1
|
Hu W, Xia L, Hu Y, Li G. Calixarene-Based Magnetic Nanosponge Decorating AgNPs for Rapid and Selective Surface-Enhanced Raman Scattering Analysis in Complex Samples. Anal Chem 2025; 97:1347-1356. [PMID: 39772455 DOI: 10.1021/acs.analchem.4c05745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Rapid and accurate analysis of trace targets in complex samples remains an enormous challenge. Herein, the calix[x]arene-based magnetic cross-linked polymer decorating AgNPs, abbreviated Fe3O4-CXA-DAB@AgNPs nanosponge, was developed for fast surface-enhanced Raman scattering (SERS) analysis in complex samples. The Fe3O4-CXA-DAB@AgNPs nanosponge surface was constructed by high-density CXA units with special cavity size and structure, which could selectively recognize and enrich targets to the sensing surface by the host-guest effect and molecule interactions. The Fe3O4-C4A-DAB@AgNPs showed significant SERS enhancement to choline chloride (ChCl) and succinylcholine chloride (SCC) with an enhancement factor (EF) of 2.9 × 107 and 6.3 × 106, respectively. The Fe3O4-C6A-DAB@AgNPs exhibited high SERS activity to thiabendazole with an EF of 7.6 × 106. Introducing recognition-enrichment-separation with SERS sensing, the nanosponge could achieve rapid enrichment sensing of targets within 6-8 min. Also, the Fe3O4-CXA-DAB@AgNPs nanosponge exhibited good stability for rapid detection with relative standard deviations less than 6.3% for intra-batch (n = 25) and 6.8% for inter-batch (n = 15). Benefiting from these merits, the Fe3O4-C4A-DAB@AgNPs was employed for fast SERS analysis of ChCl and SCC in real samples. The limits of detection were 0.62 μg/L for ChCl and 2.0 μg/L for SCC. ChCl was found in feed sample with recoveries of 85.3-108%, and SCC was found in serum samples with recoveries of 85.7-111%. The methods provided a significant reference for the selective analysis of targets by regulating the calix[x]arenes cavity size to satisfy different molecules and rapid quantification strategy by integrating sample pretreatment technology with sensing detection all-in-one.
Collapse
Affiliation(s)
- Wenyao Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
2
|
Dalapati M, Das A, Maity P, Singha R, Ghosh S, Samanta D. N-Heteroatom Engineered Nonporous Amorphous Self-Assembled Coordination Cages for Capture and Storage of Iodine. Inorg Chem 2024; 63:15973-15983. [PMID: 39140114 DOI: 10.1021/acs.inorgchem.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Radioactive iodine isotopes from nuclear-related activities, present substantial risks to human health and the environment. Developing effective materials for the capture and storage of these hazardous molecules is paramount. Traditionally, nonporous solids were historically considered ineffective for adsorbing target species. In this study, we investigate the potential of four nonporous, amorphous, self-assembled coordination cages (C1, C2, C3, and C4) featuring varying numbers of nitrogen atoms within the core (pyridyl/triazine unit) and specific cavity sizes for iodine adsorption. These coordination cages demonstrate remarkable adsorption abilities for iodine in both vapor and solution phases, facilitated by enhanced electron-pair interactions. The cages exhibit high uptake capacities of up to 3.16 g g-1 at 75 °C, the highest among metal-organic cages and up to 434.29 mg g-1 in solution, highlighting the efficiency of these materials across different phases. Even at ambient temperature, they show significant iodine capture efficiency, with a maximum value of 1.5 g g-1. Furthermore, these robust materials can be recycled, enduring at least five reusable cycles without apparent fatigue. Overall, our findings present a "N-heteroatom engineering" approach for the development of recyclable amorphous containers for the capture and storage of iodine, contributing to the mitigation of nuclear-related risks.
Collapse
Affiliation(s)
- Monotosh Dalapati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Asesh Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Pankaj Maity
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Raghunath Singha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Subhadip Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Dipak Samanta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
3
|
Ma S, Hou Y, Yang L, Yue H, Xia H, Liu X. Fully Conjugated Covalent Organic Framework Nanosheets for Visible-Light-Driven Organic Synthesis in Water. CHEMSUSCHEM 2024; 17:e202400315. [PMID: 38538541 DOI: 10.1002/cssc.202400315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Covalent organic framework (COF) nanosheets have recently garnered great attention as a new class of functional materials. As one of the sustainable processes, however, the photocatalytic organic synthesis in water has not been investigated using COF nanosheets as a photocatalyst to date. Herein, we reported the synthesis of a fully conjugated COF nanosheets with carboxyl functional group through a cooperative strategy of chemical exfoliation and group transformation. The new COF nanosheets was found to be an efficient heterogeneous photocatalyst for a wide range of organic synthesis including selective oxidation of sulfides and oxidative coupling of benzylamines in water under visible-light illumination. This work contributes a new roadmap for the design and synthesis of functional COF-based nanosheets, but also further extends the application boundary of the ultrathin COF nanosheets.
