer hydrogel demonstrated the regeneration-promoting capacity of cartilage. As the first example of using artificial enzyme complexes for in situ polymerization, this work offers a biomimetic approach to the design of strength-adjustable hydrogels for bio-implanting and bio-printing applications.
Collapse
Affiliation(s)
- Qi Zhang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China.,Collage of Chemistry and Chemical Engineering, Liaocheng University, 1 Hunan Road, Shandong, China
| | - Huaxing Xu
- Department of endodontics, Shanghai Stomatological Hospital, Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, 356 Beijing Road, Shanghai, China
| | - Chu Wu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Yinghui Shang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Qing Wu
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Qingcong Wei
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| | - Qi Zhang
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Yanchang Road, Shanghai, China
| | - Yao Sun
- School & Hospital of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, 399 Yanchang Road, Shanghai, China
| | - Qigang Wang
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, China
| |
Collapse
|
18
|
Shah SA, Sohail M, Khan SA, Kousar M. Improved drug delivery and accelerated diabetic wound healing by chondroitin sulfate grafted alginate-based thermoreversible hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112169. [PMID: 34082970 DOI: 10.1016/j.msec.2021.112169] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 05/03/2021] [Indexed: 12/16/2022]
Abstract
Injectable hydrogels with multifunctional tunable properties comprising biocompatibility, anti-oxidative, anti-bacterial, and/or anti-infection are highly preferred to efficiently promote diabetic wound repair and its development remains a challenge. In this study, we report chondroitin sulphate (CS) and sodium alginate (SA)-based injectable hydrogel using solvent casting method loaded with curcumin that could potentiate reepithelization, increase angiogenesis, and collagen deposition at wound microenvironment to endorse healing cascade. The physical interaction and self-assembly of chondroitin sulfate grafted alginate (CS-Alg-g-PF127) hydrogel were confirmed using nuclear magnetic resonance (1H NMR) and Fourier transformed infrared spectroscopy (FT-IR), and cytocompatibility was confirmed by fibroblast viability assay. The Masson's trichrome (MT) and hematoxylin and eosin (H&E) results revealed that blank chondroitin sulfate grafted alginate (CS-Alg-g-PF127) and CUR loaded CS-Alg-g-PF127 hydrogel had promising tissue regenerative ability, and showing enhanced wound healing compared to other treatment groups. The controlled release of CUR from injectable hydrogel was evaluated by drug release studies and pharmacokinetic profile (PK) using high-performance liquid chromatography (HPLC) that exhibited the mean residence time (MRT) and area under the curve (AUC) was increased up to 16.18 h and 203.64 ± 30.1 μg/mL*h, respectively. Cytotoxicity analysis of the injectable hydrogels using 3 T3-L1 fibroblasts cells and in vivo toxicity evaluated by subcutaneous injection for 24 h followed by histological examination, confirmed good biocompatibility of CUR loaded CS-Alg-g-PF127 hydrogel. Interestingly, the results of in vivo wound healing by injectable hydrogel showed the upregulation of fibroblasts-like cells, collagen deposition, and differentiated keratinocytes stimulating dermo-epidermal junction, which might endorse that they are potential candidates for excisional wound healing models.
Collapse
Affiliation(s)
- Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan.
