1
|
Atta A, Salem MM, Reda A, Mohamed TM. "Carnosine-Niosomal Delivery System for Targeted Cancer Therapy". Cell Biochem Biophys 2025; 83:1495-1520. [PMID: 39656368 DOI: 10.1007/s12013-024-01626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2024] [Indexed: 05/20/2025]
Abstract
Cancer is considered to be among the main causes of death worldwide. Treatment options for cancer are numerous. The type of cancer and its stage of progression determine which kind of treatment is needed. Nanomedicine is a new field for the treatment of various diseases. Pharmaceutical nanocarriers can be fabricated from various materials such as polymers, metals, or lipid-based surfactants. Carnosine-loaded niosomes have emerged as a promising approach in targeted cancer therapy, offering potential advantages over conventional treatments such as chemotherapy and radiation, by improving drug delivery specificity and reducing side effects. The study demonstrates that the encapsulation of carnosine in niosomes enhances its stability and bioavailability, leading to a significant increase in anticancer efficacy. These findings suggest that niosome technology can serve as an effective delivery system for carnosine, potentially transforming its use in cancer treatment and paving the way for future research in targeted therapies. Nanomaterials provide a good delivery system for this method of treatment. It's used in the treatment and diagnosis of diseases. Numerous investigations have been conducted on nanoscale vesicular systems, such as the most recent generations of vesicular nanocarriers, liposomes, and niosomes. Lipophilic and hydrophilic bioactive chemicals are transported via the niosomes in a vesicle. Since niosomes are composed of non-ionic surfactants mixed with cholesterol or other amphiphilic substances, they have a wide range of applications. The therapy of cancer with carnosine-loaded niosomes is one of these uses. The body synthesizes carnosine, a histidine-containing dipeptide, by enzymatically mixing L-histidine and β-alanine. With its antioxidant activities, Carnosine is considered a drug that can reduce and treat cancerous cells and many other therapeutic applications.
Collapse
Affiliation(s)
- Amira Atta
- Biochemistry Division- Chemistry Department- Faculty of Science- Tanta University, Tanta, 31527, Egypt
| | - Maha M Salem
- Biochemistry Division- Chemistry Department- Faculty of Science- Tanta University, Tanta, 31527, Egypt.
| | - Ahmed Reda
- Biochemistry Division- Chemistry Department- Faculty of Science- Tanta University, Tanta, 31527, Egypt
| | - Tarek M Mohamed
- Biochemistry Division- Chemistry Department- Faculty of Science- Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
Shen L, Li C, Li Y, Guan X, Zou W, Liu J. Imaging technology in tracking the intravital fate of transplanted stem cells. Pharmacol Res 2025; 216:107752. [PMID: 40306602 DOI: 10.1016/j.phrs.2025.107752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/15/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
Stem cell therapy emerges as a promising alternative strategy for diseases that currently lack effective treatment options. Investigating the pharmacokinetic properties of stem cells, such as their survival, migration, differentiation, and engraftment dynamics, offers valuable insights for elucidating therapeutic mechanisms, refining treatment protocols, and ultimately enhancing therapeutic efficacy. Moreover, the pharmaceutical research of stem cell products is an essential prerequisite for regulatory approval. This contribution focus on the development of advanced imaging technologies for noninvasive monitoring the intravital fate of implanted stem cells, as well as the advantages and challenges of each imaging approach. Through comprehensive analysis of stem cell metabolic pathway, we identify critical barriers to clinical translation of stem cell therapy. In the end, we discuss future perspectives and opportunities in stem cell tracking and functional assessment.
Collapse
Affiliation(s)
- Liming Shen
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Chengze Li
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Yulian Li
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Xin Guan
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Wei Zou
- Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116023, China
| | - Jing Liu
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; Dalian Innovation Institute of Stem Cell and Precision Medicine, Dalian 116023, China.
| |
Collapse
|
3
|
Subramanian G, Kalidasan K, Quah S, Han QCG, Chan J, Wacker MG, Sampath P. Breaking barriers: Innovative approaches for skin delivery of RNA therapeutics. Int J Pharm 2024; 661:124435. [PMID: 38986965 DOI: 10.1016/j.ijpharm.2024.124435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024]
Abstract
RNA therapeutics represent a rapidly expanding platform with game-changing prospects in personalized medicine. The disruptive potential of this technology will overhaul the standard of care with reference to both primary and specialty care. To date, RNA therapeutics have mostly been delivered parenterally via injection, but topical administration followed by intradermal or transdermal delivery represents an attractive method that is convenient to patients and minimally invasive. The skin barrier, particularly the lipid-rich stratum corneum, presents a significant hurdle to the uptake of large, charged oligonucleotide drugs. Therapeutic oligonucleotides need to be engineered for stability and specificity and formulated with state-of-the-art delivery strategies for efficient uptake. This review will cover various passive and active strategies deployed to enhance permeation through the stratum corneum and achieve effective delivery of RNA therapeutics to treat both local skin disorders and systemic diseases. Some strategies to achieve selectivity between local and systemic administration will also be discussed.
Collapse
Affiliation(s)
- Gowtham Subramanian
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Kamaladasan Kalidasan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Shan Quah
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Qi Chou Gavin Han
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore (NUS), 4 Science Drive 2, Singapore 117544, Singapore
| | - Justin Chan
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore
| | - Matthias G Wacker
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore (NUS), 4 Science Drive 2, Singapore 117544, Singapore.
| | - Prabha Sampath
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove #06-06 Immunos, Singapore 138648, Singapore; Skin Research Institute of Singapore (SRIS), 11 Mandalay Road #17-01 Clinical Sciences Building, Singapore 308232, Singapore; Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore 138672, Singapore; Program in Cancer & Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| |
Collapse
|
4
|
Zhang M, Hussain A, Hu B, Yang H, Li C, Guo S, Han X, Li B, Dai Y, Cao Y, Chi H, Weng Y, Qin CF, Huang Y. Atavistic strategy for the treatment of hyperuricemia via ionizable liposomal mRNA. Nat Commun 2024; 15:6463. [PMID: 39085241 PMCID: PMC11292028 DOI: 10.1038/s41467-024-50752-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/18/2024] [Indexed: 08/02/2024] Open
Abstract
Hyperuricemia is associated with an increased risk of gout, hypertension, diabetes, and cardiovascular diseases. Most mammals maintain normal serum uric acid (SUA) via urate oxidase (Uox), an enzyme that metabolizes poorly-soluble UA to highly-soluble allantoin. In contrast, Uox became a pseudogene in humans and apes over the long course of evolution. Here we demonstrate an atavistic strategy for treating hyperuricemia based on endogenous expression of Uox in hepatocytes mediated by mRNA (mUox) loaded with an ionizable lipid nanoparticle termed iLAND. mUox@iLAND allows effective transfection and protein expression in vitro. A single dose of mUox@iLAND lowers SUA levels for several weeks in two female murine models, including a novel long-lasting model, which is also confirmed by metabolomics analysis. Together with the excellent safety profiles observed in vivo, the proposed mRNA agent demonstrates substantial potential for hyperuricemia therapy and the prevention of associated conditions.
