1
|
Sengupta K, Joyce JP, Decamps L, Kang L, Bjornsson R, Rüdiger O, DeBeer S. Investigating the Molybdenum Nitrogenase Mechanistic Cycle Using Spectroelectrochemistry. J Am Chem Soc 2025; 147:2099-2114. [PMID: 39746667 PMCID: PMC11744760 DOI: 10.1021/jacs.4c16047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025]
Abstract
Molybdenum nitrogenase plays a crucial role in the biological nitrogen cycle by catalyzing the reduction of dinitrogen (N2) to ammonia (NH3) under ambient conditions. However, the underlying mechanisms of nitrogenase catalysis, including electron and proton transfer dynamics, remain only partially understood. In this study, we covalently attached molybdenum nitrogenase (MoFe) to gold electrodes and utilized surface-enhanced infrared absorption spectroscopy (SEIRA) coupled with electrochemistry techniques to investigate its catalytic mechanism. Our biohybrid system enabled electron transfer via a mild mediator, likely mimicking the natural electron flow through the P-cluster to FeMoco, the enzyme's active site. For the first time, we experimentally observed both terminal and bridging S-H stretching frequencies, resulting from the protonation of bridging sulfides in FeMoco during turnover conditions providing direct evidence of their role in catalysis. These experimental observations are further supported by QM/MM calculations. Additionally, we investigated CO inhibition, demonstrating both CO binding and unbinding dynamics under electrochemical conditions. These insights not only advance our understanding of the mechanistic cycle of molybdenum nitrogenase but also establish a foundation for studying alternative nitrogenases, including vanadium and iron nitrogenases.
Collapse
Affiliation(s)
- Kushal Sengupta
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | - Justin P. Joyce
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | - Laure Decamps
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | - Liqun Kang
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | | | - Olaf Rüdiger
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| | - Serena DeBeer
- Department of Inorganic Spectroscopy, Max Planck Institute for Chemical Energy Conversion, Mülheim an der Ruhr, Germany, 45470
| |
Collapse
|
2
|
Davis V, Frielingsdorf S, Hu Q, Elsäßer P, Balzer BN, Lenz O, Zebger I, Fischer A. Ultrathin Film Antimony-Doped Tin Oxide Prevents [NiFe] Hydrogenase Inactivation at High Electrode Potentials. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44802-44816. [PMID: 39160667 DOI: 10.1021/acsami.4c08218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
For hydrogenases to serve as effective electrocatalysts in hydrogen biotechnological devices, such as enzymatic fuel cells, it is imperative to design electrodes that facilitate stable and functional enzyme immobilization, efficient substrate accessibility, and effective interfacial electron transfer. Recent years have seen considerable advancements in this area, particularly concerning hydrogenases. However, a significant limitation remains: the inactivation of hydrogenases at high oxidative potentials across most developed electrodes. Addressing this issue necessitates a thorough understanding of the interactions between the enzyme and the electrode surface. In this study, we employ ATR-IR spectroscopy combined with electrochemistry in situ to investigate the interaction mechanisms, electrocatalytic behavior, and stability of the oxygen-tolerant membrane-bound [NiFe] hydrogenase from Cupriavidus necator (MBH), which features a His-tag on its small subunit C-terminus. Antimony-doped tin oxide (ATO) thin films were selected as electrodes due to their protein compatibility, suitable potential window, conductivity, and transparency, making them an ideal platform for spectroelectrochemical measurements. Our comprehensive examination of the physiological and electrochemical processes of [NiFe] MBH on ATO thin film electrodes demonstrates that by tuning the electron transport properties of the ATO thin film, we can prevent MBH inactivation at extended oxidative potentials while maintaining direct electron transfer between the enzyme and the electrode.