| | - Shujaat Ali Khan
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| |
Collapse
|
19
|
Phan VHG, Le TMD, Janarthanan G, Ngo PKT, Lee DS, Thambi T. Development of bioresorbable smart injectable hydrogels based on thermo-responsive copolymer integrated bovine serum albumin bioconjugates for accelerated healing of excisional wounds. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.01.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
20
|
Janarthanan G, Shin HS, Kim IG, Ji P, Chung EJ, Lee C, Noh I. Self-crosslinking hyaluronic acid-carboxymethylcellulose hydrogel enhances multilayered 3D-printed construct shape integrity and mechanical stability for soft tissue engineering. Biofabrication 2020; 12:045026. [PMID: 32629438 DOI: 10.1088/1758-5090/aba2f7] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
One of the primary challenges in extrusion-based 3D bioprinting is the ability to print self-supported multilayered constructs with biocompatible hydrogels. The bioinks should have sufficient post-printing mechanical stability for soft tissue and organ regeneration. Here, we report on the synthesis, characterization and 3D printability of hyaluronic acid (HA)-carboxymethylcellulose (CMC) hydrogels cross-linked through N-acyl-hydrazone bonding. The hydrogel's hydrolytic stability was acquired by the effects of both the prevention of the oxidation of the six-membered rings of HA, and the stabilization of acyl-hydrazone bonds. The shear-thinning and self-healing properties of the hydrogel allowed us to print different 3D constructs (lattice, cubic and tube) of up to 50 layers with superior precision and high post-printing stability without support materials or post-processing depending on their compositions (H7:C3, H5:C5 and H3:C7). Morphological analyses of different zones of the 3D-printed constructs were undertaken for verification of the interconnection of pores. Texture profile analysis (TPA) (hardness (strength), elastic recovery, etc) and cyclic compression studies of the 3D-printed constructs demonstrated exceptional elastic properties and fast recovery after 50% strain, respectively, which have been attributed to the addition of CMC into HA. A model drug quercetin was released in a sustained manner from hydrogels and 3D constructs. In vitro cytotoxicity studies confirmed the excellent cyto-compatibility of these gels. In vivo mice studies prove that these biocompatible hydrogels enhance angiogenesis. The results indicate that controlling the key properties (e.g. self-crosslinking capacity, composition) can lead to the generation of multilayered constructs from 3D-bioprintable HA-CMC hydrogels capable of being leveraged for soft tissue engineering applications.
Collapse
Affiliation(s)
- Gopinathan Janarthanan
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea. Convergence Institute of Biomedical Engineering and Biomaterials, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
21
|
Fan L, Ge X, Qian Y, Wei M, Zhang Z, Yuan WE, Ouyang Y. Advances in Synthesis and Applications of Self-Healing Hydrogels. Front Bioeng Biotechnol 2020; 8:654. [PMID: 32793562 PMCID: PMC7385058 DOI: 10.3389/fbioe.2020.00654] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/27/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Hydrogels, a type of three-dimensional (3-D) crosslinked network of polymers containing a high water concentration, have been receiving increasing attention in recent years. Self-healing hydrogels, which can return to their original structure and function after physical damage, are especially attractive. Some self-healable hydrogels have several kinds of properties such as injectability, adhesiveness, and conductivity, which enable them to be used in the manufacturing of drug/cell delivery vehicles, glues, electronic devices, and so on. MAIN BODY This review will focus on the synthesis and applications of self-healing hydrogels. Their repair mechanisms and potential applications in pharmaceutical, biomedical, and other areas will be introduced. CONCLUSION Self-healing hydrogels are used in various fields because of their ability to recover. The prospect of self-healing hydrogels is promising, and they may be further developed for various applications.
Collapse
Affiliation(s)
- Leqi Fan
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xuemei Ge
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Yebin Qian
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Minyan Wei
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zirui Zhang
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yuanming Ouyang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- Shanghai Sixth People’s Hospital East Affiliated to Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
22
|
Uman S, Dhand A, Burdick JA. Recent advances in shear‐thinning and self‐healing hydrogels for biomedical applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.48668] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Selen Uman
- Department of BioengineeringUniversity of Pennsylvania Philadelphia Pennsylvania 19104
| | - Abhishek Dhand
- Department of Chemical and Biomolecular EngineeringUniversity of Pennsylvania Philadelphia Pennsylvania 19104
| | - Jason A. Burdick
- Department of BioengineeringUniversity of Pennsylvania Philadelphia Pennsylvania 19104
| |
Collapse
|
23
|
Bioinspired pH-sensitive riboflavin controlled-release alkaline hydrogels based on blue crab chitosan: Study of the effect of polymer characteristics. Int J Biol Macromol 2020; 152:1252-1264. [DOI: 10.1016/j.ijbiomac.2019.10.222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/24/2019] [Indexed: 12/26/2022]
|
24
|
Lee EJ, Kang E, Kang SW, Huh KM. Thermo-irreversible glycol chitosan/hyaluronic acid blend hydrogel for injectable tissue engineering. Carbohydr Polym 2020; 244:116432. [PMID: 32536405 DOI: 10.1016/j.carbpol.2020.116432] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/02/2020] [Accepted: 05/08/2020] [Indexed: 01/04/2023]
Abstract
Thermogels that undergo temperature-dependent sol-gel transition have recently attracted attention as a promising biomaterial for injectable tissue engineering. However, conventional thermogels usually suffer from poor physical properties and low cell binding affinity, limiting their practical applications. Here, a simple approach for developing a new thermogel with enhanced physical properties and cell binding affinity is proposed. This thermogel (AcHA/HGC) was obtained by simple blending of a new class of polysaccharide-based thermogel, N-hexanoyl glycol chitosan (HGC), with a polysaccharide possessing good cell binding affinity, acetylated hyaluronic acid (AcHA). Gelation of AcHA/HGC was initially triggered by the thermosensitive response of HGC and gradually intensified by additional physical crosslinking mechanisms between HGC and AcHA, resulting in thermo-irreversible gelation. Compared to the thermos-reversible HGC hydrogel, the thermo-irreversible AcHA/HGC hydrogel exhibited enhanced physical stability, mechanical properties, cell binding affinity, and tissue compatibility. These results suggest that our thermo-irreversible hydrogel is a promising biomaterial for injectable tissue engineering.