Collapse
Affiliation(s)
- Si Ma
- College of Chemistry, Jilin University, Changchun, 130012, R.P., China
| | - Yuxin Hou
- College of Chemistry, Jilin University, Changchun, 130012, R.P., China
| | - Liuliu Yang
- College of Chemistry, Jilin University, Changchun, 130012, R.P., China
| | - Huijuan Yue
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Technology, Jilin University, Changchun, 130012, P.R. China
| | - Xiaoming Liu
- College of Chemistry, Jilin University, Changchun, 130012, R.P., China
| |
Collapse
|
4
|
Zhang W, Zhao C, Zhu W, He X, Zhao Y. Conformational Locking as a Strategy to Reverse Ion Recognition Selectivity. J Org Chem 2024; 89:4037-4041. [PMID: 38389323 DOI: 10.1021/acs.joc.3c02902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
This study delves into the ion recognition capabilities of a novel host molecule, emphasizing the role of conformational locking in dictating ion selectivity. By employing the Buchwald-Hartwig cross-coupling reaction, we have notably shifted the ion receptor's selectivity from K+ to Na+. The findings are supported by computational simulations that reveal differences in binding energies and molecular strain impacting ion recognition. This innovative structural modification broadens the scope for alterations at the calix[4]arene's lower rim, paving the way for new methods and strategies in modulating ion recognition selectivity.
Collapse
Affiliation(s)
- Wei Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chong Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Wenjie Zhu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yanchuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
5
|
Xie Z, Hu Y, Lin J, Li G, Zhong Q. Calix[4]arene-based covalent organic frameworks with host-guest recognition for selective adsorption of six per- and polyfluoroalkyl substances in food followed by UHPLC-MS/MS detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132198. [PMID: 37541121 DOI: 10.1016/j.jhazmat.2023.132198] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/06/2023]
Abstract
Long-term ingestion or exposure to food contaminated with per- and polyfluoroalkyl substances (PFASs) may cause potential harm to human health. Due to the low contents of PFASs in complex food matrices, it is of great significance to develop adsorbents with excellent properties to enrich PFASs before analysis. Herein, calix[4]arene (CX4) was used as building block to prepare ordered crystalline covalent organic frameworks (COFs). The perfect combination of the host-guest recognition ability of CX4 and the porosity of COFs makes the CX4-COFs selective and high adsorption capacity for linear molecular PFASs (261-1055 mg/g). The adsorption behavior and mechanism were verified by isotherm adsorption experiments and simulation calculations. The CX4-COFs were then used as adsorbents for membrane solid-phase extraction (M-SPE), combined with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) to determine PFASs in food. The method has low detection limits (0.11-0.28 ng/kg) and good precision (1.3%-9.8%), and has been successfully applied to the simultaneous enrichment and determination of six PFASs in fish, shrimp and shellfish. Satisfactory recoveries (79.9%-118%) were obtained. This study provides a new strategy for preparing CX4-COFs containing macrocyclic molecules with different morphologies and expands the application of COFs as attractive enrichment media for sample pretreatment.
Collapse
Affiliation(s)
- Zenghui Xie
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jiana Lin
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China.
| | - Qisheng Zhong
- Analytical Applications Center, Shimadzu (China) Co., LTD, Guangzhou 510656, China
| |
Collapse
|
6
|
Kang JY, Zhao XB, Shi YP. Azophenyl Calix[4]arene Porous Organic Polymer for Extraction and Analysis of Triphenylmethane Dyes from Seafood. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42981-42991. [PMID: 37642085 DOI: 10.1021/acsami.3c08703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Porous organic polymers (POPs) based on calix[4]arene with a hydrophobic π-rich cavity and host-guest recognition properties exhibit a wide application range of molecular extraction and separation. However, it is still a challenge to improve the extraction and separation selectivity by exploring and seeking appropriate building blocks for the functionalization and pore size adjustment of calix[4]arene. Herein, an azophenyl calix[4]arene porous organic polymer (AC-POP) was proposed. By introducing an electron-rich cavity and adjusting the pore sizes of calix[4]arene, the AC-POP showed high selectivity extraction performance in triphenylmethane (TPM) dyes. The extraction mechanism was explored by adsorption thermodynamics study, density functional theory (DFT) calculation, and reduced density gradient (RDG) and electrostatic potential (ESP) analyses, which suggested that the selectivity adsorption of TPM dyes based on AC-POP was mainly the result of entropy driven by the hydrophobic effect. In addition, the noncovalent interactions including π-π stacking, van der Waals force, and electrostatic interaction were also important factors affecting the adsorption capacity of TPM dyes. Under optimal extraction conditions, the AC-POP possessed a maximum extraction amount of 95.3 mg·g-1 for Rhodamine B (RB), high enrichment factor of about 100, and excellent reusability more than 10 times. Then, an analytical method of TPM dyes with AC-POP as a solid-phase extractant combined with high-performance liquid chromatography-ultraviolet (HPLC-UV) was established, which displayed excellent sensitivity with the limits of detection (LODs) and limits of quantitation (LOQs) in the ranges of 0.004-0.35 and 0.016-1.16, respectively. The mean recoveries for TPM dyes ranged from 85.0 to 109.4% with an RSD of 0.48-9.45%. The proposed method was successfully applied to the analysis of the five TPM dyes in seafood matrix samples.