Collapse
Affiliation(s)
- Victoria Davis
- Institute of Inorganic and Analytical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- Freiburger Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
| | - Stefan Frielingsdorf
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135 & 124, 10623 Berlin, Germany
| | - Qiwei Hu
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Patrick Elsäßer
- Institute of Inorganic and Analytical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Bizan N Balzer
- Freiburger Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
| | - Oliver Lenz
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135 & 124, 10623 Berlin, Germany
| | - Ingo Zebger
- Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135 & 124, 10623 Berlin, Germany
| | - Anna Fischer
- Institute of Inorganic and Analytical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany
- Freiburger Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
3
|
Siddiqui AR, N’Diaye J, Martin K, Baby A, Dawlaty J, Augustyn V, Rodríguez-López J. Monitoring SEIRAS on a Graphitic Electrode for Surface-Sensitive Electrochemistry: Real-Time Electrografting. Anal Chem 2024; 96:2435-2444. [PMID: 38294875 PMCID: PMC10868585 DOI: 10.1021/acs.analchem.3c04407] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/22/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024]
Abstract
The ubiquity of graphitic materials in electrochemistry makes it highly desirable to probe their interfacial behavior under electrochemical control. Probing the dynamics of molecules at the electrode/electrolyte interface is possible through spectroelectrochemical approaches involving surface-enhanced infrared absorption spectroscopy (SEIRAS). Usually, this technique can only be done on plasmonic metals such as gold or carbon nanoribbons, but a more convenient substrate for carbon electrochemical studies is needed. Here, we expanded the scope of SEIRAS by introducing a robust hybrid graphene-on-gold substrate, where we monitored electrografting processes occurring at the graphene/electrolyte interface. These electrodes consist of graphene deposited onto a roughened gold-sputtered internal reflection element (IRE) for attenuated total reflectance (ATR) SEIRAS. The capabilities of the graphene-gold IRE were demonstrated by successfully monitoring the electrografting of 4-amino-2,2,6,6-tetramethyl-1-piperidine N-oxyl (4-amino-TEMPO) and 4-nitrobenzene diazonium (4-NBD) in real time. These grafts were characterized using cyclic voltammetry and ATR-SEIRAS, clearly showing the 1520 and 1350 cm-1 NO2 stretches for 4-NBD and the 1240 cm-1 C-C, C-C-H, and N-Ȯ stretch for 4-amino-TEMPO. Successful grafts on graphene did not show the SEIRAS effect, while grafting on gold was not stable for TEMPO and had poorer resolution than on graphene-gold for 4-NBD, highlighting the uniqueness of our approach. The graphene-gold IRE is proficient at resolving the spectral responses of redox transformations, unambiguously demonstrating the real-time detection of surface processes on a graphitic electrode. This work provides ample future directions for real-time spectroelectrochemical investigations of carbon electrodes used for sensing, energy storage, electrocatalysis, and environmental applications.
Collapse
Affiliation(s)
- Abdur-Rahman Siddiqui
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jeanne N’Diaye
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- The
Beckman Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Kristin Martin
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Aravind Baby
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Jahan Dawlaty
- Department
of Chemistry, University of Southern California, Los Angeles, California 90007, United States
| | - Veronica Augustyn
- Department
of Material Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - Joaquín Rodríguez-López
- Department
of Chemistry, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
- The
Beckman Institute for Advanced Science and Technology, University of Illinois Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Schmidt A, Kalms J, Lorent C, Katz S, Frielingsdorf S, Evans RM, Fritsch J, Siebert E, Teutloff C, Armstrong FA, Zebger I, Lenz O, Scheerer P. Stepwise conversion of the Cys 6[4Fe-3S] to a Cys 4[4Fe-4S] cluster and its impact on the oxygen tolerance of [NiFe]-hydrogenase. Chem Sci 2023; 14:11105-11120. [PMID: 37860641 PMCID: PMC10583674 DOI: 10.1039/d3sc03739h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
The membrane-bound [NiFe]-hydrogenase of Cupriavidus necator is a rare example of a truly O2-tolerant hydrogenase. It catalyzes the oxidation of H2 into 2e- and 2H+ in the presence of high O2 concentrations. This characteristic trait is intimately linked to the unique Cys6[4Fe-3S] cluster located in the proximal position to the catalytic center and coordinated by six cysteine residues. Two of these cysteines play an essential role in redox-dependent cluster plasticity, which bestows the cofactor with the capacity to mediate two redox transitions at physiological potentials. Here, we investigated the individual roles of the two additional cysteines by replacing them individually as well as simultaneously with glycine. The crystal structures of the corresponding MBH variants revealed the presence of Cys5[4Fe-4S] or Cys4[4Fe-4S] clusters of different architecture. The protein X-ray crystallography results were correlated with accompanying biochemical, spectroscopic and electrochemical data. The exchanges resulted in a diminished O2 tolerance of all MBH variants, which was attributed to the fact that the modified proximal clusters mediated only one redox transition. The previously proposed O2 protection mechanism that detoxifies O2 to H2O using four protons and four electrons supplied by the cofactor infrastructure, is extended by our results, which suggest efficient shutdown of enzyme function by formation of a hydroxy ligand in the active site that protects the enzyme from O2 binding under electron-deficient conditions.