Collapse
Affiliation(s)
- Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Haiyin Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Chunhui Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Shuai Guo
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Xiaofeng Han
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
- Rigerna Therapeutics Co. Ltd., Beijing, China
| | - Bei Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau, SAR, China
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau, SAR, China
| | - Yuhong Cao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing, China
| | - Hang Chi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, China.
| |
Collapse
|
5
|
Chen J, Wang B, Wang Y, Radermacher H, Qi J, Momoh J, Lammers T, Shi Y, Rix A, Kiessling F. mRNA Sonotransfection of Tumors with Polymeric Microbubbles: Co-Formulation versus Co-Administration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306139. [PMID: 38342634 PMCID: PMC11022722 DOI: 10.1002/advs.202306139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/24/2024] [Indexed: 02/13/2024]
Abstract
Despite its high potential, non-viral gene therapy of cancer remains challenging due to inefficient nucleic acid delivery. Ultrasound (US) with microbubbles (MB) can open biological barriers and thus improve DNA and mRNA passage. Polymeric MB are an interesting alternative to clinically used lipid-coated MB because of their high stability, narrow size distribution, and easy functionalization. However, besides choosing the ideal MB, it remains unclear whether nanocarrier-encapsulated mRNA should be administered separately (co-administration) or conjugated to MB (co-formulation). Therefore, the impact of poly(n-butyl cyanoacrylate) MB co-administration with mRNA-DOTAP/DOPE lipoplexes or their co-formulation on the transfection of cancer cells in vitro and in vivo is analyzed. Sonotransfection improved mRNA delivery into 4T1 breast cancer cells in vitro with co-administration being more efficient than co-formulation. In vivo, the co-administration sonotransfection approach also resulted in higher transfection efficiency and reached deeper into the tumor tissue. On the contrary, co-formulation mainly promoted transfection of endothelial and perivascular cells. Furthermore, the co-formulation approach is much more dependent on the US trigger, resulting in significantly lower off-site transfection. Thus, the findings indicate that the choice of co-administration or co-formulation in sonotransfection should depend on the targeted cell population, tolerable off-site transfection, and the therapeutic purpose.
Collapse
Affiliation(s)
- Junlin Chen
- Institute for Experimental Molecular ImagingHelmholtz Institute for Biomedical EngineeringRWTH Aachen University52074AachenGermany
| | - Bi Wang
- Institute for Experimental Molecular ImagingHelmholtz Institute for Biomedical EngineeringRWTH Aachen University52074AachenGermany
| | - Yuchen Wang
- Institute for Experimental Molecular ImagingHelmholtz Institute for Biomedical EngineeringRWTH Aachen University52074AachenGermany
| | - Harald Radermacher
- Institute for Experimental Molecular ImagingHelmholtz Institute for Biomedical EngineeringRWTH Aachen University52074AachenGermany
| | - Jinwei Qi
- Institute for Experimental Molecular ImagingHelmholtz Institute for Biomedical EngineeringRWTH Aachen University52074AachenGermany
| | - Jeffrey Momoh
- Institute for Experimental Molecular ImagingHelmholtz Institute for Biomedical EngineeringRWTH Aachen University52074AachenGermany
| | - Twan Lammers
- Institute for Experimental Molecular ImagingHelmholtz Institute for Biomedical EngineeringRWTH Aachen University52074AachenGermany
| | - Yang Shi
- Institute for Experimental Molecular ImagingHelmholtz Institute for Biomedical EngineeringRWTH Aachen University52074AachenGermany
| | - Anne Rix
- Institute for Experimental Molecular ImagingHelmholtz Institute for Biomedical EngineeringRWTH Aachen University52074AachenGermany
| | - Fabian Kiessling
- Institute for Experimental Molecular ImagingHelmholtz Institute for Biomedical EngineeringRWTH Aachen University52074AachenGermany
| |
Collapse
|
6
|
Zhang H, Gao X, Sun Q, Dong X, Zhu Z, Yang C. Incorporation of poly(γ-glutamic acid) in lipid nanoparticles for enhanced mRNA delivery efficiency in vitro and in vivo. Acta Biomater 2024; 177:361-376. [PMID: 38342193 DOI: 10.1016/j.actbio.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/26/2024] [Accepted: 02/04/2024] [Indexed: 02/13/2024]
Abstract
Messenger RNA (mRNA)-based therapy shows immense potential for broad biomedical applications. However, the development of safe and efficacious mRNA delivery vectors remains challenging due to delivery barriers and inefficient intracellular payload release. Herein, we presented a simple strategy to boost the mRNA intracellular release by incorporation of anionic poly(γ-glutamic acid) (PGA) into an ionizable lipid-based LNP/mRNA. We systematically investigated the impact of PGA incorporation on mRNA transfection both in vitro and in vivo. The molecular weights and formulation ratios of PGA greatly affected the transfection efficacy of LNP/mRNA. From in vitro study, the optimized LNP/mRNA/PGA was formulated by incorporation of PGA with the molecular weight of 80 kDa or 200 kDa and the charge ratio (N/P/C) of 25/1/1. The optimized formulation achieved around 3-fold mRNA expression in HeLa cells compared to the bare LNP/mRNA. The intracellular releasing study using specific DNA probe revealed that this enhancement of transfection efficacy was attributed to the elevated mRNA release into cytoplasm. Moreover, the optimized LNP/mRNA/PGA achieved up to 5-fold or 3-fold increase of luciferase mRNA expression in vivo after being injected into mice systematically or intramuscularly, respectively. In addition, the incorporation of PGA did not significantly alter the biodistribution profile of the complexes on both organ and cellular levels. Therefore, our work provides a simple strategy to boost mRNA delivery, which holds great promise to improve the efficacy of mRNA therapeutics for various biomedical applications. STATEMENT OF SIGNIFICANCE: The process of designing and screening potent mRNA carriers is complicated and time-consuming, while the efficacy is not always satisfying due to the delivery barriers and inefficient mRNA release. This work presented an alternative strategy to boost the mRNA delivery efficacy by incorporating an anionic natural polymer poly(γ-glutamic acid) (PGA) into LNP/mRNA complexes. The optimized LNP/mRNA/PGA achieved up to 3-fold and 5-fold increase in transfection efficacy in vitro and in vivo, respectively. Intracellular releasing analysis revealed that the enhancement of transfection efficacy was mainly attributed to the elevated intracellular release of mRNA. In addition, the incorporation of PGA did not alter the biodistribution or the biosafety profile of the complexes. These findings indicate that PGA incorporation is a promising strategy to improve the efficacy of mRNA therapeutics.