Collapse
Affiliation(s)
- Jing-Yan Kang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Xiao-Bo Zhao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
7
|
Zhou W, Li A, Zhou M, Xu Y, Zhang Y, He Q. Nonporous amorphous superadsorbents for highly effective and selective adsorption of iodine in water. Nat Commun 2023; 14:5388. [PMID: 37666841 PMCID: PMC10477329 DOI: 10.1038/s41467-023-41056-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
Adsorbents widely utilized for environmental remediation, water purification, and gas storage have been usually reported to be either porous or crystalline materials. In this contribution, we report the synthesis of two covalent organic superphane cages, that are utilized as the nonporous amorphous superadsorbents for aqueous iodine adsorption with the record-breaking iodine adsorption capability and selectivity. In the static adsorption system, the cages exhibit iodine uptake capacity of up to 8.41 g g-1 in I2 aqueous solution and 9.01 g g-1 in I3- (KI/I2) aqueous solution, respectively, even in the presence of a large excess of competing anions. In the dynamic flow-through experiment, the aqueous iodine adsorption capability for I2 and I3- can reach up to 3.59 and 5.79 g g-1, respectively. Moreover, these two superphane cages are able to remove trace iodine in aqueous media from ppm level (5.0 ppm) down to ppb level concentration (as low as 11 ppb). Based on a binding-induced adsorption mechanism, such nonporous amorphous molecular materials prove superior to all existing porous adsorbents. This study can open up a new avenue for development of state-of-the-art adsorption materials for practical uses with conceptionally new nonporous amorphous superadsorbents (NAS).
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Aimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Min Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yiyao Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yi Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| |
Collapse
|
8
|
Guo Y, Zhao W, Dai S, Mao J, Zhang Q, Xie Z, Zhang W, Zhao W, Yu A, Zhang S. A monolithic azacalix[4]pyridine column for high-resolution and high-efficiency pressurized capillary electrochromatographic separation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
A new strategy to synthesis of porous polymers from plastic waste for highly efficient adsorption of rhodamine B, malachite green and I2 vapor. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
10
|
Yu CX, Li XJ, Zong JS, You DJ, Liang AP, Zhou YL, Li XQ, Liu LL. Fabrication of Protonated Two-Dimensional Metal-Organic Framework Nanosheets for Highly Efficient Iodine Capture from Water. Inorg Chem 2022; 61:13883-13892. [PMID: 35998569 DOI: 10.1021/acs.inorgchem.2c01886] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Radioactive iodine (129I and 131I), produced or released from nuclear-related activities, posed severe effects on both human health and environment. The efficient removal of radioiodine from aqueous medium and vapor phase is of paramount importance for the sustainable development of nuclear energy. Herein, a metal-organic framework (MOF) nanosheet with a positive charge was constructed for the capture of iodine for the first time. The as-synthesized ultrathin nanosheets, with a thickness of 4.4 ± 0.1 nm, showed a record-high iodine adsorption capacity (3704.08 mg g-1) from aqueous solution, which is even higher than that from the vapor phase (3510.05 mg g-1). It can be ascribed to the fully interactions between the extensive accessible active sites on the largely exposed surface of 2D MOF nanosheets and the target pollutants, which also gave rise to fast adsorption kinetics with relative high removal efficiencies in the low concentrations, even in seawater. Moreover, a facile recyclability with fast desorption kinetics can also be achieved for the MOF nanosheets. The excellent iodine removal performance in aqueous solution demonstrated that the electrostatic attraction between MOF nanosheets with a positive charge and the negatively charged triiodide (I3-, the dominant form of iodine in aqueous solution) is the driving force in adsorption, which endows the adsorbents with the characteristics of fast adsorption and desorption kinetics. The adsorption mechanism was systematically verified by the studies of ζ potential, Fourier transform infrared, X-ray photoelectron spectroscopy, and Raman spectra.