Collapse
Affiliation(s)
- Andrea Schmidt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics (CC2), Group Structural Biology of Cellular Signaling Charitéplatz 1 10117 Berlin Germany
| | - Jacqueline Kalms
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics (CC2), Group Structural Biology of Cellular Signaling Charitéplatz 1 10117 Berlin Germany
| | - Christian Lorent
- Institut für Chemie, Biophysical Chemistry, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Sagie Katz
- Institut für Chemie, Biophysical Chemistry, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Stefan Frielingsdorf
- Institut für Chemie, Biophysical Chemistry, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | | | - Johannes Fritsch
- Institut für Chemie, Biophysical Chemistry, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Elisabeth Siebert
- Institut für Chemie, Biophysical Chemistry, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Christian Teutloff
- Department of Physics, Freie Universität Berlin Arnimallee 14 14195 Berlin Germany
| | | | - Ingo Zebger
- Institut für Chemie, Biophysical Chemistry, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Oliver Lenz
- Institut für Chemie, Biophysical Chemistry, Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Medical Physics and Biophysics (CC2), Group Structural Biology of Cellular Signaling Charitéplatz 1 10117 Berlin Germany
| |
Collapse
|
5
|
Dragelj J, Karafoulidi-Retsou C, Katz S, Lenz O, Zebger I, Caserta G, Sacquin-Mora S, Mroginski MA. Conformational and mechanical stability of the isolated large subunit of membrane-bound [NiFe]-hydrogenase from Cupriavidus necator. Front Microbiol 2023; 13:1073315. [PMID: 36733774 PMCID: PMC9886862 DOI: 10.3389/fmicb.2022.1073315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Comprising at least a bipartite architecture, the large subunit of [NiFe]-hydrogenase harbors the catalytic nickel-iron site while the small subunit houses an array of electron-transferring Fe-S clusters. Recently, some [NiFe]-hydrogenase large subunits have been isolated showing an intact and redox active catalytic cofactor. In this computational study we have investigated one of these metalloproteins, namely the large subunit HoxG of the membrane-bound hydrogenase from Cupriavidus necator (CnMBH), targeting its conformational and mechanical stability using molecular modelling and long all-atom Gaussian accelerated molecular dynamics (GaMD). Our simulations predict that isolated HoxG is stable in aqueous solution and preserves a large portion of its mechanical properties, but loses rigidity in regions around the active site, in contrast to the MBH heterodimer. Inspired by biochemical data showing dimerization of the HoxG protein and IR measurements revealing an increased stability of the [NiFe] cofactor in protein preparations with higher dimer content, corresponding simulations of homodimeric forms were also undertaken. While the monomeric subunit contains several flexible regions, our data predicts a regained rigidity in homodimer models. Furthermore, we computed the electrostatic properties of models obtained by enhanced sampling with GaMD, which displays a significant amount of positive charge at the protein surface, especially in solvent-exposed former dimer interfaces. These data offer novel insights on the way the [NiFe] core is protected from de-assembly and provide hints for enzyme anchoring to surfaces, which is essential information for further investigations on these minimal enzymes.