Collapse
Affiliation(s)
- Hongqian Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Xue Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Qian Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Xiaoxue Dong
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Zongwei Zhu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Chuanxu Yang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| |
Collapse
|
7
|
Han H, Chen BT, Liu Y, Wang Y, Xing L, Wang H, Zhou TJ, Jiang HL. Engineered stem cell-based strategy: A new paradigm of next-generation stem cell product in regenerative medicine. J Control Release 2024; 365:981-1003. [PMID: 38123072 DOI: 10.1016/j.jconrel.2023.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/06/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Stem cells have garnered significant attention in regenerative medicine owing to their abilities of multi-directional differentiation and self-renewal. Despite these encouraging results, the market for stem cell products yields limited, which is largely due to the challenges faced to the safety and viability of stem cells in vivo. Besides, the fate of cells re-infusion into the body unknown is also a major obstacle to stem cell therapy. Actually, both the functional protection and the fate tracking of stem cells are essential in tissue homeostasis, repair, and regeneration. Recent studies have utilized cell engineering techniques to modify stem cells for enhancing their treatment efficiency or imparting them with novel biological capabilities, in which advances demonstrate the immense potential of engineered cell therapy. In this review, we proposed that the "engineered stem cells" are expected to represent the next generation of stem cell therapies and reviewed recent progress in this area. We also discussed potential applications of engineered stem cells and highlighted the most common challenges that must be addressed. Overall, this review has important guiding significance for the future design of new paradigms of stem cell products to improve their therapeutic efficacy.
Collapse
Affiliation(s)
- Han Han
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Bi-Te Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yang Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yi Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Hui Wang
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tian-Jiao Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China.
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; College of Pharmacy, Yanbian University, Yanji 133002, China.
| |
Collapse
|
8
|
Yun WS, Cho H, Jeon SI, Lim DK, Kim K. Fluorescence-Based Mono- and Multimodal Imaging for In Vivo Tracking of Mesenchymal Stem Cells. Biomolecules 2023; 13:1787. [PMID: 38136656 PMCID: PMC10742164 DOI: 10.3390/biom13121787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/01/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The advancement of stem cell therapy has offered transformative therapeutic outcomes for a wide array of diseases over the past decades. Consequently, stem cell tracking has become significant in revealing the mechanisms of action and ensuring safe and effective treatments. Fluorescence stands out as a promising choice for stem cell tracking due to its myriad advantages, including high resolution, real-time monitoring, and multi-fluorescence detection. Furthermore, combining fluorescence with other tracking modalities-such as bioluminescence imaging (BLI), positron emission tomography (PET), photoacoustic (PA), computed tomography (CT), and magnetic resonance (MR)-can address the limitations of single fluorescence detection. This review initially introduces stem cell tracking using fluorescence imaging, detailing various labeling strategies such as green fluorescence protein (GFP) tagging, fluorescence dye labeling, and nanoparticle uptake. Subsequently, we present several combinations of strategies for efficient and precise detection.
Collapse
Affiliation(s)
- Wan Su Yun
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; (W.S.Y.); (D.-K.L.)
| | - Hanhee Cho
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea; (H.C.); (S.I.J.)
| | - Seong Ik Jeon
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea; (H.C.); (S.I.J.)
| | - Dong-Kwon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; (W.S.Y.); (D.-K.L.)
| | - Kwangmeyung Kim
- Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Woman’s University, Seoul 03760, Republic of Korea; (H.C.); (S.I.J.)
| |
Collapse
|
9
|
Brito VGB, Bell-Hensley A, McAlinden A. MicroRNA-138: an emerging regulator of skeletal development, homeostasis, and disease. Am J Physiol Cell Physiol 2023; 325:C1387-C1400. [PMID: 37842749 PMCID: PMC10861148 DOI: 10.1152/ajpcell.00382.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
Noncoding microRNAs are powerful epigenetic regulators of cellular processes by their ability to target and suppress expression of numerous protein-coding mRNAs. This multitargeting function is a unique and complex feature of microRNAs. It is now well-described that microRNAs play important roles in regulating the development and homeostasis of many cell/tissue types, including those that make up the skeletal system. In this review, we focus on microRNA-138 (miR-138) and its effects on regulating bone and cartilage cell differentiation and function. In addition to its reported role as a tumor suppressor, miR-138 appears to function as an inhibitor of osteoblast differentiation. This review provides additional information on studies that have attempted to alter miR-138 expression in vivo as a means to dampen ectopic calcification or alter bone mass. However, a review of the published literature on miR-138 in cartilage reveals a number of contradictory and inconclusive findings with respect to regulating chondrogenesis and chondrocyte catabolism. This highlights the need for more research in understanding the role of miR-138 in cartilage biology and disease. Interestingly, a number of studies in other systems have reported miR-138-mediated effects in dampening inflammation and pain responses. Future studies will reveal if a multifunctional role of miR-138 involving suppression of ectopic bone, inflammation, and pain will be beneficial in skeletal conditions such as osteoarthritis and heterotopic ossification.