Collapse
Affiliation(s)
- Cai-Xia Yu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Xue-Jing Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Jia-Shu Zong
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Dong-Jiang You
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Ai-Ping Liang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Yan-Li Zhou
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Xiao-Qiang Li
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| | - Lei-Lei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, P. R. China
| |
Collapse
|
11
|
Giri A, Biswas S, Hussain MW, Dutta TK, Patra A. Nanostructured Hypercrosslinked Porous Organic Polymers: Morphological Evolution and Rapid Separation of Polar Organic Micropollutants. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7369-7381. [PMID: 35089681 DOI: 10.1021/acsami.1c24393] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanostructured hypercrosslinked porous organic polymers have triggered immense research interest for a broad spectrum of applications ranging from catalysis to molecular separation. However, it still remains a challenge to tune their nanoscale morphology. Herein, we demonstrated a remarkable variation of morphologies of triptycene-based hypercrosslinked microporous polymers starting from irregular aggregates (FCTP) to rigid spheres (SCTP) to two-dimensional nanosheets (SKTP) from three distinct polymerization methodologies, Friedel-Crafts knitting using an external crosslinker, Scholl reaction, and solvent knitting, respectively. Further, the dramatic role of reaction temperatures, catalysts, and solvents resulting in well-defined morphologies was elucidated. Mechanistic investigations coupled with microscopic and computational studies revealed the evolution of 2D nanosheets of a highly porous solvent-knitted polymer (SKTP, 2385 m2 g-1), resulting from the sequential hierarchical self-assembly of nanospheres and nanoribbons. A structure-activity correlation of hypercrosslinked polymers and their sulfonated counterparts for the removal of toxic polar organic micropollutants from water was delineated based on the chemical functionalities, specific surface area, pore size distribution, dispersity, and nanoscale morphology. Furthermore, a sulfonated 2D sheet-like solvent-knitted polymer (SKTPS) exhibited rapid adsorption kinetics (within 30 s) for a large array of polar organic micropollutants, including plastic components, steroids, antibiotic drugs, herbicides, and pesticides with remarkable uptake capacity and excellent recyclability. The current study provides the impetus for designing morphology-controlled functionalized porous polymers for task-specific applications.
Collapse
Affiliation(s)
- Arkaprabha Giri
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Subha Biswas
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Md Waseem Hussain
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Tapas Kumar Dutta
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| | - Abhijit Patra
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, Madhya Pradesh, India
| |
Collapse
|
12
|
Li Z, Yang YW. Macrocycle-Based Porous Organic Polymers for Separation, Sensing, and Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107401. [PMID: 34676932 DOI: 10.1002/adma.202107401] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/06/2021] [Indexed: 06/13/2023]
Abstract
With the rapid development of materials science, porous organic polymers (POPs) have received remarkable attentions because of their unique properties such as the exceptionally high surface area and flexible molecular design. The ability to incorporate specific functions in a precise manner makes POPs promising platforms for a myriad of applications in molecular adsorption, separation, and catalysis. Therefore, many different types of POPs have been rationally designed and synthesized to expand the scope of advanced materials, endowing them with distinct structures and properties. Recently, supramolecular macrocycles with excellent host-guest complexation abilities are emerging as powerful crosslinkers for developing novel POPs with hierarchical structures and improved performance, which can be well-organized at different spatial scales. Macrocycle-based POPs could have unusual porous, adsorptive, and optical properties when compared to their nonmacrocycle-incorporated counterparts. This cooperation provides valuable insights for the molecular-level understanding of skeletal complexity and diversity. Here, the research advances of macrocycle-based POPs are aptly summarized by showing their syntheses, properties, and applications in terms of separation, sensing, and catalysis. Finally, the current challenging issues in this exciting research field are delineated and a comprehensive outlook is offered for their future directions.
Collapse
Affiliation(s)
- Zheng Li
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China
| |
Collapse
|
13
|
Baig N, Shetty S, Pasha SS, Pramanik SK, Alameddine B. Copolymer networks with contorted units and highly polar groups for ultra-fast selective cationic dye adsorption and iodine uptake. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
14
|
Chen W, Chen P, Zhang G, Xing G, Feng Y, Yang YW, Chen L. Macrocycle-derived hierarchical porous organic polymers: synthesis and applications. Chem Soc Rev 2021; 50:11684-11714. [PMID: 34491253 DOI: 10.1039/d1cs00545f] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Porous organic polymers (POPs), as a new category of advanced porous materials, have received broad research interests owing to the advantages of light-weight, robust scaffolds, high specific surface areas and good functional tailorability. According to the long-range ordering of polymer skeletons, POPs can be either crystalline or amorphous. Macrocycles with inherent cavities can serve as receptors for recognizing or capturing specific guest molecules through host-guest interactions. Incorporating macrocycles in POP skeletons affords win-win merits, e.g. hierarchical porosity and novel physicochemical properties. In this review, we focus on the recent progress associated with new architectures of macrocycle-based POPs. Herein, these macrocycles are divided into two subclasses: non-planar (crown ether, calixarene, pillararene, cyclodextrin, cyclotricatechylene, etc.) and planar (arylene-ethynylene macrocycles). We summarize the synthetic methods of each macrocyclic POP in terms of the functions of versatile building blocks. Subsequently, we discuss the performance of macrocyclic POPs in environmental remediation, gas adsorption, heterogeneous catalysis, fluorescence sensing and ionic conduction. Although considerable examples are reported, the development of macrocyclic POPs is still in its infancy. Finally, we propose the underlying challenges and opportunities of macrocycle-based POPs.