Collapse
Affiliation(s)
- Jovan Dragelj
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | | | - Sagie Katz
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Oliver Lenz
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Ingo Zebger
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Giorgio Caserta
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Sophie Sacquin-Mora
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
- CNRS, UPR, Laboratoire de Biochimie Théorique, Université de Paris Cité, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rotschild, PSL Research University, Paris, France
| | | |
Collapse
|
6
|
Li YP, Fekih IB, Fru EC, Moraleda-Munoz A, Li X, Rosen BP, Yoshinaga M, Rensing C. Antimicrobial Activity of Metals and Metalloids. Annu Rev Microbiol 2021; 75:175-197. [PMID: 34343021 DOI: 10.1146/annurev-micro-032921-123231] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Competition shapes evolution. Toxic metals and metalloids have exerted selective pressure on life since the rise of the first organisms on the Earth, which has led to the evolution and acquisition of resistance mechanisms against them, as well as mechanisms to weaponize them. Microorganisms exploit antimicrobial metals and metalloids to gain competitive advantage over other members of microbial communities. This exerts a strong selective pressure that drives evolution of resistance. This review describes, with a focus on arsenic and copper, how microorganisms exploit metals and metalloids for predation and how metal- and metalloid-dependent predation may have been a driving force for evolution of microbial resistance against metals and metalloids. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Yuan Ping Li
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
| | - Ibtissem Ben Fekih
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
| | - Ernest Chi Fru
- Centre for Geobiology and Geochemistry, School of Earth and Ocean Sciences, Cardiff University, CF10 3AT Cardiff, United Kingdom
| | - Aurelio Moraleda-Munoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada 18071, Spain
| | - Xuanji Li
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Barry P Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199, USA
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 35002, China;
| |
Collapse
|
7
|
Abstract
Bioelectrocatalysis using redox enzymes appears as a sustainable way for biosensing, electricity production, or biosynthesis of fine products. Despite advances in the knowledge of parameters that drive the efficiency of enzymatic electrocatalysis, the weak stability of bioelectrodes prevents large scale development of bioelectrocatalysis. In this review, starting from the understanding of the parameters that drive protein instability, we will discuss the main strategies available to improve all enzyme stability, including use of chemicals, protein engineering and immobilization. Considering in a second step the additional requirements for use of redox enzymes, we will evaluate how far these general strategies can be applied to bioelectrocatalysis.
Collapse
|
8
|
Harris TGAA, Heidary N, Frielingsdorf S, Rauwerdink S, Tahraoui A, Lenz O, Zebger I, Fischer A. Electrografted Interfaces on Metal Oxide Electrodes for Enzyme Immobilization and Bioelectrocatalysis. ChemElectroChem 2021. [DOI: 10.1002/celc.202100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomos G. A. A. Harris
- Albert-Ludwigs-Universität Freiburg Institut für Anorganische und Analytische Chemie Albertstr. 21 79104 Freiburg Germany
- Technische Universität Berlin Institut für Chemie, PC 14 Str. des 17. Juni 135 10623 Berlin Germany
| | - Nina Heidary
- Albert-Ludwigs-Universität Freiburg Institut für Anorganische und Analytische Chemie Albertstr. 21 79104 Freiburg Germany
- Technische Universität Berlin Institut für Chemie, PC 14 Str. des 17. Juni 135 10623 Berlin Germany
- Department of Chemistry Université de Montréal Roger-Gaudry Building Montreal, Quebec H3C 3J7 Canada
| | - Stefan Frielingsdorf
- Technische Universität Berlin Institut für Chemie, PC 14 Str. des 17. Juni 135 10623 Berlin Germany
| | - Sander Rauwerdink
- Paul-Drude-Institut für Festkörperelektronik Hausvogteiplatz 5–7 10117 Berlin Germany
| | - Abbes Tahraoui
- Paul-Drude-Institut für Festkörperelektronik Hausvogteiplatz 5–7 10117 Berlin Germany
| | - Oliver Lenz
- Technische Universität Berlin Institut für Chemie, PC 14 Str. des 17. Juni 135 10623 Berlin Germany
| | - Ingo Zebger
- Technische Universität Berlin Institut für Chemie, PC 14 Str. des 17. Juni 135 10623 Berlin Germany
| | - Anna Fischer
- Albert-Ludwigs-Universität Freiburg Institut für Anorganische und Analytische Chemie Albertstr. 21 79104 Freiburg Germany