Collapse
Affiliation(s)
- Victor Gustavo Balera Brito
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Austin Bell-Hensley
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, Missouri, United States
| | - Audrey McAlinden
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Department of Cell Biology & Physiology, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospital for Children, St. Louis, Missouri, United States
| |
Collapse
|
10
|
Li N, Jiang X, Zhang W, Xiao W, Wu Z, Wang H, He F. Synergetic Photodynamic-Photothermal-Chemotherapy Dual Targeting Nanoplatform Effective Against Breast Cancer in-Mice Model. Int J Nanomedicine 2023; 18:6349-6365. [PMID: 37965281 PMCID: PMC10641433 DOI: 10.2147/ijn.s428022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Combined multimodal therapy for breast cancer is a promising therapeutic approach to increase treatment efficacy and reduce systemic toxicity. The present study aimed to develop a novel multifunctional drug release nanoplatform based on RGD-conjugated hyaluronic acid (HA)-functionalized copper sulfide (CuS) for activatable dual-targeted synergetic therapy against cancer. Methods The pH and NIR-responsive dual-targeting nanoplatform CuS:Ce6@HA:DOX@RGD was prepared, characterized, and evaluated for its stability and photodynamic and photothermal properties. The loading and release of the drug were measured at different pH values with or without laser radiation using the dialysis method. The cellular uptake of the platform specifically by the tumor cells treated with different formulations was investigated through fluorescence imaging. The in vitro and in vivo biosafety levels were assessed systematically. Finally, the antitumor efficiencies against breast cancer were assessed via in vitro and in vivo experiments. Results The spheroid CuS:Ce6@HA:DOX@RGD exhibited remarkable stability and monodispersity in solution. The photosensitive CuS and Ce6 could simultaneously absorb the near-infrared light efficiently to convert NIR light to fatal heat and to generate reactive oxygen species. The CuS:Ce6@HA:DOX@RGD dissociated under an acid environment, causing the release of DOX into the tumor to accelerate upon laser irradiation. The CuS:Ce6@HA:DOX@RGD exhibited target-specific and strong binding ability via a synergic CD44/αvβ3 receptor-mediated bimodal targeting, which led to improved therapeutic efficacy. The tumor growth was effectively inhibited using synergetic photodynamic/photothermal/chemo therapy. No evident systemic toxicity was noted during treatment. Conclusion The newly prepared CuS:Ce6@HA:DOX@RGD has great potential as an activatable theranostic nanoplatform for efficient dual-targeted synergistic therapy against breast cancer.
Collapse
Affiliation(s)
- Na Li
- Li Shizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, 438000, People’s Republic of China
| | - Xiaochun Jiang
- Hubei Key Laboratory for Processing and Application of Catalytic Materials, College of Chemistry and Chemical Engineering, Huanggang Normal University, Huanggang, 438000, People’s Republic of China
| | - Wanju Zhang
- Li Shizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, 438000, People’s Republic of China
| | - Wenping Xiao
- Li Shizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, 438000, People’s Republic of China
| | - Zhaona Wu
- Li Shizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, 438000, People’s Republic of China
| | - Huirong Wang
- Li Shizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, 438000, People’s Republic of China
| | - Feng He
- Li Shizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, 438000, People’s Republic of China
| |
Collapse
|
11
|
Maddiboyina B, Ramaiah, Nakkala RK, Roy H. Perspectives on cutting-edge nanoparticulate drug delivery technologies based on lipids and their applications. Chem Biol Drug Des 2023; 102:377-394. [PMID: 36916008 DOI: 10.1111/cbdd.14230] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/27/2022] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Numerous nanotech arenas in therapeutic biology have recently provided a scientific platform to manufacture a considerable swath of unique chemical entities focusing on drugs. Recently, nanoparticulate drug delivery systems have emerged to deliver a specific drug to a specified site. Among all other carriers, lipids possess features exclusive to nanostructured dosage forms. The bioavailability of orally administered drugs is typically negatively affected by their poor water solubility, resulting from the unique chemical moieties introduced. Because of their unique advantages, lipid nanoparticles must become increasingly predictable as a robust delivery mechanism. The enhanced biopharmaceutical properties and significance of lipid-based targeting technologies such as liposomes, niosomes, solid lipid nanoparticles and micelles are highlighted in this review. Pharmaceutical implications of lipid nanocarriers for the transport and distribution of various therapeutic agents, such as biotechnological products and small pharmaceutical molecules, is a booming topic. Lipid nanoparticles as drug delivery systems have many appealing properties, including high biocompatibility, ease of preparation, tissue specificity, avoidance of reticuloendothelial systems, delayed drug release, scale-up feasibility, nontoxicity and targeted delivery. The use of lipid nanoparticles to enhance the transport of biopharmaceuticals is currently considered state-of-the-art. Similarly, we critically examine the upcoming guidelines that therapeutic scientists should handle.
Collapse
Affiliation(s)
| | - Ramaiah
- Freyr Solutions, Phoenix SEZ, Hyderabad, Telangana, India
| | | | | |
Collapse
|
12
|
Zhang H, Ding F, Zhu Z, Sun Q, Yang C. Engineered ionizable lipid nanoparticles mediated efficient siRNA delivery to macrophages for anti-inflammatory treatment of acute liver injury. Int J Pharm 2023; 631:122489. [PMID: 36521639 DOI: 10.1016/j.ijpharm.2022.122489] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Small interfering RNA (siRNA) mediating specific gene silencing provides a promising strategy for anti-inflammatory therapy. However, the development of potent carriers for anti-inflammatory siRNA to macrophages remains challenging. With the aim of realizing potent delivery of siRNA to macrophages, we engineered ionizable lipid nanoparticles (LNPs) with the key component of synthetic lipid-like materials. By varying the amine molecules in the structure of synthetic lipid-like materials, a potent LNP (1O14-LNP) was identified, which exhibited efficient transfection of macrophages by facilitating efficient internalization and endosomal escape. The 1O14-LNP successfully delivered anti-inflammatory siRNA against interleukin-1β (siIL-1β) with more than 90% downregulation of IL-1β expression in LPS-activated macrophages. From in vivo studies, systemic administrated 1O14-LNP/siRNA mainly distributed in liver and efficiently captured by hepatic macrophages without notable sign of toxicity. Furthermore, LPS/d-GalN-induced acute liver injury model treated with 1O14-LNP/siIL-1β resulted in significant suppression of IL-1β expression and amelioration of liver tissue damage. These results demonstrate that the engineered ionizable LNP provides a powerful tool for siRNA delivery to macrophages and that the strategy of silencing of pro-inflammatory cytokines holds great potential for treating inflammatory diseases.
