1
|
Gharibnavaz M, Arash V, Pournajaf A, Najafi F, Rahmati Kamel M, Seyedmajidi S. Study on the Antibacterial Properties and Optical Characteristics of Clear Orthodontic Aligners Coated With Zinc Oxide and Magnesium Oxide Nanoparticles. Orthod Craniofac Res 2025; 28:496-506. [PMID: 39853925 DOI: 10.1111/ocr.12899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025]
Abstract
OBJECTIVES This study aimed to evaluate and compare the antibacterial properties and optical characteristics of clear orthodontic aligners coated with zinc oxide (ZnO) and magnesium oxide (MgO) nanoparticles. MATERIALS AND METHODS In this experimental laboratory study, polyethylene terephthalate glycol (PETG) aligner samples were coated with nanoparticles of ZnO, MgO and a combination of both (ZnO + MgO). The surface coatings were analysed before and after stability testing using field emission scanning electron microscopy (FESEM). Colour changes and translucency were measured using a spectrophotometer, and the antimicrobial and antibiofilm properties were evaluated against Streptococcus mutans and Lactobacillus species. Statistical analysis was conducted using SPSS, with significance set at p < 0.05. RESULTS Significant statistical differences were found in the colour changes between the groups (p < 0.001), with the greatest change in MgO-coated aligners (0.94 ± 0.09), followed by ZnO + MgO (0.75 ± 0.05) and ZnO (0.5 ± 0.09). ZnO-coated aligners exhibited the highest translucency (47.6 ± 0.44) compared to MgO (45.07 ± 0.74) and ZnO + MgO (45.76 ± 0.7) (p = 0.002 and p = 0.026, respectively). Nanoparticle-coated aligners showed significantly reduced bacterial growth (p < 0.05). The ZnO + MgO combination demonstrated superior antibacterial effects compared to individual coatings. Nanoparticles remained stable after 24-h agitation in artificial saliva and brushing, maintaining 60%-65% stability. CONCLUSION The aligners coated with ZnO nanoparticles exhibited the least colour change and the highest translucency compared to those coated with MgO nanoparticles and the ZnO + MgO combination. The highest antibacterial properties were observed in the aligners coated with a combination of ZnO and MgO nanoparticles.
Collapse
Affiliation(s)
- Mahnaz Gharibnavaz
- Student Research Committee, Babol University of Medical Sciences, Babol, I.R.Iran
| | - Valiollah Arash
- Dental Materials Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R.Iran
| | - Abazar Pournajaf
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R.Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, I.R.Iran
| | - Manouchehr Rahmati Kamel
- Oral Health Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R.Iran
| | - Seyedali Seyedmajidi
- Dental Materials Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, I.R.Iran
| |
Collapse
|
2
|
Wei R, Deng J, Guo X, Yang Y, Miao J, Liu A, Chai H, Huang X, Zhao Z, Cen X, Wang R. Construction of Zwitterionic Coatings with Lubricating and Antiadhesive Properties for Invisible Aligner Applications. Macromol Rapid Commun 2025; 46:e2400234. [PMID: 38824415 DOI: 10.1002/marc.202400234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/23/2024] [Indexed: 06/03/2024]
Abstract
Invisible aligners have been widely used in orthodontic treatment but still present issues with plaque formation and oral mucosa abrasion, which can lead to complicated oral diseases. To address these issues, hydrophilic poly(sulfobetaine methacrylate) (polySBMA) coatings with lubricating, antifouling, and antiadhesive properties have been developed on the aligner materials (i.e., polyethylene terephthalate glycol, PETG) via a simple and feasible glycidyl methacrylate (GMA)-assisted coating strategy. Poly(GMA-co-SBMA) is grafted onto the aminated PETG surface via the ring-opening reaction of GMA (i.e., "grafting to" approach to obtain G-co-S coating), or a polySBMA layer is formed on the GMA-grafted PETG surface via free radical polymerization (i.e., "grafting from" approach to obtain G-g-S coating). The G-co-S and G-g-S coatings significantly reduce the friction coefficient of PETG surface. Protein adsorption, bacterial adhesion, and biofilm formation on the G-co-S- and G-g-S-coated surfaces are significantly inhibited. The performance of the coatings remains stable after storage in air or artificial saliva for 2 weeks. Both coatings demonstrate good biocompatibility in vitro and is not caused irritation to the oral mucosa of rats in vivo over 2 weeks. This study proposes a promising strategy for the development of invisible aligners with improved performance, which is beneficial for oral health treatment.
Collapse
Affiliation(s)
- Rufang Wei
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 325035, P. R. China
| | - Junjie Deng
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 325035, P. R. China
| | - Xiangshu Guo
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, P. R. China
| | - Yanyu Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 325035, P. R. China
| | - Jiru Miao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
| | - Ashuang Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 325035, P. R. China
| | - Haiyang Chai
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 325035, P. R. China
| | - Xinqi Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Zhihe Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiao Cen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China
| | - Rong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- Zhejiang International Scientific and Technological Cooperative Base of Biomedical Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo, 315300, P. R. China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 325035, P. R. China
| |
Collapse
|
3
|
Ahuja D, Singh AK, Batra P. Antibacterial efficacy of nanoparticles on orthodontic materials-A systematic review and meta-analysis. Int Orthod 2025; 23:100955. [PMID: 39591841 DOI: 10.1016/j.ortho.2024.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024]
Abstract
AIM This study aims to evaluate the efficacy of coated nanoparticles within orthodontic appliances as a novel strategy to enhance their antibacterial properties. MATERIAL AND METHODS A systematic search for relevant articles published between 2013 and March 2024 was conducted across electronic databases including PubMed, Scopus, Web of Science, and EBSCOhost. Studies meeting pre-defined eligibility criteria were included and assessed for methodological quality. Data on the antibacterial activity of coated nanoparticles on orthodontic appliances was extracted from included studies. RESULTS A range of antimicrobial agents, including metallic nanoparticles (silver, titanium dioxide, silver-platinum alloy, zinc oxide, copper oxide), and others like chitosan, quaternary ammonium-modified gold nanoclusters, titanium nitride doped with calcium phosphate, and graphene oxide, have been explored for incorporation into orthodontic materials. Studies have shown a significant boost in the antibacterial capacity of these materials compared to controls, suggesting promise for improved oral hygiene during orthodontic treatment. CONCLUSION It can be concluded that incorporating nanoparticles into orthodontic appliances holds promise for enhancing their antibacterial properties. However, the studies displayed significant heterogeneity therefore, further research with standardized protocols for factors like nanoparticle size, concentration, and incorporation techniques across various orthodontic materials is crucial to guide future clinical applications. PROSPERO REGISTRATION CRD42024521326.