- Technische Universität Berlin Institut für Chemie, PC 14 Str. des 17. Juni 135 10623 Berlin Germany
- Freiburger Materialforschungszentrum (FMF) Albert-Ludwigs-Universität Freiburg Stefan-Meier-Straße 21 79104 Freiburg Germany
- FIT Freiburger Zentrum für interaktive Werkstoffe und bioinspirierte Technologien Georges-Köhler-Allee 105 79110 Freiburg Germany
| |
Collapse
|
9
|
Murgida DH. In Situ Spectroelectrochemical Investigations of Electrode-Confined Electron-Transferring Proteins and Redox Enzymes. ACS OMEGA 2021; 6:3435-3446. [PMID: 33585730 PMCID: PMC7876673 DOI: 10.1021/acsomega.0c05746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/19/2021] [Indexed: 06/09/2023]
Abstract
This perspective analyzes recent advances in the spectroelectrochemical investigation of redox proteins and enzymes immobilized on biocompatible or biomimetic electrode surfaces. Specifically, the article highlights new insights obtained by surface-enhanced resonance Raman (SERR), surface-enhanced infrared absorption (SEIRA), protein film infrared electrochemistry (PFIRE), polarization modulation infrared reflection-absorption spectroscopy (PMIRRAS), Förster resonance energy transfer (FRET), X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and differential electrochemical mass spectrometry (DMES)-based spectroelectrochemical methods on the structure, orientation, dynamics, and reaction mechanisms for a variety of immobilized species. This includes small heme and copper electron shuttling proteins, large respiratory complexes, hydrogenases, multicopper oxidases, alcohol dehydrogenases, endonucleases, NO-reductases, and dye decolorizing peroxidases, among other enzymes. Finally, I discuss the challenges and foreseeable future developments toward a better understanding of the functioning of these complex macromolecules and their exploitation in technological devices.
Collapse
Affiliation(s)
- Daniel H. Murgida
- Departamento
de Química Inorgánica, Analítica y Química-Física,
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos
Aires 1428, Argentina
- Instituto
de Química Física de los Materiales, Medio Ambiente
y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EHA, Argentina
| |
Collapse
|
10
|
Gillan L, Teerinen T, Johansson LS, Smolander M. Controlled diazonium electrodeposition towards a biosensor for C-reactive protein. SENSORS INTERNATIONAL 2021. [DOI: 10.1016/j.sintl.2020.100060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Electrochemical sensing of the interaction of the anti-infective agent pentamidine with DNA. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-020-02721-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Nazemi Z, Prasad P, Chakraborty S. Kinetics of Oxygen Reduction by a Beta Barrel Heme Protein on Hyrid Bioelectrodes. ChemElectroChem 2020. [DOI: 10.1002/celc.201901945] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zahra Nazemi
- Department of Chemistry and BiochemistryUniversity of Mississippi, University Mississippi MS 38677 USA
| | - Pallavi Prasad
- Department of Chemistry and BiochemistryUniversity of Mississippi, University Mississippi MS 38677 USA
| | - Saumen Chakraborty
- Department of Chemistry and BiochemistryUniversity of Mississippi, University Mississippi MS 38677 USA
| |
Collapse
|
13
|
Heidary N, Harris TGAA, Ly KH, Kornienko N. Artificial photosynthesis with metal and covalent organic frameworks (MOFs and COFs): challenges and prospects in fuel-forming electrocatalysis. PHYSIOLOGIA PLANTARUM 2019; 166:460-471. [PMID: 30706497 DOI: 10.1111/ppl.12935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Mimicking photosynthesis in generating chemical fuels from sunlight is a promising strategy to alleviate society's demand for fossil fuels. However, this approach involves a number of challenges that must be overcome before this concept can emerge as a viable solution to society's energy demand. Particularly in artificial photosynthesis, the catalytic chemistry that converts energy in the form of electricity into carbon-based fuels and chemicals has yet to be developed. Here, we describe the foundational work and future prospects of an emerging and promising class of materials: metal- and covalent-organic frameworks (MOFs and COFs). Within this context, these porous and tuneable framework materials have achieved initial success in converting abundant feedstocks (H2 O and CO2 ) into chemicals and fuels. In this review, we first highlight key achievements in this direction. We then follow with a perspective on precisely how MOFs and COFs can perform in ways not possible with conventional molecular or heterogeneous catalysts. We conclude with a view on how spectroscopically probing MOF and COF catalysis can be used to elucidate reaction mechanisms and material dynamics throughout the course of reaction.