Collapse
Affiliation(s)
- Eun Joo Lee
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro Yuseing-gu, Daejeon 34134, Republic of Korea; Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea
| | - Eunae Kang
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro Yuseing-gu, Daejeon 34134, Republic of Korea
| | - Sun-Woong Kang
- Research Group for Biomimetic Advanced Technology, Korea Institute of Toxicology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, Republic of Korea; Human and Environmental Toxicology Program, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Kang Moo Huh
- Department of Polymer Science and Engineering, Chungnam National University, 99 Daehak-ro Yuseing-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
25
|
Yamatani K, Kawatani R, Ajiro H. Synthesis of glucosamine derivative with double caffeic acid moieties at N– and 6-O-positions for developments of natural based materials. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
Wang Y, Xie R, Li Q, Dai F, Lan G, Shang S, Lu F. A self-adapting hydrogel based on chitosan/oxidized konjac glucomannan/AgNPs for repairing irregular wounds. Biomater Sci 2020; 8:1910-1922. [DOI: 10.1039/c9bm01635j] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Self-adapting hydrogels are prepared for the treatment of irregular wounds.
Collapse
Affiliation(s)
- Yixin Wang
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
| | - Ruiqi Xie
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - Qing Li
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - Fangyin Dai
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - Guangqian Lan
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| | - Songmin Shang
- Institute of Textiles and Clothing
- The Hong Kong Polytechnic University
- Kowloon
- China
| | - Fei Lu
- College of Textile and Garments
- Southwest University
- Chongqing 400715
- China
- Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile
| |
Collapse
|
27
|
Talebian S, Mehrali M, Taebnia N, Pennisi CP, Kadumudi FB, Foroughi J, Hasany M, Nikkhah M, Akbari M, Orive G, Dolatshahi‐Pirouz A. Self-Healing Hydrogels: The Next Paradigm Shift in Tissue Engineering? ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801664. [PMID: 31453048 PMCID: PMC6702654 DOI: 10.1002/advs.201801664] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/04/2019] [Indexed: 05/18/2023]
Abstract
Given their durability and long-term stability, self-healable hydrogels have, in the past few years, emerged as promising replacements for the many brittle hydrogels currently being used in preclinical or clinical trials. To this end, the incompatibility between hydrogel toughness and rapid self-healing remains unaddressed, and therefore most of the self-healable hydrogels still face serious challenges within the dynamic and mechanically demanding environment of human organs/tissues. Furthermore, depending on the target tissue, the self-healing hydrogels must comply with a wide range of properties including electrical, biological, and mechanical. Notably, the incorporation of nanomaterials into double-network hydrogels is showing great promise as a feasible way to generate self-healable hydrogels with the above-mentioned attributes. Here, the recent progress in the development of multifunctional and self-healable hydrogels for various tissue engineering applications is discussed in detail. Their potential applications within the rapidly expanding areas of bioelectronic hydrogels, cyborganics, and soft robotics are further highlighted.