Collapse
Affiliation(s)
- Dhruv Ahuja
- Department of Orthodontics and Dentofacial Orthopedics, Manav Rachna Dental College, FaridabadManav Rachna International Institute of Research and Studies (MRIIRS), Haryana, India
| | - Ashish Kumar Singh
- Department of Orthodontics and Dentofacial Orthopedics, Manav Rachna Dental College, FaridabadManav Rachna International Institute of Research and Studies (MRIIRS), Haryana, India.
| | - Puneet Batra
- Department of Orthodontics and Dentofacial Orthopedics, Manav Rachna Dental College, FaridabadManav Rachna International Institute of Research and Studies (MRIIRS), Haryana, India
| |
Collapse
|
4
|
Li Q, Wang D, Xiao C, Wang H, Dong S. Advances in Hydrogels for Periodontitis Treatment. ACS Biomater Sci Eng 2024; 10:2742-2761. [PMID: 38639082 DOI: 10.1021/acsbiomaterials.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Periodontitis is a common condition characterized by a bacterial infection and the disruption of the body's immune-inflammatory response, which causes damage to the teeth and supporting tissues and eventually results in tooth loss. Current therapy involves the systemic and local administration of antibiotics. However, the existing treatments cannot exert effective, sustained release and maintain an effective therapeutic concentration of the drug at the lesion site. Hydrogels are used to treat periodontitis due to their low cytotoxicity, exceptional water retention capability, and controlled drug release profile. Hydrogels can imitate the extracellular matrix of periodontal cells while offering suitable sites to load antibiotics. This article reviews the utilization of hydrogels for periodontitis therapy based on the pathogenesis and clinical manifestations of the disease. Additionally, the latest therapeutic strategies for smart hydrogels and the main techniques for hydrogel preparation have been discussed. The information will aid in designing and preparing future hydrogels for periodontitis treatment.
Collapse
Affiliation(s)
- Qiqi Li
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Di Wang
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
5
|
Bian C, Guo Y, Zhu M, Liu M, Xie X, Weir MD, Oates TW, Masri R, Xu HHK, Zhang K, Bai Y, Zhang N. New generation of orthodontic devices and materials with bioactive capacities to improve enamel demineralization. J Dent 2024; 142:104844. [PMID: 38253119 DOI: 10.1016/j.jdent.2024.104844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
OBJECTIVE The article reviewed novel orthodontic devices and materials with bioactive capacities in recent years and elaborated on their properties, aiming to provide guidance and reference for future scientific research and clinical applications. DATA, SOURCES AND STUDY SELECTION Researches on remineralization, protein repellent, antimicrobial activity and multifunctional novel bioactive orthodontic devices and materials were included. The search of articles was carried out in Web of Science, PubMed, Medline and Scopus. CONCLUSIONS The new generation of orthodontic devices and materials with bioactive capacities has broad application prospects. However, most of the current studies are limited to in vitro studies and cannot explore the true effects of various bioactive devices and materials applied in oral environments. More research, especially in vivo researches, is needed to assist in clinical application. CLINICAL SIGNIFICANCE Enamel demineralization (ED) is a common complication in orthodontic treatments. Prolonged ED can lead to dental caries, impacting both the aesthetics and health of teeth. It is of great significance to develop antibacterial orthodontic devices and materials that can inhibit bacterial accumulation and prevent ED. However, materials with only preventive effect may fall short of addressing actual needs. Hence, the development of novel bioactive orthodontic materials with remineralizing abilities is imperative. The article reviewed the recent advancements in bioactive orthodontic devices and materials, offering guidance and serving as a reference for future scientific research and clinical applications.
Collapse
Affiliation(s)
- Ce Bian
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Yiman Guo
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Mengyao Zhu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Miao Liu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Xianju Xie
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Michael D Weir
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Thomas W Oates
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Radi Masri
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Department of Biomaterials and Regenerative Dental Medicine, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
6
|
Alsalhi A. Applications of selected polysaccharides and proteins in dentistry: A review. Int J Biol Macromol 2024; 260:129215. [PMID: 38185301 DOI: 10.1016/j.ijbiomac.2024.129215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
In the last ten years, remarkable characteristics and a variety of functionalities have been created in biopolymeric materials for clinical dental applications. This review gives an overview of current knowledge of natural biopolymers (biological macromolecules) in terms of structural, functional, and property interactions. Natural biopolymers such as polysaccharides (chitosan, bacterial cellulose, hyaluronic acid, and alginate) and polypeptides (collagen and silk fibroin) have been discussed for dental uses. These biopolymers exhibit excellent properties alone and when employed with other composite molecules making them ideal for treatment of periodontitis, endodontics, dental pulp regeneration and oral wound healing. These biopolymers together with the composite materials exhibit better biocompatibility, inertness, elasticity and flexibility which makes them a leading candidate to be used for other dental applications like caries management, oral appliances, dentures, dental implants and oral surgeries.
Collapse
Affiliation(s)
- Abdullah Alsalhi
- Department of Pharmaceutics, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia.
| |
Collapse
|
7
|
Ruan H, Aulova A, Ghai V, Pandit S, Lovmar M, Mijakovic I, Kádár R. Polysaccharide-based antibacterial coating technologies. Acta Biomater 2023; 168:42-77. [PMID: 37481193 DOI: 10.1016/j.actbio.2023.07.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
To tackle antimicrobial resistance, a global threat identified by the United Nations, is a common cause of healthcare-associated infections (HAI) and is responsible for significant costs on healthcare systems, a substantial amount of research has been devoted to developing polysaccharide-based strategies that prevent bacterial attachment and biofilm formation on surfaces. Polysaccharides are essential building blocks for life and an abundant renewable resource that have attracted much attention due to their intrinsic remarkable biological potential antibacterial activities. If converted into efficient antibacterial coatings that could be applied to a broad range of surfaces and applications, polysaccharide-based coatings could have a significant potential global impact. However, the ultimate success of polysaccharide-based antibacterial materials will be determined by their potential for use in manufacturing processes that are scalable, versatile, and affordable. Therefore, in this review we focus on recent advances in polysaccharide-based antibacterial coatings from the perspective of fabrication methods. We first provide an overview of strategies for designing polysaccharide-based antimicrobial formulations and methods to assess the antibacterial properties of coatings. Recent advances on manufacturing polysaccharide-based coatings using some of the most common polysaccharides and fabrication methods are then detailed, followed by a critical comparative overview of associated challenges and opportunities for future developments. STATEMENT OF SIGNIFICANCE: Our review presents a timely perspective by being the first review in the field to focus on advances on polysaccharide-based antibacterial coatings from the perspective of fabrication methods along with an overview of strategies for designing polysaccharide-based antimicrobial formulations, methods to assess the antibacterial properties of coatings as well as a critical comparative overview of associated challenges and opportunities for future developments. Meanwhile this work is specifically targeted at an audience focused on featuring critical information and guidelines for developing polysaccharide-based coatings. Including such a complementary work in the journal could lead to further developments on polysaccharide antibacterial applications.
