1
|
Dolatkhah A, Dewani C, Kazem-Rostami M, Wilson LD. Magnetic Silver Nanoparticles Stabilized by Superhydrophilic Polymer Brushes with Exceptional Kinetics and Catalysis. Polymers (Basel) 2024; 16:2500. [PMID: 39274133 PMCID: PMC11398182 DOI: 10.3390/polym16172500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024] Open
Abstract
Stimuli-responsive catalysts with exceptional kinetics and complete recoverability for efficient recyclability are essential in, for example, converting pollutants and hazardous organic compounds into less harmful chemicals. Here, we used a novel approach to stabilize silver nanoparticles (NPs) through magneto/hydro-responsive anionic polymer brushes that consist of poly (acrylic acid) (PAA) moieties at the amine functional groups of chitosan. Two types of responsive catalyst systems with variable silver loading (wt.%) of high and low (PAAgCHI/Fe3O4/Ag (H, L)) were prepared. The catalytic activity was evaluated by monitoring the reduction of organic dye compounds, 4-nitrophenol and methyl orange in the presence of NaBH4. The high dispersity and hydrophilic nature of the catalyst provided exceptional kinetics for dye reduction that surpassed previously reported nanocatalysts for organic dye reduction. Dynamic light scattering (DLS) measurements were carried out to study the colloidal stability of the nanocatalysts. The hybrid materials not only showed enhanced colloidal stability due to electrostatic repulsion among adjacent polymer brushes but also offered more rapid kinetics when compared with as-prepared Ag nanoparticles (AgNPs), which results from super-hydrophilicity and easy accumulation/diffusion of dye species within polymer brushes. Such remarkable kinetics, biodegradability, biocompatibility, low cost and facile magnetic recoverability of the Ag nanocatalysts reported here contribute to their ranking among the top catalyst systems reported in the literature. It was observed that the apparent catalytic rate constant for the reduction of methyl orange dye was enhanced, PAAgCHI/Fe3O4/Ag (H) ca. 35-fold and PAAgCHI/Fe3O4/Ag (L) ca. 23-fold, when compared against the as prepared AgNPs. Finally, the regeneration and recyclability of the nanocatalyst systems were studied over 15 consecutive cycles. It was demonstrated that the nanomaterials display excellent recyclability without a notable loss in catalytic activity.
Collapse
Affiliation(s)
- Asghar Dolatkhah
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Chandni Dewani
- Department of Chemical Engineering, Malaviya National Institute of Technology Jaipur, Jawahar Lal Nehru Marg, Jhalana Gram, Malviya Nagar, Jaipur 302017, Rajasthan, India
| | - Masoud Kazem-Rostami
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Faculty of Science and Engineering, Macquarie University, North Ryde, NSW 2109, Australia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
2
|
Zhou S, Luo X, Zhang Y, Zhang Y, Wang D, Liu G, Gu P, Li Z. Quaternization of a Triphenylamine-Based Conjugated Porous Organic Polymer to Immobilize PtCl 62- for the Photocatalytic Reduction of 4-Nitrophenol. Inorg Chem 2024; 63:15024-15033. [PMID: 39083718 DOI: 10.1021/acs.inorgchem.4c01789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Photocatalytic reduction of 4-nitrophenol (4-NP) for converting it to nontoxic 4-aminophenol (4-AP) is one of the most efficient approaches for removing toxic 4-NP. Using porous organic polymers (POPs) as the support to immobilize noble metal catalysts has exhibited remarkable reduction performance but is rarely reported. Herein, a cationic triphenylamine-based POP was synthesized by quaternization to immobilize PtCl62- to prepare an efficient photocatalyst named DCM-TPA-Pt for the reduction of 4-NP to 4-AP in the presence of NaBH4. Different from reported methods which realize immobilization by doping or complexing, the support and PtCl62- are combined through electrostatic interaction with milder reaction conditions to produce a photocatalyst in this work. DCM-TPA-Pt shows excellent photocatalytic reduction performance, reaching 99.9% conversion within 3 min, and its pseudo-first-order constant is 0.0305 s-1, surpassing most of the reported photocatalysts. Moreover, DCM-TPA-Pt also exhibits equal reduction efficiency after five continuous cycles, which highlights its potential utilization in practical applications.
Collapse
Affiliation(s)
- Shiyuan Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiaobo Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yuzhe Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guangfeng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
3
|
Huang H, Guo X, Zhang C, Yang L, Jiang Q, He H, Amin MA, Alshahrani WA, Zhang J, Xu X, Yamauchi Y. Advancements in Noble Metal-Decorated Porous Carbon Nanoarchitectures: Key Catalysts for Direct Liquid Fuel Cells. ACS NANO 2024; 18:10341-10373. [PMID: 38572836 DOI: 10.1021/acsnano.3c08486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Noble-metal nanocrystals have emerged as essential electrode materials for catalytic oxidation of organic small molecule fuels in direct liquid fuel cells (DLFCs). However, for large-scale commercialization of DLFCs, adopting cost-effective techniques and optimizing their structures using advanced matrices are crucial. Notably, noble metal-decorated porous carbon nanoarchitectures exhibit exceptional electrocatalytic performances owing to their three-dimensional cross-linked porous networks, large accessible surface areas, homogeneous dispersion (of noble metals), reliable structural stability, and outstanding electrical conductivity. Consequently, they can be utilized to develop next-generation anode catalysts for DLFCs. Considering the recent expeditious advancements in this field, this comprehensive review provides an overview of the current progress in noble metal-decorated porous carbon nanoarchitectures. This paper meticulously outlines the associated synthetic strategies, precise microstructure regulation techniques, and their application in electrooxidation of small organic molecules. Furthermore, the review highlights the research challenges and future opportunities in this prospective research field, offering valuable insights for both researchers and industry experts.