Collapse
Affiliation(s)
- Nina Heidary
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Department of Chemistry, Université de Montréal, Quebec, H3C 3J7, Canada
| | | | - Khoa H Ly
- Fakultät für Chemie und Lebensmittelchemie, Technische Universität Dresden, 01062 Dresden, Germany
| | - Nikolay Kornienko
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Department of Chemistry, Université de Montréal, Quebec, H3C 3J7, Canada
| |
Collapse
|
14
|
Himori S, Nishitani S, Sakata T. Control of Potential Response to Small Biomolecules with Electrochemically Grafted Aryl-Based Monolayer in Field-Effect Transistor-Based Sensors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3701-3709. [PMID: 30779579 DOI: 10.1021/acs.langmuir.9b00085] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this paper, we demonstrate the use of a monolayer film electrografted via diazonium chemistry for controlling the potential response of a field-effect transistor (FET)-based sensor. 4-Nitrobenzenediazonium salt is electrografted on an extended-Au-gate FET (EG-Au-FET) with or without using a radical scavenger by cyclic voltammetry (CV), resulting in the formation of a monolayer or multilayer. In particular, the surface coverage of the aryl-derivative monolayer on the Au gate electrode gradually increases with increasing number of potential cycles in CV. Here, Au exhibits a strong catalytic action, resulting in the oxidation of organic compounds. Uric acid is used as a low-molecular-weight biomolecule for interference. The denser the surface coverage of the grafted monolayer, the smaller the potential response of the EG-Au-FET because the redox reaction of uric acid with the Au gate surface is suppressed. On the other hand, the effect of the aryl-derivative multilayer on the suppression of the potential response was smaller than that of the monolayer because the electrogenerated aryl radicals did not react with the Au surface but with the grafted species, resulting in an exposed part of the Au surface among the grafted aryl molecules. Thus, a platform based on such a monolayer film electrografted via diazonium chemistry is suitable for controlling the potential response based on the interference of low-molecular-weight biomolecules in biosamples.
Collapse
Affiliation(s)
- Shogo Himori
- Department of Materials Engineering, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Shoichi Nishitani
- Department of Materials Engineering, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| | - Toshiya Sakata
- Department of Materials Engineering, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku, Tokyo 113-8656 , Japan
| |
Collapse
|
15
|
Hitaishi VP, Mazurenko I, Harb M, Clément R, Taris M, Castano S, Duché D, Lecomte S, Ilbert M, de Poulpiquet A, Lojou E. Electrostatic-Driven Activity, Loading, Dynamics, and Stability of a Redox Enzyme on Functionalized-Gold Electrodes for Bioelectrocatalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03443] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Ievgen Mazurenko
- School of Biomedical Sciences, University of Leeds, LS2 9JT Leeds, United Kingdom
| | - Malek Harb
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| | - Romain Clément
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| | - Marion Taris
- Institute for Chemistry and Biology of Membrane and Nano-objects, Allée Geoffroy St. Hilaire, 33600 Pessac, France
| | - Sabine Castano
- Institute for Chemistry and Biology of Membrane and Nano-objects, Allée Geoffroy St. Hilaire, 33600 Pessac, France
| | - David Duché
- Aix Marseille Univ, CNRS, University of Toulon, IM2NP UMR 7334, 13397 Marseille, France
| | - Sophie Lecomte
- Institute for Chemistry and Biology of Membrane and Nano-objects, Allée Geoffroy St. Hilaire, 33600 Pessac, France
| | - Marianne Ilbert
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| | - Anne de Poulpiquet
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| | - Elisabeth Lojou
- Aix-Marseille Univ, CNRS, BIP, UMR 7281, 31 Chemin Aiguier, 13009 Marseille, France
| |
Collapse
|