Collapse
Affiliation(s)
- Weiben Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Pei Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Guolong Xing
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China.
| | - Yu Feng
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institution of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, China.
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Long Chen
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, Tianjin 300072, China. .,College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| |
Collapse
|
15
|
Shetty S, Baig N, Hassan A, Al-Mousawi S, Das N, Alameddine B. Fluorinated Iron(ii) clathrochelate units in metalorganic based copolymers: improved porosity, iodine uptake, and dye adsorption properties. RSC Adv 2021; 11:14986-14995. [PMID: 35424059 PMCID: PMC8697800 DOI: 10.1039/d1ra02357h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 01/15/2023] Open
Abstract
We report the synthesis of metalorganic copolymers made from the palladium catalyzed Sonogashira cross-coupling reaction between various iron(ii) clathrochelate building blocks with diethynyl-triptycene and fluorene derivatives. The target copolymers CCP1-5 were isolated in excellent yield and characterized by various instrumental analysis techniques. Interestingly, investigation of the copolymers' porosity properties discloses BET surface areas up to 337 m2 g-1 for the target compounds bearing fluorinated iron(ii) clathrochelate units CCP2,5. Moreover, the fluorinated copolymers display an outstanding uptake capacity of iodine with a maximum adsorption of 200 wt%. The target metalorganic copolymers CCP1-5 reveal very good adsorption of organic dyes, namely, methyl blue and methylene blue, from aqueous media.
Collapse
Affiliation(s)
- Suchetha Shetty
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology Kuwait
- Functional Materials Group - CAMB, GUST Kuwait
| | - Noorullah Baig
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology Kuwait
- Functional Materials Group - CAMB, GUST Kuwait
| | - Atikur Hassan
- Department of Chemistry, Indian Institute of Technology Patna Patna 801106 Bihar India
| | | | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna Patna 801106 Bihar India
| | - Bassam Alameddine
- Department of Mathematics and Natural Sciences, Gulf University for Science and Technology Kuwait
- Functional Materials Group - CAMB, GUST Kuwait
| |
Collapse
|
16
|
Abubakar S, Skorjanc T, Shetty D, Trabolsi A. Porous Polycalix[ n]arenes as Environmental Pollutant Removers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14802-14815. [PMID: 33759501 DOI: 10.1021/acsami.0c23074] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new and innovative class of calixarene-based polymers emerged as adsorbents for a variety of compounds and ions in solution and vapor media. These materials take advantage of the modifiable rims and hydrophobic cavities of the calixarene monomers, in addition to the porous nature of the polymeric matrix. With main-chain calixarenes' function as supramolecular hosts and the polymers' high surface areas, polycalixarenes can effectively encapsulate target analytes. This feature is particularly useful for environmental remediation as dangerous and toxic molecules reversibly bind to the macrocyclic cavity, which facilitates their removal and enables repeated use of the polymeric sorbent. This Spotlight touches on the unique characteristics of the calixarene monomers and discusses the synthetic methods of our reported calixarene-based porous polymers, including Sonogashira-Hagihara coupling, and diazo and imine bond formation. It then discusses the promising applications of these materials in adsorbing dyes, micropollutants, iodine, mercury, paraquat, and perfluorooctanoic acid (PFOA) from water. In most cases, these reports cover materials that outperform others in terms of recyclability, rates of adsorption, or uptake capacities of specific pollutants. Finally, this Spotlight addresses the current challenges and future aspects of utilizing porous polymers in pollution treatment.