Collapse
Affiliation(s)
- Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Xiangjie Guo
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Lu Yang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Quanguo Jiang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Haiyan He
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafa Ali Alshahrani
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
4
|
Lee K, Corrigan N, Boyer C. Polymerization Induced Microphase Separation for the Fabrication of Nanostructured Materials. Angew Chem Int Ed Engl 2023; 62:e202307329. [PMID: 37429822 DOI: 10.1002/anie.202307329] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
Polymerization induced microphase separation (PIMS) is a strategy used to develop unique nanostructures with highly useful morphologies through the microphase separation of emergent block copolymers during polymerization. In this process, nanostructures are formed with at least two chemically independent domains, where at least one domain is composed of a robust crosslinked polymer. Crucially, this synthetically simple method is readily used to develop nanostructured materials with the highly coveted co-continuous morphology, which can also be converted into mesoporous materials by selective etching of one domain. As PIMS exploits a block copolymer microphase separation mechanism, the size of each domain can be tightly controlled by modifying the size of block copolymer precursors, thus providing unparalleled control over nanostructure and resultant mesopore sizes. Since its inception 11 years ago, PIMS has been used to develop a vast inventory of advanced materials for an extensive range of applications including biomedical devices, ion exchange membranes, lithium-ion batteries, catalysis, 3D printing, and fluorescence-based sensors, among many others. In this review, we provide a comprehensive overview of the PIMS process, summarize latest developments in PIMS chemistry, and discuss its utility in a wide variety of relevant applications.
Collapse
Affiliation(s)
- Kenny Lee
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Nathaniel Corrigan
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| | - Cyrille Boyer
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine (ACN), School of Chemical Engineering, UNSW Australia, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Xiao YX, Ying J, Liu HW, Yang XY. Pt-C interactions in carbon-supported Pt-based electrocatalysts. Front Chem Sci Eng 2023:1-21. [PMID: 37359291 PMCID: PMC10126579 DOI: 10.1007/s11705-023-2300-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/04/2023] [Indexed: 06/28/2023]
Abstract
Carbon-supported Pt-based materials are highly promising electrocatalysts. The carbon support plays an important role in the Pt-based catalysts by remarkably influencing the growth, particle size, morphology, dispersion, electronic structure, physiochemical property and function of Pt. This review summarizes recent progress made in the development of carbon-supported Pt-based catalysts, with special emphasis being given to how activity and stability enhancements are related to Pt-C interactions in various carbon supports, including porous carbon, heteroatom doped carbon, carbon-based binary support, and their corresponding electrocatalytic applications. Finally, the current challenges and future prospects in the development of carbon-supported Pt-based catalysts are discussed.
Collapse
Affiliation(s)
- Yu-Xuan Xiao
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082 China
| | - Jie Ying
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082 China
| | - Hong-Wei Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082 China
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Joint Laboratory for Marine Advanced Materials in Pilot National Laboratory for Marine Science and Technology (Qingdao), Wuhan University of Technology, Wuhan, 430070 China
| |
Collapse
|
6
|
Abdel-Wahab MS, Emam HKE, Rouby WMAE. Sputtered Cu-doped NiO thin films as an efficient electrocatalyst for methanol oxidation. RSC Adv 2023; 13:10818-10829. [PMID: 37033444 PMCID: PMC10074234 DOI: 10.1039/d3ra00380a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023] Open
Abstract
The efficient electrocatalysts for direct methanol oxidation play an essential role in the electrochemical energy conversion systems for their application in a wide range of portable applications. Consequently, Cu-doped NiO thin films on fluorine-doped tin oxide (FTO) were successfully prepared by the co-sputtering deposition technique, using various deposition times (300, 600, 900, and 1200 seconds), and producing films of different thicknesses (30, 55, 90, and 120 nm, respectively). X-ray diffraction (XRD) revealed the ideal crystallinity of the structure of the prepared films and was used to observe the effect of the thickness of the films on the crystal size. Energy-dispersive X-ray spectroscopy (EDS) confirmed the purity of the deposited film without any contamination. Field emission scanning electron microscopy (FESEM) images confirmed the film thickness increase with increasing deposition time. The surface roughness value of the Cu-NiO 1200 film was found to be 3.2 nm based on the atomic force microscopy (AFM) measurements. The deposited thin films of different thicknesses have been used as electrocatalysts for methanol oxidation at various concentrations of methanol (0, 0.5, 1, and 2 M), and displayed the highest electrocatalytic performance in 1 M methanol. Cu-doped NiO thin films have the advantage as electrocatalysts where they can be used directly without adding any binder or conducting agents, this is because Cu-doped NiO is deposited with high adhesion and strong electrical contact to the FTO substrate. A clear impact on the catalytic activity with increasing film thickness and a correlation between the film thickness and its catalytic activity was observed. The current density increased by about 60% for the Cu-NiO 1200 sample compared to Cu-NiO 300 sample, with the lowest onset potential of 0.4 V vs. Ag/AgCl. All deposited thin films of different thicknesses exhibited high stability at 0.6 V in 1 M methanol. This will open the window toward using physical deposition techniques for optimizing the electrocatalytic activity of different catalysts for electrocatalytic applications.
Collapse
Affiliation(s)
- Mohamed Sh Abdel-Wahab
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Hadeer K El Emam
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| | - Waleed M A El Rouby
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62511 Egypt
| |
Collapse
|
7
|
Zhang Y, Gao F, Wang D, Li Z, Wang X, Wang C, Zhang K, Du Y. Amorphous/Crystalline Heterostructure Transition-Metal-based Catalysts for High-Performance Water Splitting. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Chen WJ, Zhang TY, Wu XQ, Li YS, Liu Y, Wu YP, He ZB, Li DS. A 3D Ni8-cluster-based MOF as a Molecular Electrocatalyst for Alcohol Oxidation in Alkaline Media. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Ding J, Jing S, Yin C, Ban C, Wang K, Liu X, Duan Y, Zhang Y, Han G, Gan L, Rao J. A new insight into the promoting effects of transition metal phosphides in methanol electrooxidation. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Wang C, Yu R. Highly efficient visible light photocatalysis of tablet-like carbon-doped TiO2 photocatalysts via pyrolysis of cellulose/MIL-125(Ti) at low temperature. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Facile in Situ Transformation of NiOOH into MOF-74(Ni)/NiO OH Heterogeneous Composite for Enchancing Electrocatalytic Methanol Oxidation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072113. [PMID: 35408513 PMCID: PMC9000767 DOI: 10.3390/molecules27072113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
A new MOF-74(Ni)/NiOOH heterogeneous composite was synthesized via NiOOH microsphere precursor. The electrocatalytic methanol oxidation reactions' (MOR) performance was assessed. The as-prepared MOF-74(Ni)/NiOOH exhibited excellent activity with high peak current density (27.62 mA·cm-2) and high mass activity (243.8 mA·mg-1). The enhanced activity could be a result of the synergistic effect of the MOF-74(Ni)/NiOOH heterocomposite providing more exposed active sites, a beneficial diffusion path between the catalyst surface and electrolyte, and improved conductivity, favorable for improving MOR performance.