Collapse
Affiliation(s)
- Hongqian Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Feng Ding
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Zongwei Zhu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Qian Sun
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China
| | - Chuanxu Yang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| |
Collapse
|
13
|
Zhu Z, Zhang H, Dong X, Lin M, Yang C. Niosome-Assisted Delivery of DNA Fluorescent Probe with Optimized Strand Displacement for Intracellular MicroRNA21 Imaging. BIOSENSORS 2022; 12:557. [PMID: 35892454 PMCID: PMC9331323 DOI: 10.3390/bios12080557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
MicroRNAs play a vital role in cancer development and are considered as potential biomarkers for early prognostic assessment. Here, we propose a novel biosensing system to achieve fluorescence imaging of miRNA21 (miR21) in cancer cells. This system consists of two components: an optimized "off-on" double-stranded DNA (dsDNA) fluorescent for miR21 sensing by efficient strand-displacement reaction and a potent carrier vesicle, termed niosome (SPN), to facilitate the efficient intracellular delivery of the dsDNA probe. A series of dsDNA probes based on fluorescence energy resonance transfer (FRET) was assembled to target miR21. By optimizing the appropriate length of the reporter strand in the dsDNA probe, high accuracy and sensitivity for miR21 recognition are ensured. To overcome the cellular barrier, we synthesized SPN with the main components of a nonionic surfactant Span 80 and a cationic lipid DOTAP, which could efficiently load dsDNA probes via electrostatic interactions and potently deliver the dsDNA probes into cells with good biosafety. The SPN/dsDNA achieved efficient miR21 fluorescent imaging in living cells, and could discriminate cancer cells (MCF-7) from normal cells (L-02). Therefore, the proposed SPN/dsDNA system provides a powerful tool for intracellular miRNA biosensing, which holds great promise for early cancer diagnosis.
Collapse
|
14
|
Comprehensive Review on Applications of Surfactants in Vaccine Formulation, Therapeutic and Cosmetic Pharmacy and Prevention of Pulmonary Failure due to COVID-19. CHEMISTRY AFRICA 2022. [PMCID: PMC8934726 DOI: 10.1007/s42250-022-00345-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Our world is under serious threat of environmental degradation, climate change and in association with this the out breaks of diseases as pandemics. The devastating impact of the very recent COVID-19, The sharp increase in cases of Cancer, Pulmonary failure, Heart health has triggered questions for the sustainable development of pharmaceutical and medical sciences. In the search of inclusive and effective strategies to meet today’s demand, improvised methodologies and alternative green chemical, bio-based precursors are being introduced by scientists around the globe. In this extensive review we have presented the potentiality and Realtime applications of both synthetic and bio-based surfactants in bio-medical and pharmaceutical fields. For their excellent unique amphoteric nature and ability to solubilise in both organic and inorganic drugs, surfactants are one of the most potential candidates for bio-medicinal fields such as dermatology, drug delivery, anticancer treatment, surfactant therapy, vaccine formulation, personal hygiene care and many more. The self-assembly property of surfactants is a very powerful function for drug delivery systems that increases the bio-availability of the poorly aqueous soluble pharmaceutical products by influencing their solubility. Over the decades many researchers have reported the antimicrobial, anti-adhesive, antibiofilm, anti-inflammatory, antioxidant activities of surfactants regarding its utility in medicinal purposes. In some reports surfactants are found to have spermicidal and laxative activity too. This comprehensive report is targeted to enlighten the versatile applications of Surfactants in drug delivery, vaccine formulation, Cancer Treatment, Therapeutic and cosmetic Pharmaceutical Sciences and prevention of pulmonary failure due to COVID-19.
Collapse
|
15
|
Chatterjee A, Sharma AK, Purkayastha P. Development of a carbon dot and methylene blue NIR-emitting FLIM-FRET pair in niosomes for controlled ROS generation. NANOSCALE 2022; 14:6570-6584. [PMID: 35420619 DOI: 10.1039/d2nr01032a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Non-ionic surfactant vesicular systems (niosomes) are structurally similar to lipid vesicles, differing only in the bilayer composition. Herein we report a unique method to generate reactive oxygen species (ROS) utilizing a FLIM-FRET technique involving niosome-trapped yellow emissive carbon dots (YCDs) and methylene blue (MB) in aqueous medium under neutral conditions. Niosomes are biologically important because of their good stability and extremely low toxicity. Fluorescent CDs, emitting in the higher wavelengths on visible light excitation, are of incredible importance in bio-imaging and optoelectronics. Hence, we prepared nitrogen-containing YCDs from a single precursor, o-phenylenediamine, and explained their detailed photophysics upon incorporation into the niosomal bilayer. The YCDs are polarity sensitive, and are rotationally restricted in niosomes, which increases their fluorescence quantum yield from 29% (in water) to 91%. These YCDs are tactically employed to develop a near infrared (NIR) FRET pair with methylene blue (MB), which is a very well-known type-I and type-II photosensitizer. This FRET pair, which emits in the NIR region, is found to be an ideal system to generate ROS by excitation in the lower visible wavelengths. Interestingly, the ROS production by MB from the dissolved oxygen is enhanced inside the niosomes. The donor and the acceptor moieties in this unique NIR-emitting FRET pair display an unprecedented 300 nm Stokes shift. The findings could be influential in bio-imaging in the NIR region evading cellular autofluorescence and the controllably generated ROS can be further applied as a potential photodynamic therapeutic agent.