Collapse
Affiliation(s)
- Salma Abubakar
- Chemistry Program & NYUAD Water Research Center, New York University Abu Dhabi, Saadiyat Island, 129188 Abu Dhabi, United Arab Emirates
| | - Tina Skorjanc
- Chemistry Program & NYUAD Water Research Center, New York University Abu Dhabi, Saadiyat Island, 129188 Abu Dhabi, United Arab Emirates
- Materials Research Lab, University of Nova Gorica, Vipavska 11c, 5270 Ajdovscina, Slovenia
| | - Dinesh Shetty
- Department of Chemistry and Center for Catalysis and Separations (CeCaS), Khalifa University of Science and Technology, 127788 Abu Dhabi, United Arab Emirates
| | - Ali Trabolsi
- Chemistry Program & NYUAD Water Research Center, New York University Abu Dhabi, Saadiyat Island, 129188 Abu Dhabi, United Arab Emirates
| |
Collapse
|
17
|
Skorjanc T, Shetty D, Trabolsi A. Pollutant removal with organic macrocycle-based covalent organic polymers and frameworks. Chem 2021. [DOI: 10.1016/j.chempr.2021.01.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Dai D, Yang J, Zou Y, Wu J, Tan L, Wang Y, Li B, Lu T, Wang B, Yang Y. Macrocyclic Arenes‐Based Conjugated Macrocycle Polymers for Highly Selective CO
2
Capture and Iodine Adsorption. Angew Chem Int Ed Engl 2021; 60:8967-8975. [DOI: 10.1002/anie.202015162] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/16/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Dihua Dai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jie Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yong‐Cun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jia‐Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Li‐Li Tan
- State Key Laboratory of Solidification Processing Center for Nano Energy Materials School of Materials Science and Engineering Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU) 127 Youyi West Road Xi'an 710072 P. R. China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Ying‐Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
19
|
Dai D, Yang J, Zou Y, Wu J, Tan L, Wang Y, Li B, Lu T, Wang B, Yang Y. Macrocyclic Arenes‐Based Conjugated Macrocycle Polymers for Highly Selective CO
2
Capture and Iodine Adsorption. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015162] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dihua Dai
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jie Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Yong‐Cun Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Jia‐Rui Wu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Li‐Li Tan
- State Key Laboratory of Solidification Processing Center for Nano Energy Materials School of Materials Science and Engineering Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU) 127 Youyi West Road Xi'an 710072 P. R. China
| | - Yan Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Tong Lu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bo Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials Key Laboratory of Cluster Science Ministry of Education School of Chemistry and Chemical Engineering Beijing Institute of Technology Beijing 100081 P. R. China
| | - Ying‐Wei Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry International Joint Research Laboratory of Nano-Micro Architecture Chemistry College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
20
|
Yang J, Liu X, Tang J, Dėdinaitė A, Liu J, Miao R, Liu K, Peng J, Claesson PM, Liu X, Fang Y. Robust and Large-Area Calix[4]pyrrole-Based Nanofilms Enabled by Air/DMSO Interfacial Self-Assembly-Confined Synthesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3336-3348. [PMID: 33356087 DOI: 10.1021/acsami.0c16831] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The modular construction of defect-free nanofilms with a large area remains a challenge. Herein, we present a scalable strategy for the preparation of calix[4]pyrrole (C[4]P)-based nanofilms through acryl hydrazone reaction conducted in a tetrahydrazide calix[4]pyrrole (CPTH)-based self-assembled layer at the air/DMSO interface. With this strategy, robust, regenerable, and defect-free nanofilms with an exceptionally large area (∼750 cm2) were constructed. The thickness and permeability of the film systems can be fine-tuned by varying the precursor concentration or by changing another building block. A typical nanofilm (C[4]P-TFB, ∼67 nm) depicted high water flux (39.9 L m-2 h-1 under 1 M Na2SO4), narrow molecular weight cut-off value (∼200 Da), and promising antifouling properties in the forward osmosis (FO) process. In addition, the nanofilms are stable over a wide pH range and tolerable to different organic solvents. Interestingly, the introduction of C[4]P endowed the nanofilms with both outstanding mechanical properties and unique group-selective separation capability, laying the foundation for wastewater treatment and pharmaceutical concentration.