Collapse
|
12
|
Li R, Rao P, Luo J, Huang W, Jia C, Li J, Deng P, Shen Y, Tian X. General Method for Synthesizing Effective and Durable Electrocatalysts Derived from Cellulose for Microbial Fuel Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13369-13378. [PMID: 35266383 DOI: 10.1021/acsami.2c00588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microbial fuel cells (MFCs) can be capable of both wastewater treatment and electricity generation, which necessarily depends on the increasing cathodic performances and stability at low cost to realize industrialization. Herein, cellulose, a commercially available and sustainable material, was oxidized as a carbon precursor to produce the oxygen species synergizing the nitrogen-doped carbon (CON-900) catalyst by a facile in situ nitrogen doping method. The incorporation of nitrogen and oxygen with a high content creates more active centers. Meanwhile, the hierarchical porosity of CON-900 contributes to a high specific surface area (652 m2 g-1) and the exposure of accessible active sites. As expected, CON-900 exhibits considerable activity for the oxygen reduction reaction, excellent operating stability, and high poisoning resistance. In addition, the MFC fabricated with CON-900 as a cathode catalyst demonstrates a maximum power density of 1014 ± 23 mW m-2, which is comparable with that of the Pt/C cathode (1062 ± 14 mW m-2). This work offers a facile and versatile strategy for various biomass materials to develop low-cost and high-efficiency carbon-based catalysts for MFCs and beyond.
Collapse
Affiliation(s)
- Ruisong Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Peng Rao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Junming Luo
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Wei Huang
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Chunman Jia
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Jing Li
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Peilin Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Yijun Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, China
| |
Collapse
|
13
|
Anantharamaiah P, Shashanka HM, Saha S, Haritha K, Ramana C. Aluminum Doping and Nanostructuring Enabled Designing of Magnetically Recoverable Hexaferrite Catalysts. ACS OMEGA 2022; 7:6549-6559. [PMID: 35252651 PMCID: PMC8892845 DOI: 10.1021/acsomega.1c05548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
We demonstrate an approach based on substituting a magnetic cation with a carefully chosen isovalent non-magnetic cation to derive catalytic activity from otherwise catalytically inactive magnetic materials. Using the model system considered, the results illustratively present that the catalytically inactive but highly magnetic strontium hexaferrite (SrFe12O19; SFO) system can be transformed into a catalytically active system by simply replacing some of the magnetic cation Fe3+ by a non-magnetic cation Al3+ in the octahedral coordination environment in the SFO nanocrystals. The intrinsic SFO and Al-doped SrFe12O19 (SrFe11.5Al0.5O19; Al-SFO) nanomaterials were synthesized using a simple, eco-friendly tartrate-gel technique, followed by thermal annealing at 850 °C for 2 h. The SFO and Al-SFO were thoroughly characterized for their structure, phase, morphology, chemical bonding, and magnetic characteristics using X-ray diffraction, Fourier-transform infrared spectroscopy, and vibrating sample magnetometry techniques. Catalytic performance evaluated toward 4-nitrophenol, which is the toxic contaminant at pharmaceutical industries, reduction reaction using NaBH4 (mild reducing agent), the Al-doped SFO samples exhibit a reasonably good performance compared to intrinsic SFO. The results indicate that the catalytic activity of Al-SFO is due to Al-ions occupying the octahedral sites of the hexaferrite lattice; as these sites are on the surface of the catalyst, they facilitate electron transfer. Furthermore, surface/interface characteristics of nanocrystalline Al-SFO coupled with magnetic properties facilitate the catalyst recovery by simple, inexpensive methods while readily allowing the reusability. Moreover, the activity remains the same even after five successive cycles of experiments. Deriving the catalytic activity from otherwise inactive compounds as demonstrated in the optimized, engineered nanoarchitecture of Al-doped-Sr-hexaferrite may be useful in adopting the approach in exploring further options and designing inexpensive and recyclable catalytic materials for future energy and environmental technologies.
Collapse
Affiliation(s)
| | - Hadonahalli Munegowda Shashanka
- Department
of Chemistry, Faculty of Mathematical and Physical Sciences, M. S. Ramaiah University of Applied Sciences, Bangalore 560058, India
| | - Sujoy Saha
- Department
of Materials Engineering, Indian Institute
of Science, Bangalore 560012, India
| | - Keerthi Haritha
- Environmental
Science and Engineering, University of Texas
at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United
States
| | - C.V. Ramana
- Center
for Advanced Materials Research, University
of Texas at El Paso, 500 W. University Avenue, El Paso, Texas 79968, United
States
- Department
of Mechanical Engineering, University of
Texas at El Paso, 500
W. University Avenue, El Paso, Texas 79968, United
States
| |
Collapse
|
14
|
Integrated electrocatalysts derived from metal organic frameworks for gas-involved reactions. NANO MATERIALS SCIENCE 2022. [DOI: 10.1016/j.nanoms.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Wang M, Li Y, Zhai L, Zhang X, Lau SP. Self-supporting CoP-C nanosheet arrays derived from a metal-organic framework as synergistic catalysts for efficient water splitting. Dalton Trans 2021; 50:17549-17558. [PMID: 34812811 DOI: 10.1039/d1dt03638f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, a new strategy that combines accessible active sites and multiphase synergy in a simple process is developed for constructing bifunctional electrocatalysts toward overall water splitting. By using metal-organic framework (MOF) nanosheets hydrothermally grown on pre-oxidized nickel foam (denoted by Co2(OH)2(BDC)/NiO/NF) as a precursor, two novel heterogeneous nanosheet arrays including a cobalt phosphide nanoparticle embedded carbon nanotube nanosheet array supported by phosphorized nickel foam (denoted by CoP-CNT/Ni2P/NF) and a cobalt phosphide nanorod decorated carbon nanosheet array supported by oxidized nickel foam (denoted by CoP-C/NiO/NF) are prepared. Both were confirmed to be highly efficient for hydrogen and oxygen evolution reactions. In particular, CoP-C/NiO/NF exhibits higher catalytic activity toward the hydrogen evolution reaction (η100 = -131 mV), promoted by the synergy of oxidized nickel foam. CoP-CNT/Ni2P/NF performs better in the oxygen evolution reaction (η50 = 301 mV), benefiting mainly from its improved electrochemically active surface area. The two catalysts match well in overall water splitting with satisfactory activity (η10 = 1.57 V) and stability when directly applied in a two-electrode cell. This method will bring new inspiration to maximize the electrocatalytic efficiency of MOF-derived catalysts for energy conversion applications in the future.