Collapse
Affiliation(s)
- Hengzhi Ruan
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Alexandra Aulova
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Viney Ghai
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Santosh Pandit
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Martin Lovmar
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wellspect Healthcare AB, 431 21 Mölndal, Sweden
| | - Ivan Mijakovic
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Roland Kádár
- Department of Industrial and Materials Science, Chalmers University of Technology, 412 96 Göteborg, Sweden; Wallenberg Wood Science Centre (WWSC), Chalmers University of Technology, 412 96 Göteborg, Sweden.
| |
Collapse
|
8
|
Xin Q, Ma Z, Sun S, Zhang H, Zhang Y, Zuo L, Yang Y, Xie J, Ding C, Li J. Supramolecular Self-Healing Antifouling Coating for Dental Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41403-41416. [PMID: 37623741 DOI: 10.1021/acsami.3c09628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
In orthodontic treatment, orthodontic appliances are prone to bacterial infections, which pose a risk to oral health. Surface modification of orthodontic appliances has been explored to improve their antifouling properties and impart antibacterial capabilities, inhibiting initial bacterial adhesion and biofilm formation. However, coatings are susceptible to damage in the complex oral environment, leading to a loss of functionality. Here, we have prepared an antifouling self-healing coating based on supramolecular bonding by employing a simple spin coating method. The presence of the hydrophilic zwitterionic trimethylamine N-oxide (TMAO) and the hydrophobic antimicrobial moieties triclosan acrylate (TCSA) imparts to the polymers an amphiphilic structure and enhances the interaction with bacteria, resulting in excellent antimicrobial activity and surface antifouling properties. The multiple hydrogen bonds of ureido-pyrimidinone methacrylate (UPyMA) and ionic interactions contained in the polymers not only increased the adhesion of the coating to the material substrate (approximately 3 times) but also endowed the coating with the intrinsic self-healing ability to restore the antibiofouling properties at oral temperature and humidity. Finally, the polymer coating is biologically safe both in vitro and in vivo, showing no cytotoxic effects on cells and tissues. This research offers a promising avenue for improving the performance of orthodontic appliances and contributes to the maintenance and treatment of oral health.
Collapse
Affiliation(s)
- Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Zhengxin Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Shiran Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yan Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Liangrui Zuo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yifei Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Vas NV, Jain RK, Ramachandran SK. Gingerol and Chitosan-Based Coating of Thermoformed Orthodontic Aligners: Characterization, Assessment of Anti-Microbial Activity, and Scratch Resistance: An In Vitro Study. Cureus 2023; 15:e42933. [PMID: 37674946 PMCID: PMC10477816 DOI: 10.7759/cureus.42933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Aim To prepare and characterize a 6-gingerol-incorporated chitosan biopolymer for coating on thermoformed aligners and evaluate its scratch resistance and antimicrobial activity. Material and methods In this in vitro study, 6-gingerol extract was prepared, incorporated with chitosan biopolymer into a coating solution and characterized using nuclear magnetic resonance imaging spectroscopy (NMR). Twenty thermoformed aligner samples were exposed to UV radiation for surface activation, then coated with a crosslinking agent. These were divided into four groups of five. The control group consisted of samples dip-coated in a chitosan solution for 15 minutes. The three test groups consisted of samples dip coated in a gingerol-chitosan coating solution, with each group representing the following time periods of dip coating: five, 10, and 15 minutes. The crosslinking of the coating with the aligner material was confirmed by a Fourier transform infrared spectroscopy (FTIR) test. A scratch test was carried out to evaluate the wear resistance of the coating, and the antibacterial properties of the coating were tested using a Disc Diffusion test. Results The NMR analysis confirmed the presence of 6-gingerol in the extract. The coating of 6-Gingerol on aligners was confirmed by FTIR spectroscopy. The wear resistance of aligners coated for 5 minutes, 10 minutes, and 15 minutes was 1.8 ± 0.09 N, 2.3 ± 0.021 N, and 3.06 ± 0.17 N, respectively, and the difference was statistically significant (p<0.05). The aligner coated for 15 minutes exhibited the widest zone of inhibition of up to 2.38 ± 0.44 mm against Streptococcus mutans, and the difference was statistically significant (p<0.05). No antibacterial effect was found against E. Coli. Conclusion A novel coating material with 6-gingerol extract incorporated in chitosan biopolymer was prepared and characterized, followed by coating on thermoformed aligners. The coating showed antibacterial activity against Streptococcus mutans, and both the antimicrobial activity and wear resistance increased with coating duration.
Collapse
Affiliation(s)
- Nazleen Valerie Vas
- Department of Orthodontics, Saveetha Dental College and Hospitals, Chennai, IND
| | - Ravindra Kumar Jain
- Department of Orthodontics, Saveetha Dental College and Hospitals, Chennai, IND
| | | |
Collapse
|
10
|
Shi Y, Zhang N, Liu J, Wang J, Shen S, Zhang J, An X, Si Q. Preparation of Nanocomposites for Antibacterial Orthodontic Invisible Appliance Based on Piezoelectric Catalysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23115336. [PMID: 37300063 DOI: 10.3390/s23115336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Compared to fixed orthodontic appliances with brackets, thermoplastic invisible orthodontic aligners offer several advantages, such as high aesthetic performance, good comfort, and convenient oral health maintenance, and are widely used in orthodontic fields. However, prolonged use of thermoplastic invisible aligners may lead to demineralization and even caries in most patients' teeth, as they enclose the tooth surface for an extended period. To address this issue, we have created PETG composites that contain piezoelectric barium titanate nanoparticles (BaTiO3NPs) to obtain antibacterial properties. First, we prepared piezoelectric composites by incorporating varying amounts of BaTiO3NPs into PETG matrix material. The composites were then characterized using techniques such as SEM, XRD, and Raman spectroscopy, which confirmed the successful synthesis of the composites. We cultivated biofilms of Streptococcus mutans (S. mutans) on the surface of the nanocomposites under both polarized and unpolarized conditions. We then activated piezoelectric charges by subjecting the nanocomposites to 10 Hz cyclic mechanical vibration. The interactions between the biofilms and materials were evaluated by measuring the biofilm biomass. The addition of piezoelectric nanoparticles had a noticeable antibacterial effect on both the unpolarized and polarized conditions. Under polarized conditions, nanocomposites demonstrated a greater antibacterial effect than under unpolarized conditions. Additionally, as the concentration of BaTiO3NPs increased, the antibacterial rate also increased, with the surface antibacterial rate reaching 67.39% (30 wt% BaTiO3NPs). These findings have the potential for application in wearable, invisible appliances to improve clinical services and reduce the need for cleaning methods.
Collapse
Affiliation(s)
- Yingying Shi
- School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Ningning Zhang
- School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Jiajie Liu
- School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Junbin Wang
- School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Shuhui Shen
- School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Jingxiang Zhang
- School of Civil Engineering and Mechanics, Lanzhou University, Lanzhou 730030, China
| | - Xiaoli An
- School of Stomatology, Lanzhou University, Lanzhou 730030, China
| | - Qingzong Si
- School of Stomatology, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
11
|
Vesel A. Deposition of Chitosan on Plasma-Treated Polymers-A Review. Polymers (Basel) 2023; 15:1109. [PMID: 36904353 PMCID: PMC10007447 DOI: 10.3390/polym15051109] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/10/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Materials for biomedical applications often need to be coated to enhance their performance, such as their biocompatibility, antibacterial, antioxidant, and anti-inflammatory properties, or to assist the regeneration process and influence cell adhesion. Among naturally available substances, chitosan meets the above criteria. Most synthetic polymer materials do not enable the immobilization of the chitosan film. Therefore, their surface should be altered to ensure the interaction between the surface functional groups and the amino or hydroxyl groups in the chitosan chain. Plasma treatment can provide an effective solution to this problem. This work aims to review plasma methods for surface modification of polymers for improved chitosan immobilization. The obtained surface finish is explained in view of the different mechanisms involved in treating polymers with reactive plasma species. The reviewed literature showed that researchers usually use two different approaches: direct immobilization of chitosan on the plasma-treated surface or indirect immobilization by additional chemistry and coupling agents, which are also reviewed. Although plasma treatment leads to remarkably improved surface wettability, this was not the case for chitosan-coated samples, where a wide range of wettability was reported ranging from almost superhydrophilic to hydrophobic, which may have a negative effect on the formation of chitosan-based hydrogels.