Collapse
Affiliation(s)
- Jinglun Yang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Xiangquan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Jiaqi Tang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Andra Dėdinaitė
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Division of Bioscience and Materials, RISE Research Institutes of Sweden, SE-114 86 Stockholm, Sweden
| | - Jianfei Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Rong Miao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Junxia Peng
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Per Martin Claesson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Surface and Corrosion Science, KTH Royal Institute of Technology, Drottning Kristinas väg 51, SE-100 44 Stockholm, Sweden
- Division of Bioscience and Materials, RISE Research Institutes of Sweden, SE-114 86 Stockholm, Sweden
| | - Xiaoyan Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P. R. China
| |
Collapse
|
21
|
Baig N, Shetty S, Al-Mousawi S, Alameddine B. Conjugated microporous polymers using a copper-catalyzed [4 + 2] cyclobenzannulation reaction: promising materials for iodine and dye adsorption. Polym Chem 2021. [DOI: 10.1039/d1py00193k] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new design strategy is disclosed to synthesize conjugated microporous polymers using a Cu-catalyzed [4 + 2] cyclobenzannulation reaction. The polymers reveal BET surface areas up to 794 m2 g−1 and promising uptake of iodine and methylene blue.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology
- Kuwait
- Functional Materials Group – CAMB
- GUST
| |
Collapse
|
22
|
Shetty D, Jahović I, Skorjanc T, Erkal TS, Ali L, Raya J, Asfari Z, Olson MA, Kirmizialtin S, Yazaydin AO, Trabolsi A. Rapid and Efficient Removal of Perfluorooctanoic Acid from Water with Fluorine-Rich Calixarene-Based Porous Polymers. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43160-43166. [PMID: 32851843 DOI: 10.1021/acsami.0c13400] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
On account of its nonbiodegradable nature and persistence in the environment, perfluorooctanoic acid (PFOA) accumulates in water resources and poses serious environmental issues in many parts of the world. Here, we present the development of two fluorine-rich calix[4]arene-based porous polymers, FCX4-P and FCX4-BP, and demonstrate their utility for the efficient removal of PFOA from water. These materials featured Brunauer-Emmett-Teller (BET) surface areas of up to 450 m2 g-1, which is slightly lower than their nonfluorinated counterparts (up to 596 m2 g-1). FCX4-P removes PFOA at environmentally relevant concentrations with a high rate constant of 3.80 g mg-1 h-1 and reached an exceptional maximum PFOA uptake capacity of 188.7 mg g-1. In addition, it could be regenerated by simple methanol wash and reused without a significant decrease in performance.
Collapse
Affiliation(s)
- Dinesh Shetty
- Science Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, UAE
- Department of Chemistry, Khalifa University of Science and Technology, P.O. Box: 127788, Abu Dhabi, UAE
- Center for Catalysis and Separations, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, UAE
| | - Ilma Jahović
- Science Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, UAE
| | - Tina Skorjanc
- Science Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, UAE
| | - Turan Selman Erkal
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Liaqat Ali
- Core Technology Platform, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, UAE
| | - Jesus Raya
- Membrane Biophysics and NMR, Institute of Chemistry, University of Strasbourg, CNRS, UMR 7177 Strasbourg, France
| | - Zouhair Asfari
- Laboratoire de Chimie Analytique et Sciences Séparatives, Institut Pluridisciplinaire Hubert Curien, 67087 Strasbourg Cedex, France
| | - Mark A Olson
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Institute for Molecular Design and Synthesis, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, PR China
| | - Serdal Kirmizialtin
- Science Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, UAE
| | - A Ozgur Yazaydin
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K
| | - Ali Trabolsi
- Science Division, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, UAE
| |
Collapse
|
23
|
Chwastek M, Szumna A. Higher Analogues of Resorcinarenes and Pyrogallolarenes: Bricks for Supramolecular Chemistry. Org Lett 2020; 22:6838-6841. [PMID: 32820930 PMCID: PMC7498192 DOI: 10.1021/acs.orglett.0c02357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 12/05/2022]
Abstract
Easy scalable and eco-friendly syntheses of resorcin[5]arene, pyrogallol[5]arene, (2-nitro)resorcin[5]arene, (2-carboxyl)resorcin[5]arene, and resorcin[7]arene are presented and a wide range of upper-rim modifications is demonstrated. The macrocycles open the door toward expanding the rich covalent and supramolecular chemistry of [4]arenes with analogues having unique 5-fold and 7-fold symmetry.
Collapse
Affiliation(s)
- Monika Chwastek
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
24
|
Zadmard R, Hokmabadi F, Jalali MR, Akbarzadeh A. Recent progress to construct calixarene-based polymers using covalent bonds: synthesis and applications. RSC Adv 2020; 10:32690-32722. [PMID: 35516464 PMCID: PMC9056661 DOI: 10.1039/d0ra05707j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/24/2022] Open
Abstract
The combination of supramolecular chemistry and polymer sciences creates a great possibility to afford calixarene-based polymers offering unique features and applications. The enhancement of calixarene's versatility in this manner has made chemists better able to achieve different objectives in host-guest chemistry. The calixarene-based polymers can be divided into covalent polymers and supramolecular polymers regarding the interactions. Although there are several studies available on the calixarene-based supramolecular polymers, there is a paucity of studies on the calixarene-based covalent polymers. In this paper, the most recent developments and applications of the calixarene-based covalent polymers in the last two decades have been reviewed. We have particularly focused on the polymers, including those where the calixarene molecules have been used as macromonomers and polymerize through covalent bonds. Moreover, covalent polymers or solid supports functionalized with calixarenes are highlighted as well.