Collapse
Affiliation(s)
- Min Wang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong, P. R. China. .,Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China.
| | - Yuanzhuo Li
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong, P. R. China.
| | - Lingling Zhai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China.
| | - Xiang Zhang
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong, P. R. China.
| | - Shu Ping Lau
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China.
| |
Collapse
|
16
|
Synthesis of a Magnetic Co@C Material via the Design of a MOF Precursor for Efficient and Selective Adsorption of Water Pollutants. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02157-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
17
|
A Type of MOF-Derived Porous Carbon with Low Cost as an Efficient Catalyst for Phenol Hydroxylation. J CHEM-NY 2021. [DOI: 10.1155/2021/7978324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Using MOF-5 as a template, the porous carbon (MDPC-600) possessing high specific surface area was obtained after carbonization and acid washing. After MDPC-600 was loaded with Cu ions, the catalyst Cu/MDPC-600 was acquired by heat treatment under nitrogen atmosphere. The catalyst was characterized by X-ray powder diffraction (XRD), N2 physical adsorption (BET), field emission electron microscope (SEM), energy spectrum, and transmission electron microscope (TEM). The results show that the Cu/MDPC-600 catalyst prepared by using MOF-5 as the template has a very high specific surface area, and Cu is uniformly supported on the carrier. The catalytic hydrogen peroxide oxidation reaction of phenol hydroxylation was investigated and exhibits better catalytic activity and stability in the phenol hydroxylation reaction. The catalytic effect was best when the reaction temperature was 80°C, the reaction time was 2 h, and the amount of catalyst was 0.05 g. The conversion rate of phenol was 47.6%; the yield and selectivity of catechol were 37.8% and 79.4%, respectively. The activity of the catalyst changes little after three cycles of use.
Collapse
|
18
|
Yuan X, Min Y, Wu J, Xu L, Yue W. Optimized electrocatalytic performance of PtZn intermetallic nanoparticles for methanol oxidation by designing catalyst support and fine-tuning surface composition. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Bhattarai DP, Pant B, Acharya J, Park M, Ojha GP. Recent Progress in Metal-Organic Framework-Derived Nanostructures in the Removal of Volatile Organic Compounds. Molecules 2021; 26:molecules26164948. [PMID: 34443537 PMCID: PMC8400575 DOI: 10.3390/molecules26164948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023] Open
Abstract
Air is the most crucial and life-supporting input from nature to the living beings of the planet. The composition and quality of air significantly affects human health, either directly or indirectly. The presence of some industrially released gases, small particles of anthropogenic origin, and the deviation from the normal composition of air from the natural condition causes air pollution. Volatile organic compounds (VOCs) are common contaminants found as indoor as well as outdoor pollutants. Such pollutants represent acute or chronic health hazards to the human physiological system. In the environment, such polluted gases may cause chemical or photochemical smog, leading to detrimental effects such as acid rain, global warming, and environmental pollution through different routes. Ultimately, this will propagate into the food web and affect the ecosystem. In this context, the efficient removal of volatile organic compounds (VOCs) from the environment remains a major threat globally, yet satisfactory strategies and auxiliary materials are far from being in place. Metal–organic frameworks (MOFs) are known as an advanced class of porous coordination polymers, a smart material constructed from the covalently bonded and highly ordered arrangements of metal nodes and polyfunctional organic linkers with an organic–inorganic hybrid nature, high porosities and surface areas, abundant metal/organic species, large pore volumes, and elegant tunability of structures and compositions, making them ideal candidates for the removal of unwanted VOCs from air. This review summarizes the fundamentals of MOFs and VOCs with recent research progress on MOF-derived nanostructures/porous materials and their composites for the efficient removal of VOCs in the air, the remaining challenges, and some prospective for future efforts.
Collapse
Affiliation(s)
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea; (B.P.); (J.A.)
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
| | - Jiwan Acharya
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea; (B.P.); (J.A.)
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea; (B.P.); (J.A.)
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
- Department of Fire Disaster Prevention, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
- Correspondence: (M.P.); (G.P.O.)
| | - Gunendra Prasad Ojha
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea; (B.P.); (J.A.)
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
- Correspondence: (M.P.); (G.P.O.)
| |
Collapse
|
20
|
Jiang YC, Sun HY, Li YN, He JW, Xue Q, Tian X, Li FM, Yin SB, Li DS, Chen Y. Bifunctional Pd@RhPd Core-Shell Nanodendrites for Methanol Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35767-35776. [PMID: 34309354 DOI: 10.1021/acsami.1c09029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Methanol electrolysis is a promising strategy to achieve energy-saving and efficient electrochemical hydrogen (H2) production. In this system, the advanced electrocatalysts with high catalytic performance for both the methanol oxidation reaction (MOR) and hydrogen evolution reaction (HER) are highly desirable. Inspired by the complementary catalytic properties of rhodium (Rh) and palladium (Pd) for MOR and HER, herein, several Pd core-RhPd alloy shell nanodendrites (Pd@RhPd NDs) are synthesized through the galvanic replacement reaction between Pd nanodendrites (Pd NDs) and rhodium trichloride. For MOR, Pd@RhPd NDs exhibit Rh content-determined catalytic activity, in which Pd@Rh0.07Pd NDs have an optimal combination of oxidation potential and oxidation current due to the synergistic catalytic process of Pd/Rh double active sites. For HER, the introduction of Rh greatly improves the catalytic activity of Pd@RhPd NDs compared to that of Pd NDs, suggesting that Rh is the main activity site for HER. Unlike MOR, however, the HER activity of Pd@RhPd NDs is not sensitive to the Rh content. Using Pd@Rh0.07Pd NDs as robust bifunctional electrocatalysts, the as-constructed two-electrode methanol electrolysis cell shows a much lower voltage (0.813 V) than that of water electrolysis (1.672 V) to achieve electrochemical H2 production at 10 mA cm-2, demonstrating the application prospect of methanol electrolysis for H2 production.