Collapse
Affiliation(s)
- Alenka Vesel
- Department of Surface Engineering, Jozef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
12
|
Wang N, Yu J, Yan J, Hua F. Recent advances in antibacterial coatings for orthodontic appliances. Front Bioeng Biotechnol 2023; 11:1093926. [PMID: 36815889 PMCID: PMC9931068 DOI: 10.3389/fbioe.2023.1093926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
In the process of orthodontic treatment, the presence of orthodontic appliances makes it difficult to clean tooth surfaces. This can lead to an increased level of bacterial colonization, resulting in enamel demineralization and periodontal diseases. Considering the large surface area that orthodontic appliances usually have and that they can be in direct contact with bacteria throughout the treatment, modifications in the form of coatings on the surface of orthodontic appliances can be an effective and practical approach to reducing bacterial proliferation and preventing relevant adverse effects. In this mini-review, we discuss various antibacterial coatings which have been applied onto orthodontic appliances in recent 5 years, as well as their antibacterial mechanisms and methods for the preparation of these coatings. From this mini-review, both orthodontists and researchers can get the latest findings in the field of antibacterial coatings onto orthodontic appliances, which is helpful for the decision-making in clinical practice and research activities.
Collapse
Affiliation(s)
- Nannan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jingjing Yu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jiarong Yan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Fang Hua
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China,Center for Orthodontics and Pediatric Dentistry at Optics Valley Branch, School and Hospital of Stomatology, Wuhan University, Wuhan, China,Center for Evidence-Based Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China,Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom,*Correspondence: Fang Hua,
| |
Collapse
|
13
|
Tsolakis IA, Christopoulou I, Papadopoulou E, Papaioannou W, Alexiou KE, Lyros I, Rontogianni A, Souliou CE, Tsolakis AI. Applications of Biotechnology to the Craniofacial Complex: A Critical Review. Bioengineering (Basel) 2022; 9:640. [PMID: 36354551 PMCID: PMC9687908 DOI: 10.3390/bioengineering9110640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 01/05/2025] Open
Abstract
BACKGROUND Biotechnology shows a promising future in bridging the gap between biomedical basic sciences and clinical craniofacial practice. The purpose of the present review is to investigate the applications of biotechnology in the craniofacial complex. METHODS This critical review was conducted by using the following keywords in the search strategy: "biotechnology", "bioengineering", "craniofacial", "stem cells", "scaffolds", "biomarkers", and "tissue regeneration". The databases used for the electronic search were the Cochrane Library, Medline (PubMed), and Scopus. The search was conducted for studies published before June 2022. RESULTS The applications of biotechnology are numerous and provide clinicians with the great benefit of understanding the etiology of dentofacial deformities, as well as treating the defected areas. Research has been focused on craniofacial tissue regeneration with the use of stem cells and scaffolds, as well as in bioinformatics with the investigation of growth factors and biomarkers capable of providing evidence for craniofacial growth and development. This review presents the biotechnological opportunities in the fields related to the craniofacial complex and attempts to answer a series of questions that may be of interest to the reader. CONCLUSIONS Biotechnology seems to offer a bright future ahead, improving and modernizing the clinical management of cranio-dento-facial diseases. Extensive research is needed as human studies on this subject are few and have controversial results.
Collapse
Affiliation(s)
- Ioannis A. Tsolakis
- Department of Orthodontics, School of Dentistry, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Isidora Christopoulou
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Erofili Papadopoulou
- Department of Oral Medicine & Pathology and Hospital Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - William Papaioannou
- Department of Preventive & Community Dentistry, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Konstantina-Eleni Alexiou
- Department of Oral Diagnosis & Radiology, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Ioannis Lyros
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Aliki Rontogianni
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
| | - Christina-Efthymia Souliou
- Oral and Maxilla-Facial Surgeon, Department of Oral and Maxillofacial Surgery, Georgios Gennimatas Athens Hospital, 115 27 Athens, Greece
| | - Apostolos I. Tsolakis
- Department of Orthodontics, School of Dentistry, National and Kapodistrian University of Athens, 106 79 Athens, Greece
- Department of Orthodontics, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
14
|
Zhou L, Zhao C, Yang W. Durable and covalently attached antibacterial coating based on post-crosslinked maleic anhydride copolymer with long-lasting performance. Colloids Surf B Biointerfaces 2022. [DOI: 10.1016/j.colsurfb.2022.112710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Yoon J, Zhang X, Ryu M, Kim WH, Ihm K, Lee JW, Li W, Lee H. Tailoring the Hydrophilicity for Delayed Condensation Frosting in Antifogging Coatings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35064-35073. [PMID: 35861627 DOI: 10.1021/acsami.2c07316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the last few decades, numerous studies have focused on designing suitable hydrophilic materials to inhibit surface-induced fog or frost under extreme conditions. As fogging and condensation frosting on a film involves molecular interaction with water prior to forming discrete droplets on the surface, it is essential to control the extent of a film to strongly bind with water molecules for antifogging coatings. While the water contact angle measurement is commonly used to probe the hydrophilicity of a film, it oftentimes fails to predict the antifogging and antifrosting performance as this value only reflects the wettability of a given surface to water droplet. In this work, a polysaccharide-based film composed of chitosan (CHI) and carboxymethyl cellulose (CMC) is used as the model system and oligo(ethylene glycol) (OEG) moieties are additionally introduced to study the effect of OEG moieties on antifogging and condensation frosting. We show that the film containing OEG-grafted CHI exhibits excellent frost-resistant capability due to the OEG moieties in the film that serve as active sites for water molecules to strongly interact in a nonfreezable state.