Collapse
Affiliation(s)
- Arunavo Chatterjee
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, WB, India.
| | - Ankit Kumar Sharma
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, WB, India.
| | - Pradipta Purkayastha
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur 741246, WB, India.
| |
Collapse
|
16
|
Limongi T, Susa F, Marini M, Allione M, Torre B, Pisano R, di Fabrizio E. Lipid-Based Nanovesicular Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3391. [PMID: 34947740 PMCID: PMC8707227 DOI: 10.3390/nano11123391] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022]
Abstract
In designing a new drug, considering the preferred route of administration, various requirements must be fulfilled. Active molecules pharmacokinetics should be reliable with a valuable drug profile as well as well-tolerated. Over the past 20 years, nanotechnologies have provided alternative and complementary solutions to those of an exclusively pharmaceutical chemical nature since scientists and clinicians invested in the optimization of materials and methods capable of regulating effective drug delivery at the nanometer scale. Among the many drug delivery carriers, lipid nano vesicular ones successfully support clinical candidates approaching such problems as insolubility, biodegradation, and difficulty in overcoming the skin and biological barriers such as the blood-brain one. In this review, the authors discussed the structure, the biochemical composition, and the drug delivery applications of lipid nanovesicular carriers, namely, niosomes, proniosomes, ethosomes, transferosomes, pharmacosomes, ufasomes, phytosomes, catanionic vesicles, and extracellular vesicles.
Collapse
|
17
|
Momekova DB, Gugleva VE, Petrov PD. Nanoarchitectonics of Multifunctional Niosomes for Advanced Drug Delivery. ACS OMEGA 2021; 6:33265-33273. [PMID: 34926878 PMCID: PMC8674900 DOI: 10.1021/acsomega.1c05083] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/24/2021] [Indexed: 05/25/2023]
Abstract
Niosomes are a type of vesicular nanocarrier exploited for enhancing the therapeutic efficacy of various drugs in clinical practice. Niosomes comprise a bilayer hydrophobic membrane enclosing a central cavity filled with an aqueous phase, and therefore, they can encapsulate and deliver both hydrophobic and hydrophilic substances. Niosomal nanocarriers are preferred over other bilayer structures such as liposomes due to their chemical stability, biodegradability, biocompatibility, low production cost, low toxicity, and easy storage and handling. In addition, the niosomal membrane can be easy modified by the inclusion of ligands or stimulus-sensitive segments for achieving targeted delivery and triggered release of the encapsulated cargo. This mini-review outlines the current advances in designing functional niosomes and their use as platforms for developing advanced drug and gene delivery systems.
Collapse
Affiliation(s)
- Denitsa B. Momekova
- Department
of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Viliana E. Gugleva
- Department
of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University − Varna “Prof. Dr. Paraskev Stoyanov”, 9002 Varna, Bulgaria
| | - Petar D. Petrov
- Institute
of Polymers, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| |
Collapse
|
18
|
Ding F, Zhang H, Cui J, Li Q, Yang C. Boosting ionizable lipid nanoparticle-mediated in vivo mRNA delivery through optimization of lipid amine-head groups. Biomater Sci 2021; 9:7534-7546. [PMID: 34647548 DOI: 10.1039/d1bm00866h] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In vitro transcribed messenger RNA (IVT-mRNA) holds great promise for the development of novel therapeutics, such as immunotherapy and vaccination. However, the main obstacle towards clinical translation is the lack of effective delivery systems. Herein, we have synthesized a series of ionizable lipids by the addition of an alkyl-acrylate to amine-containing molecules (amine-head groups) as a key component of ionizable lipid nanoparticles (iLNPs) and thoroughly investigated the impact of the amine-head group on the transfection efficiency of iLNPs/mRNA lipoplexes both in vitro and in vivo. The top-performing iLNP (114-iLNP), composed of a lipid with spermine as the amine-head, demonstrated the strongest cellular uptake, membrane disruption and endosomal escape, and further achieved the highest protein expression in HeLa cells with more than 95% transfection efficiency. More importantly, intravenous injection of luciferase mRNA loaded 114-iLNP enables the most efficacious in vivo protein expression, predominantly in the liver. Biodistribution and biosafety evaluation of 114-iLNP/mRNA further demonstrated the liver-selective delivery capability and high biocompatibility. In addition, 114-iLNP facilitated efficient in vivo delivery of a therapeutic gene, human erythropoietin (hEPO) mRNA, and induced hEPO expression in a dose-dependent manner. Therefore, these results demonstrate that the amine-head group in the ionizable lipid significantly affects mRNA delivery efficacy and the leading candidate 114-iLNP composed of a lipid with spermine as the amine-head has great potential for mRNA therapeutics development.
Collapse
Affiliation(s)
- Feng Ding
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| | - Hongqian Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| | - Qiang Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| | - Chuanxu Yang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| |
Collapse
|
19
|
Host miRNA and immune cell interactions: relevance in nano-therapeutics for human health. Immunol Res 2021; 70:1-18. [PMID: 34716546 DOI: 10.1007/s12026-021-09247-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022]
Abstract
Around 2200 miRNA (microRNA) genes were found in the human genome. miRNAs are arranged in clusters within the genome and share the same transcriptional regulatory units. It has been revealed that approximately 50% of miRNAs elucidated in the genome are transcribed from non-protein-coding genes, and the leftover miRNAs are present in the introns of coding sequences. We are now approaching a stage in which miRNA diagnostics and therapies can be established confidently, and several commercial efforts are underway to carry these innovations from the bench to the clinic. MiRNAs control many of the significant cellular activities such as production, differentiation, growth, and metabolism. Particularly in the immune system, miRNAs have emerged as a crucial biological component during diseased state and homeostasis. miRNAs have been found to regulate inflammatory responses and autoimmune disorders. Moreover, each miRNA targets multiple genes simultaneously, making miRNAs promising tools as diagnostic biomarkers and as remedial targets. Still, one of the major obstacles in miRNA-based approaches is the achievement of specific and efficient systemic delivery of miRNAs. To overcome these challenges, nanoformulations have been synthesized to protect miRNAs from degradation and enhance cellular uptake. The current review deals with the miRNA-mediated regulation of the recruitment and activation of immune cells, especially in the tumor microenvironment, viral infection, inflammation, and autoimmunity. The nano-based miRNA delivery modes are also discussed here, especially in the context of immune modulation.