Collapse
Affiliation(s)
- Yu-Chuan Jiang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Hui-Ying Sun
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Ya-Nan Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Jia-Wei He
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Qi Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Xinlong Tian
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan Provincial Key Lab of Fine Chemistry, School of Chemical Engineering and Technology, Hainan University, Haikou 570228, People's Republic of China
| | - Fu-Min Li
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Shi-Bin Yin
- MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, People's Republic of China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| |
Collapse
|
21
|
Zong MY, Fan CZ, Yang XF, Wang DH. Promoting Ni-MOF with metallic Ni for highly-efficient p-nitrophenol hydrogenation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
Gao J, Huang Q, Wu Y, Lan YQ, Chen B. Metal–Organic Frameworks for Photo/Electrocatalysis. ACTA ACUST UNITED AC 2021. [DOI: 10.1002/aesr.202100033] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Junkuo Gao
- School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Qing Huang
- Department of Chemistry South China Normal University Guangzhou 510006 China
| | - Yuhang Wu
- School of Materials Science and Engineering Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Ya-Qian Lan
- Department of Chemistry South China Normal University Guangzhou 510006 China
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Jiangsu Key Laboratory of New Power Batteries School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Banglin Chen
- Department of Chemistry University of Texas at San Antonio One UTSA circle San Antonio TX 78249-0689 USA
| |
Collapse
|
23
|
Advances in metal–organic frameworks and their derivatives for diverse electrocatalytic applications. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107024] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
24
|
|
25
|
Kim S, Varga G, Seo M, Sápi A, Rácz V, Gómez-Pérez JF, Sebők D, Lee J, Kukovecz Á, Kónya Z. Nesting Well-Defined Pt Nanoparticles within a Hierarchically Porous Polymer as a Heterogeneous Suzuki–Miyaura Catalyst. ACS APPLIED NANO MATERIALS 2021; 4:4070-4076. [DOI: 10.1021/acsanm.1c00396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Soobin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Gábor Varga
- Department of Organic Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - Myungeun Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- KI for the Nanocentury, KAIST, 34141 Daejeon, Korea
| | - András Sápi
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - Viktória Rácz
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - Juan F. Gómez-Pérez
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - Dániel Sebők
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - Jeonghyeon Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged H-6720, Hungary
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry, University of Szeged, Szeged H-6720, Hungary
- MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Szeged H-6720, Hungary
| |
Collapse
|
26
|
Hu H, Lu S, Li T, Zhang Y, Guo C, Zhu H, Jin Y, Du M, Zhang W. Controlled growth of ultrafine metal nanoparticles mediated by solid supports. NANOSCALE ADVANCES 2021; 3:1865-1886. [PMID: 36133082 PMCID: PMC9418945 DOI: 10.1039/d1na00025j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/15/2021] [Indexed: 05/06/2023]
Abstract
As a unique class of nanomaterials with a high surface-area-to-volume ratio and narrow size distribution, ultrafine metal nanoparticles (UMNPs) have shown exciting properties in many applications, particularly in the field of catalysis. Growing UMNPs in situ on solid supports enables precise control of the UMNP size, and the supports can effectively prevent the aggregation of UMNPs and maintain their high catalytic activity. In this review, we summarize the recent research progress in controlled growth of UMNPs using various solid supports and their applications in catalysis.
Collapse
Affiliation(s)
- Hongyin Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 Jiangsu China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 Jiangsu China
| | - Ting Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 Jiangsu China
| | - Yue Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 Jiangsu China
| | - Chenxi Guo
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 Jiangsu China
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 Jiangsu China
| | - Yinghua Jin
- Department of Chemistry, University of Colorado Boulder CO 80309 USA
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University Wuxi 214122 Jiangsu China
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder CO 80309 USA
| |
Collapse
|
27
|
Yan X, Zhuang L, Zhu Z, Yao X. Defect engineering and characterization of active sites for efficient electrocatalysis. NANOSCALE 2021; 13:3327-3345. [PMID: 33564804 DOI: 10.1039/d0nr08976a] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrocatalysis plays a decisive role in various energy-related applications. Engineering the active sites of electrocatalysts is an important aspect to promote their catalytic performance. In particular, defect engineering provides a feasible and efficient approach to improve the intrinsic activities and increase the number of active sites in electrocatalysts. In this review, recent investigations on defect engineering of a wide range of electrocatalysts such as metal-free carbon materials, transition metal oxides, transition metal dichalcogenides and metal-organic frameworks (MOFs) will be summarized. Different defect creation strategies will be outlined, for example, heteroatom doping and removal, plasma irradiation, hydrogenation, amorphization, phase transition and reduction treatment. In addition, we will overview the commonly used advanced characterization techniques that could confirm the existence and identify the detailed structures, types and concentration of defects in electrocatalysts. The defect characterization tools are beneficial for gaining an in-depth understanding of defects on electrocatalysis and thus could reveal the structure-performance relationship. Finally, the major challenges and future development directions on defect engineering of electrocatalysts will be discussed.