Collapse
Affiliation(s)
- Jongsun Yoon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 37673, Republic of Korea
| | - Xiacong Zhang
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Min Ryu
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 37673, Republic of Korea
| | - Won Hee Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 37673, Republic of Korea
| | - Kyuwook Ihm
- Nano & Interface Research Team, Pohang Accelerator Laboratory (PAL), 80 Jigok-Ro, Pohang 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 37673, Republic of Korea
| | - Wen Li
- International Joint Laboratory of Biomimetic and Smart Polymers, School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Hyomin Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Pohang 37673, Republic of Korea
| |
Collapse
|
16
|
Sun F, Hu W, Zhao Y, Li Y, Xu X, Li Y, Zhang H, Luo J, Guo B, Ding C, Li J. Invisible assassin coated on dental appliances for on-demand capturing and killing of cariogenic bacteria. Colloids Surf B Biointerfaces 2022; 217:112696. [PMID: 35834998 DOI: 10.1016/j.colsurfb.2022.112696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/08/2023]
Abstract
The accumulation of microbes on long-wear artificial dental materials creates a great risk for oral diseases and causes deterioration of material properties. Therefore, smart antibacterial materials capable of resisting the colonization of microorganisms and simultaneously eliminating pathogenic bacteria as needed show outstanding superiority for the recovery of dental health, which are scarcely reported until now. Here, we present a responsive hydrogel coating as invisible assassin on clear overlay appliances target for dental caries. Taking advantage of pH-responsive carboxybetaine methacrylate-dimethylaminoethyl methacrylate copolymer P(CBMA-co-DMAEMA) and antibacterial peptides, the surface potential of hydrogel shifts positively, accompanied with the release of antibacterial peptides when pH gets lower. The hybrid hydrogel layer hence exerts antifouling property and resists bacterial adhesion in normal physiological, while captures and kills cariogenic bacteria in acidic condition. This biocompatible, transparent and stable hydrogel coating has little influence for the aesthetics and mechanical properties of bulk materials. The strategy developed here can provide reference for the design of biomedical devices in other areas.
Collapse
Affiliation(s)
- Fan Sun
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Hu
- Medical School of Chinese People's Liberation Army (PLA), Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yao Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yike Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaoyang Xu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yanyan Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hongbo Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Bin Guo
- Medical School of Chinese People's Liberation Army (PLA), Department of Stomatology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Chunmei Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Med-X Center for Materials, Sichuan University, China.
| |
Collapse
|
17
|
Wu Y, Hong L, Hu X, Li Y, Yang C. Efficient Antimicrobial Effect of Alginate-Catechol/Fe 2+ Coating on Hydroxyapatite toward Oral Care Application. ACS APPLIED BIO MATERIALS 2022; 5:2152-2162. [PMID: 35446545 DOI: 10.1021/acsabm.1c01254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reducing the formation of oral bacterial biofilms is critical to prevent common dental diseases. Though many strategies for restricting bacterial adhesion on tooth surfaces have been reported, a simple method for efficient oral bacteriostasis is still highly expected. Herein, we have proved a soft gel made of an alginate-catechol conjugate (SA-DA) and the ferrous cation (Fe2+) as an effective antibacterial coating on hydroxyapatite (HAP, a tooth model). As suggested by quartz crystal microbalance (QCM) measurements, SA-DA/Fe2+ coating possessed a high binding affinity to HAP without destruction by either immersion in artificial saliva or simulated tooth brushing. Significantly less protein (bovine serum albumin) and Streptococcus mutans (S. mutans, an oral bacterial model) could be found on HAP after coating with SA-DA/Fe2+, indicating that the prepared gel could resist well the adhesion of biofouling and microbes due to its hydrophilicity. Notably, such an antibacterial effect (around 70% S. mutans was inhibited) could be maintained for 3 d, which resulted from the extremely good stability of SA-DA/Fe2+ coating, as confirmed by QCM analysis. Our results may offer possibilities for developing applications in order to further improve oral hygiene.
Collapse
Affiliation(s)
- Yingchang Wu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Liu Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaofeng Hu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yunxing Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
18
|
An X, Cheng R, Liu P, Reinhard BM. Plasmonic photoreactors-coated plastic tubing as combined-active-and-passive antimicrobial flow sterilizer. J Mater Chem B 2022; 10:2001-2010. [PMID: 35235640 PMCID: PMC9167571 DOI: 10.1039/d1tb02250d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plastic materials are ubiquitous in medical devices and consumer goods. As bacterial contamination of plastic surfaces can pose significant health risks, there is a need for effective approaches both to inactivate bacteria on plastic surfaces and to prevent colonization of plastic surfaces. In this study, we evaluate a plasmonic photoreactor coating for plastic surfaces that provides both active and passive antimicrobial effects and implement a visible light-driven antibacterial flow sterilizer. We demonstrate that this approach inactivates bacteria in an aqueous suspension passed through a photoreactor-coated polyethylene tubing, achieving log reduction values (LRVs) > 5 for both Gram-positive and -negative bacteria under resonant LED illumination. Importantly, the antimicrobial flow sterilizers do not cause a detectable loss of functionality for monoclonal antibodies that were included in this work as an example of high-value biologics that require sterilization. Under ambient light illumination, the plasmonic photoreactor coating exhibits a significant inhibitory effect on bacterial colonization and biofilm formation. The inhibitory effect was substantially weaker for mammalian cells, indicating some selectivity in the protection provided by the coating.
Collapse
Affiliation(s)
- Xingda An
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.
- The Photonics Center, Boston University, Boston, MA, 02215, USA
| | - Ronghai Cheng
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.
| | - Björn M Reinhard
- Department of Chemistry, Boston University, Boston, MA, 02215, USA.
- The Photonics Center, Boston University, Boston, MA, 02215, USA
| |
Collapse
|
19
|
Choi D, Choi M, Jeong H, Heo J, Kim T, Park S, Jin Y, Lee S, Hong J. Co-existing "spear-and-shield" air filter: Anchoring proteinaceous pathogen and self-sterilized nanocoating for combating viral pandemic. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 426:130763. [PMID: 34131388 PMCID: PMC8192840 DOI: 10.1016/j.cej.2021.130763] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/23/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Infectious pollutants bioaerosols can threaten human public health. In particular, the indoor environment provides a unique exposure situation to induce infection through airborne transmission like SARS-CoV-2. To prevent the infection from spreading, personal protective equipment or indoor air purification is necessary. However, it has been discovered that the conventional filter can become contaminated by pathogen-containing aerosols, meaning that advanced filtering and self-sterilization systems are required. Here, we fabricate a multilayered nanocoating around the fabric using laponite (LAP) with Cu2+ ions (LAP-Cu2+ nanocoating) two contradictory functions in one system: trapping proteinaceous pathogens and antibacterial effect. Due to the strong LAP-protein interaction, albumin and spike protein (S-protein) are trapped into the fabric when proteins are sprayed using a nebulizer. The protein-blocking performance of the nanocoated fabric is 9.55-fold higher than bare fabric. These trapping capacities are retained after rinsing and repeated adsorption cycles, showing reproducibility for air filtration. Even though the protein-binding occurred, the LAP-Cu2+ fabric indicates antibacterial effect. LAP-Cu2+ fabric has an equivalent air and water transmittance rate to that of bare fabric with a stability under physiological environment. Therefore, given its excellent "Spear-and-shield" functions, the proposed LAP-Cu2+ fabric shows great potential for use in filter and masks during the viral pandemic.