Collapse
Affiliation(s)
- Sepehr Talebian
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityUniversity of WollongongNSW2522Australia
- Illawarra Health and Medical Research InstituteUniversity of WollongongWollongongNSW2522Australia
| | - Mehdi Mehrali
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
| | - Nayere Taebnia
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
| | - Cristian Pablo Pennisi
- Laboratory for Stem Cell ResearchDepartment of Health Science and TechnologyAalborg UniversityFredrik Bajers vej 3B9220AalborgDenmark
| | - Firoz Babu Kadumudi
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
| | - Javad Foroughi
- Intelligent Polymer Research InstituteARC Centre of Excellence for Electromaterials ScienceAIIM FacilityUniversity of WollongongNSW2522Australia
- Illawarra Health and Medical Research InstituteUniversity of WollongongWollongongNSW2522Australia
| | - Masoud Hasany
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
| | - Mehdi Nikkhah
- School of Biological Health and Systems Engineering (SBHSE)Arizona State UniversityTempeAZ85287USA
| | - Mohsen Akbari
- Laboratory for Innovations in MicroEngineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Center for Biomedical ResearchUniversity of Victoria3800VictoriaCanada
- Center for Advanced Materials and Related TechnologiesUniversity of Victoria3800VictoriaCanada
| | - Gorka Orive
- NanoBioCel GroupLaboratory of PharmaceuticsSchool of PharmacyUniversity of the Basque Country UPV/EHUPaseo de la Universidad 701006Vitoria‐GasteizSpain
- Biomedical Research Networking Centre in BioengineeringBiomaterials, and Nanomedicine (CIBER‐BBN)Vitoria‐Gasteiz28029Spain
- University Institute for Regenerative Medicine and Oral Implantology – UIRMI (UPV/EHU‐Fundación Eduardo Anitua)Vitoria01007Spain
- BTI Biotechnology InstituteVitoria01007Spain
| | - Alireza Dolatshahi‐Pirouz
- DTU NanotechCenter for Intestinal Absorption and Transport of BiopharmaceuticalsTechnical University of DenmarkLyngby2800KgsDenmark
- Department of Dentistry‐Regenerative BiomaterialsRadboud University Medical CenterPhilips van Leydenlaan 25Nijmegen6525EXThe Netherlands
| |
Collapse
|
28
|
Xu J, Liu Y, Hsu SH. Hydrogels Based on Schiff Base Linkages for Biomedical Applications. Molecules 2019; 24:E3005. [PMID: 31430954 PMCID: PMC6720009 DOI: 10.3390/molecules24163005] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/08/2019] [Accepted: 08/13/2019] [Indexed: 01/06/2023] Open
Abstract
Schiff base, an important family of reaction in click chemistry, has received significant attention in the formation of self-healing hydrogels in recent years. Schiff base reversibly reacts even in mild conditions, which allows hydrogels with self-healing ability to recover their structures and functions after damages. Moreover, pH-sensitivity of the Schiff base offers the hydrogels response to biologically relevant stimuli. Different types of Schiff base can provide the hydrogels with tunable mechanical properties and chemical stabilities. In this review, we summarized the design and preparation of hydrogels based on various types of Schiff base linkages, as well as the biomedical applications of hydrogels in drug delivery, tissue regeneration, wound healing, tissue adhesives, bioprinting, and biosensors.
Collapse
Affiliation(s)
- Junpeng Xu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 10617, Taiwan
| | - Yi Liu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 10617, Taiwan
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4 Roosevelt Road, Taipei 10617, Taiwan.
- Institute of Cellular and System Medicine, National Health Research Institutes, No. 35 Keyan Road, Miaoli 35053, Taiwan.