Collapse
Affiliation(s)
- Xuecheng Yan
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia.
| | - Linzhou Zhuang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhonghua Zhu
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Xiangdong Yao
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan Campus, QLD 4111, Australia.
| |
Collapse
|
28
|
Lei L, Huang D, Chen S, Zhang C, Chen Y, Deng R. Metal chalcogenide/oxide-based quantum dots decorated functional materials for energy-related applications: Synthesis and preservation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Yan X, Chen L, Song H, Gao Z, Wei H, Ren W, Wang W. Metal–organic framework (MOF)-derived catalysts for chemoselective hydrogenation of nitroarenes. NEW J CHEM 2021. [DOI: 10.1039/d1nj03227e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The MOFs derived catalysts conducted in the chemoselective hydrogenation of substituted nitroarenes, including pyrolysis and confined catalyst, are reviewed.
Collapse
Affiliation(s)
- Xiaorui Yan
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Lele Chen
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Huaxing Song
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Zhaohua Gao
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
| | - Haisheng Wei
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
- Collaborative Innovation Center of Comprehensive Utilization of Light Hydrocarbon Resource, Yantai University, Yantai 264005, Shandong, China
| | - Wanzhong Ren
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
- Collaborative Innovation Center of Comprehensive Utilization of Light Hydrocarbon Resource, Yantai University, Yantai 264005, Shandong, China
| | - Wenhua Wang
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, Shandong, China
- Collaborative Innovation Center of Comprehensive Utilization of Light Hydrocarbon Resource, Yantai University, Yantai 264005, Shandong, China
| |
Collapse
|
30
|
Wang YJ, Wei JH, Li S, Luo JY, Chang XW, Sun YY, Pi Q, Wu YP, Li DS. Convenient synthesis of polymetallic metal–organic gels for efficient methanol electro-oxidation. Inorg Chem Front 2021. [DOI: 10.1039/d0qi01523g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Novel Ni-based AlNiCu-MOG and AB&AlNiCu-MOG composite materials were successfully fabricated, which exhibited superior MOR activities with a current density of 17.1 and 33.24 mA cm−2, respectively.
Collapse
Affiliation(s)
- Yan-Jiang Wang
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- P. R. China
| | - Jun-Hua Wei
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- P. R. China
| | - Shuang Li
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- P. R. China
| | - Jia-Yang Luo
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- P. R. China
| | - Xi-Wen Chang
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- P. R. China
| | - Ya-Ya Sun
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- P. R. China
| | - Qiu Pi
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- P. R. China
| | - Ya-Pan Wu
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- P. R. China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering
- Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials
- China Three Gorges University
- Yichang
- P. R. China
| |
Collapse
|
31
|
Pashazadeh A, Habibi B. A nickel ion-incorporating zinc-mesoporous metal organic framework thin film nanocomposite modified glassy carbon electrode for electrocatalytic oxidation of methanol in alkaline media. NEW J CHEM 2021. [DOI: 10.1039/d0nj05468b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this work, we have successfully synthesized a nickel ion-incorporating zinc-mesoporous metal–organic framework thin films (Zn-mMOFTFs) modified glassy carbon electrode (GCE), Ni/Zn-mMOFTFs/GCE, for electrooxidation of methanol in alkaline solution.
Collapse
Affiliation(s)
- Ali Pashazadeh
- Electroanalytical Chemistry Laboratory
- Department of Chemistry
- Faculty of Sciences
- Azarbaijan Shahid Madani University
- Tabriz 53714-161
| | - Biuck Habibi
- Electroanalytical Chemistry Laboratory
- Department of Chemistry
- Faculty of Sciences
- Azarbaijan Shahid Madani University
- Tabriz 53714-161
| |
Collapse
|
32
|
Kottappara R, Pillai SC, Kizhakkekilikoodayil Vijayan B. Copper-based nanocatalysts for nitroarene reduction-A review of recent advances. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108181] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Boorboor Ajdari F, Kowsari E, Niknam Shahrak M, Ehsani A, Kiaei Z, Torkzaban H, Ershadi M, Kholghi Eshkalak S, Haddadi-Asl V, Chinnappan A, Ramakrishna S. A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213441] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Konnerth H, Matsagar BM, Chen SS, Prechtl MH, Shieh FK, Wu KCW. Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213319] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Li J, Li Q, Sun J, Ling Y, Tao K, Han L. Controlled Preparation of Hollow and Porous Co 9S 8 Microplate Arrays for High-Performance Hybrid Supercapacitors. Inorg Chem 2020; 59:11174-11183. [PMID: 32702975 DOI: 10.1021/acs.inorgchem.0c01768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The design and controlled preparation of hollow and porous metal sulfide arrays are an important issue for electrochemical energy storage and conversion because of their unique structural merits including large surface areas, shortened diffusion paths, and rich reaction sites. Herein, a hollow and porous Co9S8 microplate array (MPA) was successfully fabricated by a facile self-sacrifice template strategy, which involved the uniform growth of a metal-organic framework microplate template on Ni foam (NF) and annealing in air, followed by an anion-exchange reaction with S2- ions. The resulting Co9S8-MPA/NF as a binder-free electrode for a supercapacitor shows a high specific capacitance of 1852 F g-1 (926 C g-1) at 1 A g-1 and an excellent cycling stability (86% retention after 5000 cycles at 20 A g-1). Moreover, a hybrid supercapacitor (HSC) constructed with Co9S8-MPA/NF and activated carbon exhibits an outstanding energy density of 25.49 Wh kg-1 at a high power density of 800 W kg-1 and a long-term stability of 92% capacitance retention after 5000 cycles at 10 A g-1. It is worth noting that the prepared all-solid-state HSC can light a red light-emitting diode for 2 min, proving to be a great practical application prospect. These excellent electrochemical behaviors show that this effective conversion strategy offers more possibilities for the development of high-performance energy storage metal sulfide materials.