Collapse
Affiliation(s)
- Daheui Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Moonhyun Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyejoong Jeong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jiwoong Heo
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Taihyun Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sohyeon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Youngho Jin
- Agency for Defense Development, Daejeon 34186, Republic of Korea
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-ang University, Seoul 06974, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
20
|
Yu M, Zhao S, Yang L, Ji N, Wang Y, Xiong L, Sun Q. Preparation of a superhydrophilic SiO 2 nanoparticles coated chitosan-sodium phytate film by a simple ethanol soaking process. Carbohydr Polym 2021; 271:118422. [PMID: 34364563 DOI: 10.1016/j.carbpol.2021.118422] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/25/2022]
Abstract
The development of environmentally friendly and transparent superhydrophilic food packaging materials is essential in our daily lives. The objective of this study was to develop a simple method of preparing a superhydrophilic, transparent, and biodegradable composite film. The composite film was obtained by soaking a chitosan-sodium phytate film in an ethanol solution of SiO2 nanoparticles. The results showed that when the chitosan-sodium phytate film was coated with SiO2 nanoparticles that were dissolved in 75% ethanol, its water contact angle (WCA) was reduced from 100° to 3°, and the film surface was changed from a hydrophobic to a superhydrophilic. Furthermore, the oxygen transmission rate (OTR) was significantly reduced, and the mechanical properties of the film were improved. The method is easy to carry out and can be used for the potential production of superhydrophilic materials.
Collapse
Affiliation(s)
- Mengting Yu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Shuangshuang Zhao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Lu Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Liu Xiong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| |
Collapse
|
21
|
Natural Polymers for the Maintenance of Oral Health: Review of Recent Advances and Perspectives. Int J Mol Sci 2021; 22:ijms221910337. [PMID: 34638678 PMCID: PMC8508910 DOI: 10.3390/ijms221910337] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 12/14/2022] Open
Abstract
The success of modern dental treatment is strongly dependent on the materials used both temporarily and permanently. Among all dental materials, polymers are a very important class with a wide spectrum of applications. This review aims to provide a state-of-the-art overview of the recent advances in the field of natural polymers used to maintain or restore oral health. It focuses on the properties of the most common proteins and polysaccharides of natural origin in terms of meeting the specific biological requirements in the increasingly demanding field of modern dentistry. The use of naturally derived polymers in different dental specialties for preventive and therapeutic purposes has been discussed. The major fields of application cover caries and the management of periodontal diseases, the fabrication of membranes and scaffolds for the regeneration of dental structures, the manufacturing of oral appliances and dentures as well as providing systems for oral drug delivery. This paper also includes a comparative characteristic of natural and synthetic dental polymers. Finally, the current review highlights new perspectives, possible future advancements, as well as challenges that may be encountered by researchers in the field of dental applications of polymers of natural origin.
Collapse
|
22
|
Park S, Jung S, Heo J, Koh WG, Lee S, Hong J. Chitosan/Cellulose-Based Porous Nanofilm Delivering C-Phycocyanin: A Novel Platform for the Production of Cost-Effective Cultured Meat. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32193-32204. [PMID: 34185496 DOI: 10.1021/acsami.1c07385] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cultured meat is artificial meat produced via the mass culture of cells without slaughtering livestock. In the production process of cultured meat, the mass proliferation for preparing abundant cells is a strenuous and time-consuming procedure requiring expensive and excess serum. Herein, C-phycocyanin (C-PC) extracted from blue algae was selected as a substitute for animal-derived serum and a polysaccharide film-based platform was developed to effectively deliver C-PC to myoblast while reducing the cost of cell medium. The polysaccharide platform has a sophisticated structure in which an agarose layer is capped on a porous multilayer film formed by molecular reassembly between chitosan and carboxymethylcellulose (CMC). The porous multilayer film provides an inner structure in which C-PC can be incorporated, and the agarose layer protects and stabilizes the C-PC. The completed platform was easily applied to a cell culture plate to efficiently release C-PC, thereby improving myoblast proliferation in a serum-reduced environment during long-term culture. We developed a cell sheet-based meat model using this polysaccharide platform to evaluate the improved cost-efficiency by the platform method in the mass proliferation of cells. This strategy and innovative technology can simplify the production system and secure price competitiveness to commercialize cultured meat.
Collapse
Affiliation(s)
- Sohyeon Park
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sungwon Jung
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jiwoong Heo
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sangmin Lee
- School of Mechanical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Republic of Korea
| | - Jinkee Hong
- Department of Chemical & Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
23
|
Choi W, Park S, Kwon JS, Jang EY, Kim JY, Heo J, Hwang Y, Kim BS, Moon JH, Jung S, Choi SH, Lee H, Ahn HW, Hong J. Reverse Actuation of Polyelectrolyte Effect for In Vivo Antifouling. ACS NANO 2021; 15:6811-6828. [PMID: 33769787 DOI: 10.1021/acsnano.0c10431] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Zwitterionic polymers have extraordinary properties, that is, significant hydration and the so-called antipolyelectrolyte effect, which make them suitable for biomedical applications. The hydration induces an antifouling effect, and this has been investigated significantly. The antipolyelectrolyte effect refers to the extraordinary ion-responsive behavior of particular polymers that swell and hydrate considerably in physiological solutions. This actuation begins to attract attention to achieve in vivo antifouling that is challenging for general polyelectrolytes. In this study, we established the sophisticated cornerstone of the antipolyelectrolyte effect in detail, including (i) the essential parameters, (ii) experimental verifications, and (iii) effect of improving antifouling performance. First, we find that both osmotic force and charge screening are essential factors. Second, we identify the antipolyelectrolyte effect by visualizing the swelling and hydration dynamics. Finally, we verify that the antifouling performance can be enhanced by exploiting the antipolyelectrolyte effect and report reduction of 85% and 80% in ex and in vivo biofilm formation, respectively.
Collapse
Affiliation(s)
- Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sohyeon Park
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Eun-Young Jang
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Yeong Kim
- Department of Orthodontics, Institute of Craniofacial Deformity and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Jiwoong Heo
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - YoungDeok Hwang
- Paul H. Chook Department of Information Systems and Statistics, Baruch College CUNY, New York, New York 10010, United States
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji-Hoi Moon
- Department of Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sungwon Jung
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sung-Hwan Choi
- Department of Orthodontics, Institute of Craniofacial Deformity and BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Hyo-Won Ahn
- Department of Orthodontics, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
24
|
Dexamethasone-Loaded Bioactive Coatings on Medical Grade Stainless Steel Promote Osteointegration. Pharmaceutics 2021; 13:pharmaceutics13040568. [PMID: 33923814 PMCID: PMC8073817 DOI: 10.3390/pharmaceutics13040568] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, a multilayer bioactive coating based on carboxymethyl cellulose (CMC) and dexamethasone (DEX) was prepared on medical-grade stainless steel (AISI 316LVM). Its aim was the controlled drug delivery of the incorporated anti‑inflammatory drug, which at the same time promotes osteogenic differentiation of mesenchymal stem cells. Due to DEX’s limited solubility in physiological fluids, which limits the loading capacity of coatings, it was further combined with β-cyclodextrin to increase its concentration in the bioactive coating. Controlled release of DEX from the multilayer coating was achieved in four steps: a “burst”, i.e., very fast, release step (in an immersion interval of 0–10 min), a fast release step (10–30 min), a slow-release step (60–360 min), and a plateau step (360–4320 min), following a zero-order release or Higuchi model release mechanism. Successful layer-by-layer coating formation was confirmed using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). It was shown that the application of the coating significantly increases the hydrophilic character of AISI 316LVM, and also significantly increases the surface roughness, which is known to promote cell growth. In addition, electrochemical measurements demonstrated that the coating application does not increase the susceptibility of medical-grade stainless steel to corrosion. In vitro cell testing using all cell types with which such coatings come into contact in the body (osteoblasts, chondrocytes, and mesenchymal stem cells (MSCs)) showed very good biocompatibility towards all of the mentioned cells. It further confirmed that the coatings promoted MSCs osteogenic differentiation, which is the desired mode of action for orthopedic implants.