| |
Collapse
|
29
|
Haramiishi Y, Kawatani R, Chanthaset N, Ajiro H. Viscoelastic Evaluation of Poly(Trimethylene Carbonate)s Bearing Oligoethylene Glycol Units Which Show Thermoresponsive Properties at Body Temperature. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yoshiaki Haramiishi
- Nara Institute of Science and Technology 8916‐5 Takayama‐cho Ikoma Nara 630‐0192 Japan
| | - Ryo Kawatani
- Nara Institute of Science and Technology 8916‐5 Takayama‐cho Ikoma Nara 630‐0192 Japan
| | - Nalinthip Chanthaset
- Nara Institute of Science and Technology 8916‐5 Takayama‐cho Ikoma Nara 630‐0192 Japan
| | - Hiroharu Ajiro
- Nara Institute of Science and Technology 8916‐5 Takayama‐cho Ikoma Nara 630‐0192 Japan
| |
Collapse
|
30
|
Thomas J, Sharma A, Panwar V, Chopra V, Ghosh D. Polysaccharide-Based Hybrid Self-Healing Hydrogel Supports the Paracrine Response of Mesenchymal Stem Cells. ACS APPLIED BIO MATERIALS 2019; 2:2013-2027. [DOI: 10.1021/acsabm.9b00074] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jijo Thomas
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab 160062, India
| | - Anjana Sharma
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab 160062, India
| | - Vineeta Panwar
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab 160062, India
| | - Vianni Chopra
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab 160062, India
| | - Deepa Ghosh
- Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab 160062, India
| |
Collapse
|
31
|
He C, Ji H, Qian Y, Wang Q, Liu X, Zhao W, Zhao C. Heparin-based and heparin-inspired hydrogels: size-effect, gelation and biomedical applications. J Mater Chem B 2019; 7:1186-1208. [PMID: 32255159 DOI: 10.1039/c8tb02671h] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Heparin is the highest negatively charged biomolecule, which is a polysaccharide belonging to the glycosaminoglycan family, and its role as a regulator of various proteins, cells and tissues in the human body makes it an indispensable macromolecule. Heparin-based hydrogels are widely investigated in various applications including implantation, tissue engineering, biosensors, and drug-controlled release due to the 3D-constructs of hydrogels. However, heparin has supply and safety problems because it is usually derived from animal sources, and has the clinical limitations of bleeding and thrombocytopenia. Therefore, analogous heparin-mimicking polymers and hydrogels derived from non-animal and/or totally synthetic sources have been widely studied in recent years. In this review, the progress and potential biomedical applications of heparin-based and heparin-inspired hydrogels are highlighted. We classify the forms of these hydrogels by their size including macro-hydrogels, injectable hydrogels, and nano-hydrogels. Then, we summarize the various fabrication strategies for these hydrogels including chemical covalent bonding, physical conjugation, and the combination of chemical and physical interactions. Covalent bonding includes free radical polymerization of vinyl-containing components, amide bond formation reaction, Michael-type addition reaction, click-chemistry, divinyl sulfone crosslinking, and mussel-inspired coating. Hydrogels physically conjugated via host-guest interaction, electrostatic interaction, hydrogen bonding, and hydrophobic interaction are also discussed. Finally, we conclude with the challenges and future directions for the fabrication and the industrialization of heparin-based and heparin-inspired hydrogels. We believe that this review will attract more attention toward the design of heparin-based and heparin-inspired hydrogels, leading to future advancements in this emerging research field.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | |
Collapse
|
32
|
Ren K, Cheng Y, Huang C, Chen R, Wang Z, Wei J. Self-healing conductive hydrogels based on alginate, gelatin and polypyrrole serve as a repairable circuit and a mechanical sensor. J Mater Chem B 2019; 7:5704-5712. [DOI: 10.1039/c9tb01214a] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polypyrrole/alginate–gelatin conductive hydrogels serve as a repairable circuit and a mechanical sensor.
Collapse
Affiliation(s)
- Kai Ren
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Yu Cheng
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Chao Huang
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Rui Chen
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhao Wang
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jie Wei
- College of Materials Science and Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers
| |
Collapse
|
33
|
Chen T, Hou K, Ren Q, Chen G, Wei P, Zhu M. Nanoparticle-Polymer Synergies in Nanocomposite Hydrogels: From Design to Application. Macromol Rapid Commun 2018; 39:e1800337. [DOI: 10.1002/marc.201800337] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/10/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Tao Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Kai Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Qianyi Ren
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Guoyin Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Peiling Wei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials; College of Materials Science and Engineering; Donghua University; 2999 North Renmin Road Shanghai 201620 P.R. China
| |
Collapse
|