Collapse
Affiliation(s)
- Jinlu Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, China
| | - Qin Li
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, China
| | - Jie Sun
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, China
| | - Yuanyuan Ling
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, China
| | - Kai Tao
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, China
| | - Lei Han
- State Key Laboratory Base of Novel Functional Materials and Preparation Science, School of Materials Science and Chemical Engineering, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang 315211, China
| |
Collapse
|
36
|
Bimetallic Metal-Organic Framework Mediated Synthesis of Ni-Co Catalysts for the Dry Reforming of Methane. Catalysts 2020. [DOI: 10.3390/catal10050592] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dry reforming of methane (DRM) involves the conversion of CO2 and CH4, the most important greenhouse gases, into syngas, a stoichiometric mixture of H2 and CO that can be further processed via Fischer–Tropsch chemistry into a wide variety of products. However, the devolvement of the coke resistant catalyst, especially at high pressures, is still hampering commercial applications. One of the relatively new approaches for the synthesis of metal nanoparticle based catalysts comprises the use of metal-organic frameworks (MOFs) as catalyst precursors. In this work we have explored MOF-74/CPO-27 MOFs as precursors for the synthesis of Ni, Co and bimetallic Ni-Co metal nanoparticles. Our results show that the bimetallic system produced through pyrolysis of a Ni-Co@CMOF-74 precursor displays the best activity at moderate pressures, with stable performance during at least 10 h at 700 °C, 5 bar and 33 L·h−1·g−1.
Collapse
|
37
|
Applications of metal–organic framework-derived materials in fuel cells and metal-air batteries. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213214] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
|
39
|
Bavykina A, Kolobov N, Khan IS, Bau JA, Ramirez A, Gascon J. Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem Rev 2020; 120:8468-8535. [DOI: 10.1021/acs.chemrev.9b00685] [Citation(s) in RCA: 578] [Impact Index Per Article: 115.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anastasiya Bavykina
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Nikita Kolobov
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Il Son Khan
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Jeremy A. Bau
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Adrian Ramirez
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
40
|
Que R, Li M, Yao H, Wang X, Liao F, Shao M. Unusual Effect of Trace Water on the Structure and Activity of Ni x Co 1-x Electrocatalysts for the Methanol Oxidation Reaction. CHEMSUSCHEM 2020; 13:964-973. [PMID: 31880393 DOI: 10.1002/cssc.201903108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/25/2019] [Indexed: 06/10/2023]
Abstract
Highly active Ni-based catalysts have attracted much attention but are still facing challenges owing to the immature synthetic method. Herein, polyhedral Nix Co1-x alloy was prepared by a facile modified polyol method in which a trace amount of water could halve the particle size of the alloy. The Ni/Co ratios in Nix Co1-x alloy strictly depended on the used amount of water owing to the different solubilities of the precursors. Among them, the Ni0.6 Co0.4 nanoparticles obtained with 70 μL of deionized water exhibited the best performance in the methanol oxidation reaction with a peak current density of 116 mA cm-2 in the presence of 1 m NaOH+0.5 m CH3 OH solution, which is higher than those of Ni0.7 Co0.3 (80 mA cm-2 ) and Ni0.5 Co0.5 (33 mA cm-2 ). The excellent performance of Ni0.6 Co0.4 is attributed to the unique structure with appropriate Ni/Co ratio, which elongates the C-O bond in methanol and lowers the reaction free energy according to DFT calculations.
Collapse
Affiliation(s)
- Ronghui Que
- Anhui Key Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Maolin Li
- Anhui Key Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Hong Yao
- Library of Anhui Normal University, Wuhu, 241000, P. R. China
| | - Xiuhua Wang
- Anhui Key Laboratory of Molecule-Based Materials, The Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, P. R. China
| | - Fan Liao
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Mingwang Shao
- Institute of Functional Nano & Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
41
|
Tian AQ, Liu S, Ren ZL, Wang L, Li DS. Metal–organic frameworks of Cu2(TPTC)-catalyzed cascade C–S coupling/Csp2–H hydroxylation reaction. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01860-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Mayakrishnan G, Elayappan V, Kim IS, Chung IM. Sea-Island-Like Morphology of CuNi Bimetallic Nanoparticles Uniformly Anchored on Single Layer Graphene Oxide as a Highly Efficient and Noble-Metal-Free Catalyst for Cyanation of Aryl Halides. Sci Rep 2020; 10:677. [PMID: 31959850 PMCID: PMC6971289 DOI: 10.1038/s41598-020-57483-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/28/2019] [Indexed: 11/09/2022] Open
Abstract
Aryl nitriles are versatile compounds that can be synthesized via transition-metal-mediated cyanation of aryl halides. Most of the supported-heterogeneous catalysts are noble-metals based and there are very limited numbers of efficient non-noble metal based catalysts demonstrated for the cyanation of aryl halides. Herein, bimetallic CuNi-oxide nanoparticles supported graphene oxide nanocatalyst (CuNi/GO-I and CuNi/GO-II) has been demonstrated as highly efficient system for the cyanation of aryl halides with K4[Fe(CN)6] as a cyanating agent. Metal-support interaction, defect ratio and synergistic effect with the bimetallic nanocatalyst were investigated. To our delight, the CuNi/GO-I system activity transformed a wide range of substrates such as aryl iodides, aryl bromides, aryl chlorides and heteroaryl compounds (Yields: 95-71%, TON/TOF: 50-38/2 h-1). Moreover, enhanced catalytic performance of CuNi/GO-I and CuNi/GO-II in reduction of 4-nitropehnol with NaBH4 was also confirmed (kapp = 18.2 × 10-3 s-1 with 0.1 mg of CuNi/GO-I). Possible mechanism has been proposed for the CuNi/GO-I catalyzed cyanation and reduction reactions. Reusability, heterogeneity and stability of the CuNi/GO-I are also found to be good.