Collapse
|
25
|
Deusenbery C, Wang Y, Shukla A. Recent Innovations in Bacterial Infection Detection and Treatment. ACS Infect Dis 2021; 7:695-720. [PMID: 33733747 DOI: 10.1021/acsinfecdis.0c00890] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bacterial infections are a major threat to human health, exacerbated by increasing antibiotic resistance. These infections can result in tremendous morbidity and mortality, emphasizing the need to identify and treat pathogenic bacteria quickly and effectively. Recent developments in detection methods have focused on electrochemical, optical, and mass-based biosensors. Advances in these systems include implementing multifunctional materials, microfluidic sampling, and portable data-processing to improve sensitivity, specificity, and ease of operation. Concurrently, advances in antibacterial treatment have largely focused on targeted and responsive delivery for both antibiotics and antibiotic alternatives. Antibiotic alternatives described here include repurposed drugs, antimicrobial peptides and polymers, nucleic acids, small molecules, living systems, and bacteriophages. Finally, closed-loop therapies are combining advances in the fields of both detection and treatment. This review provides a comprehensive summary of the current trends in detection and treatment systems for bacterial infections.
Collapse
Affiliation(s)
- Carly Deusenbery
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
| | - Yingying Wang
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Anita Shukla
- School of Engineering, Center for Biomedical Engineering, Institute for Molecular and Nanoscale Innovation, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
26
|
Chang CT, Chen YT, Hsieh YK, Girsang SP, Wang RS, Chang YC, Shen SH, Shen CR, Lin TP, Wan D, Wang J. Dual-functional antibiofilm polymer composite for biodegradable medical devices. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:111985. [PMID: 33812613 DOI: 10.1016/j.msec.2021.111985] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Urinary tract infections (UTI) represent one of the most common problem within the urological disorders, and it is mainly caused by biofilm formation which leads to bacterial infection. Anti-adhesion and antibacterial agents are two primary mechanisms to prevent biofilm formation; however, current strategies are insufficiently effective. In this study, we developed an effective antibiofilm biodegradable polymer with high biocompatibility. Here we embedded silver nanoparticles (AgNPs) in poly(glycerol sebacate) acrylate (PGSA) followed by superhydrophilic modification on the polymer surfaces. The modified surfaces were characterized using SEM, AFM and contact angle measurements. This anti-adhesive surface prevented the adhesion of E. coli and limited the biofilm coverage percentage to less than 3% in 24 h. In the in vitro degradation, the long-term antibiofilm performance was evaluated in Nowatzki-Stoodley artificial urine (NSAU). The surface modified AgNPs embedded PGSA (sPGSA-AgNPs) was able to effectively inhibit the formation of biofilm by reducing the biofilm coverage to less than 0.01%, and it also showed low cytotoxicity with human bladder carcinoma cell. With the effective antibiofilm, biocompatibility and biodegradability, it is possible to be applied in urological devices to ameliorate the situation of UTIs.
Collapse
Affiliation(s)
- Chia-Teng Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yi-Ting Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yi-Kong Hsieh
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Samuel Pratama Girsang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Ryan S Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | | | - Shu-Huei Shen
- Department of Urology, Taipei Veterans General Hospital, Taipei 11217, Taiwan; School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Claire R Shen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Tzu-Ping Lin
- Department of Radiology, Taipei Veterans General Hospital, Taipei 11217, Taiwan; School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Dehui Wan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan.
| |
Collapse
|
27
|
Xu H, Cai Y, Chu X, Chu H, Li J, Zhang D. A mussel-bioinspired multi-functional hyperbranched polymeric coating with integrated antibacterial and antifouling activities for implant interface modification. Polym Chem 2021. [DOI: 10.1039/d1py00246e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
On the basis of a function integrating strategy, a mussel-inspired hyperbranched polymeric coating with antibacterial and antifouling properties was ingeniously designed and synthesized for the interface modification of implants.
Collapse
Affiliation(s)
- Huilin Xu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Yusong Cai
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Xing Chu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Hetao Chu
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
| | - Jianshu Li
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
- State Key Laboratory of Polymer Materials Engineering
| | - Dongyue Zhang
- College of Polymer Science and Engineering
- Sichuan University
- Chengdu
- China
- State Key Laboratory of Polymer Materials Engineering
| |
Collapse
|
28
|
Qiu H, Si Z, Luo Y, Feng P, Wu X, Hou W, Zhu Y, Chan-Park MB, Xu L, Huang D. The Mechanisms and the Applications of Antibacterial Polymers in Surface Modification on Medical Devices. Front Bioeng Biotechnol 2020; 8:910. [PMID: 33262975 PMCID: PMC7686044 DOI: 10.3389/fbioe.2020.00910] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 07/15/2020] [Indexed: 01/04/2023] Open
Abstract
Medical device contamination caused by microbial pathogens such as bacteria and fungi has posed a severe threat to the patients' health in hospitals. Due to the increasing resistance of pathogens to antibiotics, the efficacy of traditional antibiotics treatment is gradually decreasing for the infection treatment. Therefore, it is urgent to develop new antibacterial drugs to meet clinical or civilian needs. Antibacterial polymers have attracted the interests of researchers due to their unique bactericidal mechanism and excellent antibacterial effect. This article reviews the mechanism and advantages of antimicrobial polymers and the consideration for their translation. Their applications and advances in medical device surface coating were also reviewed. The information will provide a valuable reference to design and develop antibacterial devices that are resistant to pathogenic infections.
Collapse
Affiliation(s)
- Haofeng Qiu
- School of Medicine, Ningbo University, Ningbo, China
| | - Zhangyong Si
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Yang Luo
- School of Medicine, Ningbo University, Ningbo, China
| | - Peipei Feng
- School of Medicine, Ningbo University, Ningbo, China
| | - Xujin Wu
- School of Medicine, Ningbo University, Ningbo, China
| | - Wenjia Hou
- School of Medicine, Ningbo University, Ningbo, China
| | - Yabin Zhu
- School of Medicine, Ningbo University, Ningbo, China
| | - Mary B. Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Long Xu
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Dongmei Huang
- Ningbo Baoting Biotechnology Co., Ltd., Ningbo, China
| |
Collapse
|
29
|
Perfluoropolyether-benzophenone as a highly durable, broadband anti-reflection, and anti-contamination coating. Sci Rep 2020; 10:15121. [PMID: 32934316 PMCID: PMC7493949 DOI: 10.1038/s41598-020-72229-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/24/2020] [Indexed: 11/08/2022] Open
Abstract
Anti-reflection and anti-contamination coatings prepared from fluorinated polymers have widespread and important applications, ranging from protective films for corrosion resistance to high-tech microelectronics and medical devices due to their transparency, low refractive index, stain resistance, and antifouling properties. However, the application of existing coatings is hindered by low surface adhesion to the target substrate and weakness when exposed to mechanical stress or damage, resulting in significant limitations to their practical applications. Herein, we incorporate perfluoropolyether (PFPE) with benzophenone (BP) to develop an efficient coating material (PFPE-BP) possessing broadband anti-reflectivity, anti-contamination properties, excellent abrasion resistance, and stability under elevated temperatures and relative humidity. The presence of BP allows the coating materials to be homogeneously mixed with a commercial hard coating solution to uniformly coat the target substrate. Furthermore, UV light irradiation on the coating surface results in excellent adhesion between BP groups of PFPE-BP and the hard coating matrix.