Collapse
|
20
|
Bishnoi S, Rehman S, Dutta SB, De SK, Chakraborty A, Nayak D, Gupta S. Optical-Property-Enhancing Novel Near-Infrared Active Niosome Nanoformulation for Deep-Tissue Bioimaging. ACS OMEGA 2021; 6:22616-22624. [PMID: 34514233 PMCID: PMC8427633 DOI: 10.1021/acsomega.1c02632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/11/2021] [Indexed: 05/17/2023]
Abstract
Indocyanine green (ICG) is a clinically approved near-infrared (NIR) contrast agent used in medical diagnosis. However, ICG has not been used to its fullest for biomedical imaging applications due to its low fluorescence quantum yield, aqueous instability, concentration-dependent aggregation, and photo and thermal degradations, leading to quenching of its fluorescence emission. In the present study, a nanosized niosomal formulation, ICGNiosomes (ICGNios), is fabricated to encapsulate and protect ICG from degradation. Interestingly, compared to free ICG, the ICGNios exhibited higher fluorescence quantum yield and fluorescence emission with a bathochromic shift. Also, ICGNios nanoparticles are biocompatible, biodegradable, and readily uptaken by the cells. Furthermore, ICGNios show more enhanced fluorescence intensity through ∼1 cm thick chicken breast tissue compared to free ICG, which showed minimal emission through the same thickness of tissue. Our results suggest that ICGNios could offer a promising platform for deep-tissue NIR in vivo imaging to visualize inaccessible tissue microstructures for disease diagnosis and therapeutics.
Collapse
Affiliation(s)
- Suman Bishnoi
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552 Madhya Pradesh, India
| | - Sheeba Rehman
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552 Madhya Pradesh, India
| | - Surjendu Bikash Dutta
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552 Madhya Pradesh, India
| | - Soumya Kanti De
- Department
of Chemistry, Indian Institute of Technology
Indore, Indore 453552 Madhya Pradesh, India
| | - Anjan Chakraborty
- Department
of Chemistry, Indian Institute of Technology
Indore, Indore 453552 Madhya Pradesh, India
| | - Debasis Nayak
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552 Madhya Pradesh, India
| | - Sharad Gupta
- Department
of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 453552 Madhya Pradesh, India
- School
of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
21
|
Abdel-Mageed HM, AbuelEzz NZ, Radwan RA, Mohamed SA. Nanoparticles in nanomedicine: a comprehensive updated review on current status, challenges and emerging opportunities. J Microencapsul 2021; 38:414-436. [PMID: 34157915 DOI: 10.1080/02652048.2021.1942275] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fast progress in nanomedicine and nanoparticles (NP) materials presents unconventional solutions which are expected to revolutionise health care with great potentials including, enhanced efficacy, bioavailability, drug targeting, and safety. This review provides a comprehensive update on widely used organic and inorganic NP with emphasis on the recent development, challenges and future prospective for bio applications where, further investigations into innovative synthesis methodologies, properties and applications of NP would possibly reveal new improved biomedical relevance. NP exhibits exceptional physical and chemical properties due to their high surface area to volume ratio and nanoscale size, which led to breakthroughs in therapeutic, diagnostic and screening techniques repeated line. Finally, an update of FDA-approved NP is explored where innovative design engineering allowed a paradigmatic shift in their market share. This review would serve as a discerning comprehensive source of information for learners who are seeking a cutting-edge review but have been astounded by the size of publications.
Collapse
Affiliation(s)
- Heidi Mohamed Abdel-Mageed
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Cairo, Egypt
| | - Nermeen Zakaria AbuelEzz
- Biochemistry Department, College of Pharmaceutical Sciences & Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Rasha Ali Radwan
- Biochemistry Department Faculty of Pharmacy, Sinai University-Kantara branch, El Ismailia; Egypt
| | - Saleh Ahmed Mohamed
- Molecular Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
22
|
Ding F, Zhang H, Li Q, Yang C. Identification of a potent ionizable lipid for efficient macrophage transfection and systemic anti-interleukin-1β siRNA delivery against acute liver failure. J Mater Chem B 2021; 9:5136-5149. [PMID: 34132324 DOI: 10.1039/d1tb00736j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RNA interference (RNAi) therapy has great potential for treating inflammatory diseases. However, the development of potent carrier materials for delivering siRNA to macrophages is challenging. Herein, we design a set of ionizable lipid nanoparticles (LNPs) to screen and identify a potent carrier of siRNA for silencing an essential pro-inflammatory cytokine, interleukin-1β (IL-1β) in macrophages. The top performance LNP (114-LNP), containing ionizable lipid with spermine as an amine-head group, facilitated efficient siRNA internalization via multiple endocytosis pathways and achieved effective endosome escape in macrophages. The optimized LNP/siIL-1β achieved strong silencing of IL-1β in both activated Raw 264.7 cells and primary macrophages. Furthermore, systematic administration of 114-LNP/siIL-1β complexes could effectively inhibit IL-1β expression in an acute liver failure model and significantly attenuated hepatic inflammation and liver damage. These results suggest that the optimized ionizable lipid nanoparticle represents a promising platform for anti-inflammation therapies.
Collapse
Affiliation(s)
- Feng Ding
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, and School of Chemistry and Chemical Engineering, Shandong University, Jinan 25010, China.
| | | | | | | |
Collapse
|
23
|
Synergistic Effect of Doxorubicin and siRNA-Mediated Silencing of Mcl-1 Using Cationic Niosomes against 3D MCF-7 Spheroids. Pharmaceutics 2021; 13:pharmaceutics13040550. [PMID: 33919902 PMCID: PMC8070967 DOI: 10.3390/pharmaceutics13040550] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022] Open
Abstract
Chemotherapy is a vital option for cancer treatment; however, its therapeutic outcomes are limited by dose-dependent toxicity and the occurrence of chemoresistance. siRNAs have emerged as an attractive therapeutic option enabling specific interference with target genes. Combination therapy using chemotherapeutic agents along with gene therapy could be a potential strategy for cancer management, which not only improves therapeutic efficacy but also decreases untoward effects from dose reduction. In this study, a cationic niosome containing plier-like cationic lipid B was used to convey siRNA against anti-apoptotic mRNA into MCF-7 and MDA-MB-231 cells. Mcl-1 silencing markedly decreased the viability of MCF-7 cells and triggered apoptosis. Moreover, computer modeling suggested that the combination of doxorubicin (Dox) and Mcl-1 siRNA exhibited a synergistic relationship and enabled a dose reduction of each agent at 1.71 and 3.91 folds, respectively, to reach a 90% inhibitory effect when compared to single-agent treatments. Synergistic antitumor activity was further verified in a 3D spheroid culture which revealed, in contrast to single-agent treatment, the combination markedly decreased spheroid volume over time. Together, the combination therapy between Mcl-1 silencing and Dox exhibits a synergistic effect that may be exploited for novel breast cancer treatment.