Collapse
Affiliation(s)
- Gopiraman Mayakrishnan
- Department of Crop Science, College of Sanghur Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea
| | - Vijayakumar Elayappan
- Department of Materials Science and Technology, Korea University, Seoul, 02841, South Korea
| | - Ick Soo Kim
- Nano Fusion Technology Research Group, Division of Frontier Fibers, Institute for Fiber Engineering (IFES), Interdisciplinary Cluster for Cutting Edge Research (ICCER), Shinshu University, Tokida 3-15-1, Ueda, Nagano Prefecture, 386-8567, Japan
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghur Life Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, South Korea.
| |
Collapse
|
43
|
Zhou A, Dou Y, Zhou J, Li JR. Rational Localization of Metal Nanoparticles in Yolk-Shell MOFs for Enhancing Catalytic Performance in Selective Hydrogenation of Cinnamaldehyde. CHEMSUSCHEM 2020; 13:205-211. [PMID: 31556474 DOI: 10.1002/cssc.201902272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/25/2019] [Indexed: 06/10/2023]
Abstract
The development of sustainable catalysts to simultaneously improve activity and selectivity remains a challenge. Herein, it is demonstrated that metal nanoparticles (MNPs) can be encapsulated into a yolk-shell metal-organic framework (MOF) with controllable spatial localization to optimize catalytic performance. When the MNPs are located in the void space between the shell and the core of the MOF, the resulting MNPs@MOF composites show both high catalytic activity and selectivity toward the hydrogenation of α,β-unsaturated aldehydes. In particular, the easily recoverable and stable Ptvoid @MOF(Y) shows an exceptionally high selectivity of 98.2 % for cinnamyl alcohol at a high conversion of 97 %. The excellent performance can be attributed to easy diffusion of the reactants to access highly exposed MNPs in the MOF support, as well as the improved adsorption of the reactant and desorption of the product due to the appropriate metal-support interaction and rich void space between core and shell.
Collapse
Affiliation(s)
- Awu Zhou
- Beijing Key Laboratory for Green Catalysis and Separation and, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yibo Dou
- Beijing Key Laboratory for Green Catalysis and Separation and, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jian Zhou
- Beijing Key Laboratory for Green Catalysis and Separation and, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
44
|
Tan Y, Zhang Y, Wang X, Zeng L, Luo F, Liu A. Amorphous nickel coating on carbon nanotubes supported Pt nanoparticles as a highly durable and active electrocatalyst for methanol oxidation reaction. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2019.113739] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
45
|
Chang XH. The crystal structure of poly[(m4-4-bromoisophthalato-κ4O: O′:O′′:O′′′)zinc(II)], C8H3BrO4Zn. Z KRIST-NEW CRYST ST 2019. [DOI: 10.1515/ncrs-2019-0397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractC8H3BrO4Zn, monoclinic, P21/c (no. 14), a = 4.7134(4) Å, b = 15.4354(13) Å, c = 12.0064(9) Å, β = 98.942(8)°, V = 862.89(12) Å3, Z = 4, Rgt(F) = 0.0445, wRref(F2) = 0.1193, T = 292.67(10) K.
Collapse
Affiliation(s)
- Xin-Hong Chang
- LuoYang Normal University, College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, Henan 471934, P.R. China
| |
Collapse
|
46
|
Xiang B, Fu L, Li Y, Liu Y. Two Synthesis Methods for Fe(III)@MOF‐5‐derived Porous Carbon Composites for Enhanced Phenol Hydroxylation. ChemistrySelect 2019. [DOI: 10.1002/slct.201902941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bai‐lin Xiang
- College of Chemistry EngineeringXiangtan University, Xiangtan Hunan 411105 China
- Hunan Engineering Laboratory for Preparation Technology of Polyvinyl Alcohol Fiber MaterialHuaihua University, Huaihua Hunan 418000 China
| | - Lin Fu
- College of Chemistry EngineeringXiangtan University, Xiangtan Hunan 411105 China
| | - Yongfei Li
- College of Chemistry EngineeringXiangtan University, Xiangtan Hunan 411105 China
| | - Yuejin Liu
- College of Chemistry EngineeringXiangtan University, Xiangtan Hunan 411105 China
| |
Collapse
|
47
|
Chen X, Li S, Sun X, Liu F, Li C, Yu J, Mu S. Coupling low platinum and tungsten carbide supported on ZIFs-Derived porous carbon for efficient hydrogen evolution. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
48
|
Liu N, Chao F, Yan J, Huang N, Ren Z, Wang L. Metal‐Organic Frameworks of Cu
3
(BTC)
2
Catalyzed Cascade C‐H Activation/C‐S Coupling/C‐O Cyclization Reaction Strategy: One‐Pot Efficient Synthesis of Phenoxathiines. ChemistrySelect 2019. [DOI: 10.1002/slct.201903494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Na Liu
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsCollege of Materials and Chemical EngineeringChina Three Gorges University, Yichang Hubei 443002 China
| | - Fei Chao
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsCollege of Materials and Chemical EngineeringChina Three Gorges University, Yichang Hubei 443002 China
| | - Jiaying Yan
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsCollege of Materials and Chemical EngineeringChina Three Gorges University, Yichang Hubei 443002 China
| | - Nian‐Yu Huang
- Hubei Key Laboratory of Natural Products Research and DevelopmentChina Three Gorges University, Yichang Hubei 443002 China
| | - Zhi‐Lin Ren
- College of Chemical EngineeringHubei University of Arts and Science, Xiangyang Hubei 441053 China
| | - Long Wang
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materialsCollege of Materials and Chemical EngineeringChina Three Gorges University, Yichang Hubei 443002 China
- Material Analysis and Testing CenterChina Three Gorges University, Yichang Hubei 443002, China
| |
Collapse
|
49
|
Three-dimensional Cu/C porous composite: Facile fabrication and efficient catalytic reduction of 4-nitrophenol. J Colloid Interface Sci 2019; 553:768-777. [DOI: 10.1016/j.jcis.2019.06.079] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/30/2019] [Accepted: 06/24/2019] [Indexed: 12/22/2022]
|
50
|
Liu N, Tian A, Ren Z, Wang L. Efficient Synthesis of Sulfonyl Diphenylsulfides Catalyzed via Cu–MOF of PCN‐6’. ChemistrySelect 2019. [DOI: 10.1002/slct.201902713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Na Liu
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials,College of Materials and Chemical EngineeringChina Three Gorges University, Yichang Hubei 443002 China
| | - An−Qi Tian
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials,College of Materials and Chemical EngineeringChina Three Gorges University, Yichang Hubei 443002 China
| | - Zhi‐Lin Ren
- College of Chemical EngineeringHubei University of Arts and Science, Xiangyang Hubei 441053 China
| | - Long Wang
- Key laboratory of inorganic nonmetallic crystalline and energy conversion materials,College of Materials and Chemical EngineeringChina Three Gorges University, Yichang Hubei 443002 China
| |
Collapse
|