Collapse
|
30
|
Campbell J, Vikulina AS. Layer-By-Layer Assemblies of Biopolymers: Build-Up, Mechanical Stability and Molecular Dynamics. Polymers (Basel) 2020; 12:E1949. [PMID: 32872246 PMCID: PMC7564420 DOI: 10.3390/polym12091949] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Rapid development of versatile layer-by-layer technology has resulted in important breakthroughs in the understanding of the nature of molecular interactions in multilayer assemblies made of polyelectrolytes. Nowadays, polyelectrolyte multilayers (PEM) are considered to be non-equilibrium and highly dynamic structures. High interest in biomedical applications of PEMs has attracted attention to PEMs made of biopolymers. Recent studies suggest that biopolymer dynamics determines the fate and the properties of such PEMs; however, deciphering, predicting and controlling the dynamics of polymers remains a challenge. This review brings together the up-to-date knowledge of the role of molecular dynamics in multilayers assembled from biopolymers. We discuss how molecular dynamics determines the properties of these PEMs from the nano to the macro scale, focusing on its role in PEM formation and non-enzymatic degradation. We summarize the factors allowing the control of molecular dynamics within PEMs, and therefore to tailor polymer multilayers on demand.
Collapse
Affiliation(s)
- Jack Campbell
- School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK;
| | - Anna S. Vikulina
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses, Am Mühlenberg 13, 14476 Potsdam-Golm, Germany
| |
Collapse
|
31
|
Çaykara T, Sande MG, Azoia N, Rodrigues LR, Silva CJ. Exploring the potential of polyethylene terephthalate in the design of antibacterial surfaces. Med Microbiol Immunol 2020; 209:363-372. [PMID: 32037497 PMCID: PMC7248016 DOI: 10.1007/s00430-020-00660-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/22/2020] [Indexed: 12/28/2022]
Abstract
Polyethylene terephthalate (PET) is one of the most used polymeric materials in the health care sector mainly due to its advantages that include biocompatibility, high uniformity, mechanical strength and resistance against chemicals and/or abrasion. However, avoiding bacterial contamination on PET is still an unsolved challenge and two main strategies are being explored to overcome this drawback: the anti-adhesive and biocidal modification of PET surface. While bacterial adhesion depends on several surface properties namely surface charge and energy, hydrophilicity and surface roughness, a biocidal effect can be obtained by antimicrobial compounds attached to the surface to inhibit the growth of bacteria (bacteriostatic) or kill bacteria (bactericidal). Therefore, it is well known that granting antibacterial properties to PET surface would be beneficial in the prevention of infectious diseases. Different modification methods have been reported for such purpose. This review addresses some of the strategies that have been attempted to prevent or reduce the bacterial contamination on PET surfaces, including functionalisation, grafting, topographical surface modification and coating. Those strategies, particularly the grafting method seems to be very promising for healthcare applications to prevent infectious diseases and the emergence of bacteria resistance.
Collapse
Affiliation(s)
- Tugçe Çaykara
- CENTI-Center for Nanotechnology and Smart Materials, Rua Fernando Mesquita 278, 4760-034, Vila Nova de Famalicão, Portugal
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Maria G Sande
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Nuno Azoia
- CENTI-Center for Nanotechnology and Smart Materials, Rua Fernando Mesquita 278, 4760-034, Vila Nova de Famalicão, Portugal
| | - Ligia R Rodrigues
- CEB-Centre of Biological Engineering, Universidade do Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Carla Joana Silva
- CENTI-Center for Nanotechnology and Smart Materials, Rua Fernando Mesquita 278, 4760-034, Vila Nova de Famalicão, Portugal.
| |
Collapse
|
32
|
Organosilicate compound filler to increase the mechanical strength of superhydrophilic layer-by-layer assembled film. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Heo J, Choi M, Choi D, Jeong H, Kim HY, Jeon H, Kang SW, Hong J. Spray-assisted layer-by-layer self-assembly of tertiary-amine-stabilized gold nanoparticles and graphene oxide for efficient CO2 capture. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117905] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Cai Z, Dai Q, Guo Y, Wei Y, Wu M, Zhang H. Glycyrrhiza polysaccharide-mediated synthesis of silver nanoparticles and their use for the preparation of nanocomposite curdlan antibacterial film. Int J Biol Macromol 2019; 141:422-430. [DOI: 10.1016/j.ijbiomac.2019.09.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 12/17/2022]
|
35
|
Park S, Jung S, Heo J, Hong J. Facile synthesis of polysilsesquioxane toward durable superhydrophilic/superhydrophobic coatings for medical devices. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.04.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
36
|
Ly NTK, Shin H, Gupta KC, Kang IK, Yu W. Bioactive Antibacterial Modification of Orthodontic Microimplants Using Chitosan Biopolymer. Macromol Res 2019. [DOI: 10.1007/s13233-019-7069-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Polysaccharide-based superhydrophilic coatings with antibacterial and anti-inflammatory agent-delivering capabilities for ophthalmic applications. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.07.049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
Choi D, Heo J, Hong J. Controllable drug release from nano-layered hollow carrier by non-human enzyme. NANOSCALE 2018; 10:18228-18237. [PMID: 30232482 DOI: 10.1039/c8nr05269g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Natural polymers are widely used in biomedical applications because of their numerous effects. Especially, plant-derived natural polymers extracted from cell walls, especially wood, which is abundant, inexpensive and nontoxic to cells, have high mechanical strength to retain their turgor pressure. Plant-derived polymers are also unaffected by enzymes present in the human body, having a strong possibility to create a polymeric structure that releases drugs only exactly where needed. Therefore, plant-derived polymers are suitable for use in drug delivery systems (DDS) as they have durability with few drug leakage issues in the body. Here, to improve drug incorporation and release efficiency, we prepared a multilayer nanofilm from tannic acid (TA) and lignin extracted from plants and wood. We used a strategy involving film degradation by tannase and laccase, which are not present in humans, to depolymerize TA and lignin, respectively. The TA and lignin film was highly stable for 7 days at pH 3-7 and was readily degraded after enzyme treatment. We also observed controllable drug release and anticancer effect from the TA and lignin hollow carriers depending on enzymatic activity. By taking advantage of plant-derived polymers and non-toxic enzymatic reactions, we have demonstrated the film growth and degradation mechanism in depth and explored their use in a smart DDS with easily controlled release kinetics, which is useful as a DDS platform.
Collapse
Affiliation(s)
- Daheui Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | | | | |
Collapse
|