Collapse
Affiliation(s)
- Reza Zadmard
- Chemistry and Chemical Engineering Research Center of Iran Iran
| | | | | | - Ali Akbarzadeh
- Chemistry and Chemical Engineering Research Center of Iran Iran
| |
Collapse
|
25
|
Ma J, Zhang Y, Zhao B, Jia Q. Supramolecular adsorbents in extraction and separation techniques - A review. Anal Chim Acta 2020; 1122:97-113. [DOI: 10.1016/j.aca.2020.04.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 02/03/2023]
|
26
|
Construction of hypercrosslinked polymers with dual nitrogen-enriched building blocks for efficient iodine capture. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116260] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Alex JM, McArdle P, Crowley PB. Supramolecular stacking in a high Z′ calix[8]arene–porphyrin assembly. CrystEngComm 2020. [DOI: 10.1039/c9ce01646e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A co-crystal structure of sulfonato-calix[8]arene (sclx8) and trimethylanilinium-porphyrin (tmap) at 1.0 Å resolution is reported.
Collapse
Affiliation(s)
- Jimi M. Alex
- School of Chemistry
- National University of Ireland Galway
- Galway
- Ireland
| | - Patrick McArdle
- School of Chemistry
- National University of Ireland Galway
- Galway
- Ireland
| | - Peter B. Crowley
- School of Chemistry
- National University of Ireland Galway
- Galway
- Ireland
| |
Collapse
|
28
|
Lee H, Kim D, Oh H, Jung OS. Molecular balloon, Pd6L8 cages: recognition of alkyl sulfate surfactants. Chem Commun (Camb) 2020; 56:2841-2844. [DOI: 10.1039/c9cc09742b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significant structural contraction and expansion of flexible Pd6L8 cages by encapsulation of alkyl sulfate were demonstrated. The contact angles on the fine-ground microcrystal layers shift according to the chain length of the alkyl sulfate.
Collapse
Affiliation(s)
- Haeri Lee
- Department of Chemistry
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Dongwon Kim
- Department of Chemistry
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Hyejin Oh
- Department of Chemistry
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Ok-Sang Jung
- Department of Chemistry
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|
29
|
Baig N, Shetty S, Al-Mousawi S, Alameddine B. Synthesis of conjugated polymers via cyclopentannulation reaction: promising materials for iodine adsorption. Polym Chem 2020. [DOI: 10.1039/d0py00286k] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new class of conjugated polymers is prepared by means of a versatile palladium-catalyzed cyclopentannulation reaction using a series of specially designed diethynyl aryl synthons with the commercially available 9,10-dibromoanthracene DBA monomer.
Collapse
Affiliation(s)
- Noorullah Baig
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | - Suchetha Shetty
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| | | | - Bassam Alameddine
- Department of Mathematics and Natural Sciences
- Gulf University for Science and Technology (GUST)
- Kuwait
- Functional Materials Group – CAMB
- GUST
| |
Collapse
|
30
|
Li X, Xiong H, Jia Q. A Versatile Solvent-Induced Polymerization Strategy To Synthesize Free-Standing Porous Polymer Nanosheets and Nanotubes for Fast Iodine Capture. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46205-46211. [PMID: 31730328 DOI: 10.1021/acsami.9b17202] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) porous polymers have demonstrated great potential in gas capture and surface catalysis as well as energy storage and conversion. Current synthesis of 2D porous polymers strongly depends on the usage of templates or an additional exfoliation process. The resultant products have uncontrollable morphology and structure, low structure integrity, and relatively low yield. Herein, a facile and high-throughput solvent-induced polymerization strategy to prepare ultrathin free-standing 2D porous hyper-cross-linked polymer nanosheets with large surface area and high sulfur content by cross-linking steric hexakis(benzylthio)benzene and thiophene is reported. Using this approach, the morphologies (nanosheets and nanotubes) and specific surface areas (658-1150 m2 g-1) of porous hyper-cross-linked polymers can be simply tailored by adjusting the cross-linking degree between monomers. The as-synthesized porous hyper-cross-linked polymer nanotubes exhibit promising iodine capture performance, including a superior iodine uptake capacity (∼270 wt %) and a rapid equilibrium adsorption (within 60 min). This method will pave a new avenue for the synthesis of advanced 2D porous polymers for various applications.
Collapse
Affiliation(s)
- Xuemei Li
- College of Chemistry , Jilin University , Changchun 130012 , China
| | - Hailong Xiong
- College of Chemistry , Jilin University , Changchun 130012 , China
| | - Qiong Jia
- College of Chemistry , Jilin University , Changchun 130012 , China
| |
Collapse
|
31
|
Zhang Y, Su K, Hong Z, Han Z, Yuan D. Robust Cationic Calix[4]arene Polymer as an Efficient Catalyst for Cycloaddition of Epoxides with CO2. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b05312] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Yiwen Zhang
- College of Chemistry, Liaoning University, Shenyang 110036, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, China
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, China
| | - Zixiao Hong
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
| | - Zhengbo Han
- College of Chemistry, Liaoning University, Shenyang 110036, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou, Fujian 350002, China
| |
Collapse
|