Collapse
|
24
|
Maurer V, Altin S, Ag Seleci D, Zarinwall A, Temel B, Vogt PM, Strauß S, Stahl F, Scheper T, Bucan V, Garnweitner G. In-Vitro Application of Magnetic Hybrid Niosomes: Targeted siRNA-Delivery for Enhanced Breast Cancer Therapy. Pharmaceutics 2021; 13:394. [PMID: 33809700 PMCID: PMC8002368 DOI: 10.3390/pharmaceutics13030394] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Even though the administration of chemotherapeutic agents such as erlotinib is clinically established for the treatment of breast cancer, its efficiency and the therapy outcome can be greatly improved using RNA interference (RNAi) mechanisms for a combinational therapy. However, the cellular uptake of bare small interfering RNA (siRNA) is insufficient and its fast degradation in the bloodstream leads to a lacking delivery and no suitable accumulation of siRNA inside the target tissues. To address these problems, non-ionic surfactant vesicles (niosomes) were used as a nanocarrier platform to encapsulate Lifeguard (LFG)-specific siRNA inside the hydrophilic core. A preceding entrapment of superparamagnetic iron-oxide nanoparticles (FexOy-NPs) inside the niosomal bilayer structure was achieved in order to enhance the cellular uptake via an external magnetic manipulation. After verifying a highly effective entrapment of the siRNA, the resulting hybrid niosomes were administered to BT-474 cells in a combinational therapy with either erlotinib or trastuzumab and monitored regarding the induced apoptosis. The obtained results demonstrated that the nanocarrier successfully caused a downregulation of the LFG gene in BT-474 cells, which led to an increased efficacy of the chemotherapeutics compared to plainly added siRNA. Especially the application of an external magnetic field enhanced the internalization of siRNA, therefore increasing the activation of apoptotic signaling pathways. Considering the improved therapy outcome as well as the high encapsulation efficiency, the formulated hybrid niosomes meet the requirements for a cost-effective commercialization and can be considered as a promising candidate for future siRNA delivery agents.
Collapse
Affiliation(s)
- Viktor Maurer
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Selin Altin
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Didem Ag Seleci
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Ajmal Zarinwall
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Bilal Temel
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
| | - Peter M. Vogt
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (P.M.V.); (S.S.); (V.B.)
| | - Sarah Strauß
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (P.M.V.); (S.S.); (V.B.)
| | - Frank Stahl
- Institute for Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (F.S.); (T.S.)
| | - Thomas Scheper
- Institute for Technical Chemistry, Leibniz University Hannover, 30167 Hannover, Germany; (F.S.); (T.S.)
| | - Vesna Bucan
- Department of Plastic, Aesthetic, Hand and Reconstructive Surgery, Hannover Medical School, 30625 Hannover, Germany; (P.M.V.); (S.S.); (V.B.)
| | - Georg Garnweitner
- Institute for Particle Technology, Technische Universität Braunschweig, 38104 Braunschweig, Germany; (V.M.); (S.A.); (D.A.S.); (A.Z.); (B.T.)
- Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Germany
- Laboratory for Emerging Nanometrology (LENA), Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
25
|
Lin B, Lu L, Wang Y, Zhang Q, Wang Z, Cheng G, Duan X, Zhang F, Xie M, Le H, Shuai X, Shen J. Nanomedicine Directs Neuronal Differentiation of Neural Stem Cells via Silencing Long Noncoding RNA for Stroke Therapy. NANO LETTERS 2021; 21:806-815. [PMID: 33395306 DOI: 10.1021/acs.nanolett.0c04560] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Transplantation of neural stem cells (NSCs) is a promising treatment paradigm to replace lost neurons and reconstruct the damaged neural circuit after ischemic stroke. However, most transplanted NSCs often differentiate into astrocytes rather than functional neurons, and the poor neuronal differentiation adversely affects the therapeutic outcome of NSCs and limits their clinical translation for stroke therapy. Herein, a theranostic nanomedicine is developed to codeliver superparamagnetic iron oxide nanoparticles (SPIO) and small interfering RNA/antisense oligonucleotides (siRNA/ASO) against Pnky long noncoding RNA (lncRNA) into NSCs. This nanomedicine not only directs neuronal differentiation of NSCs through silencing the Pnky lncRNA but also allows an in vivo tracking of NSCs with magnetic resonance imaging. The enhanced neuronal differentiation of NSCs significantly improved the structural and functional recovery of the damaged brain after a stroke. The results demonstrate the great potential of the multifunctional nanomedicine targeting lncRNA to enhance stem cell-based therapies for a stroke.
Collapse
Affiliation(s)
- Bingling Lin
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen 518000, Guangdong, China
| | - Liejing Lu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, Guangdong, China
| | - Qinyuan Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Zhe Wang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Guanxun Cheng
- Department of Radiology, Peking University Shenzhen Hospital, Shenzhen 518000, Guangdong, China
| | - Xiaohui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Fang Zhang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Mingwei Xie
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Hongbo Le
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| | - Xintao Shuai
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, Guangdong, China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, Guangdong, China
| |
Collapse
|
26
|
Fernandes F, Kotharkar P, Chakravorty A, Kowshik M, Talukdar I. Nanocarrier Mediated siRNA Delivery Targeting Stem Cell Differentiation. Curr Stem Cell Res Ther 2020; 15:155-172. [PMID: 31789134 DOI: 10.2174/1574888x14666191202095041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/16/2019] [Accepted: 11/12/2019] [Indexed: 12/17/2022]
Abstract
Stem cell-based regenerative medicine holds exceptional therapeutic potential and hence the development of efficient techniques to enhance control over the rate of differentiation has been the focus of active research. One of the strategies to achieve this involves delivering siRNA into stem cells and exploiting the RNA interference (RNAi) mechanism. Transport of siRNA across the cell membrane is a challenge due to its anionic property, especially in primary human cells and stem cells. Moreover, naked siRNA incites immune responses, may cause off-target effects, exhibits low stability and is easily degraded by endonucleases in the bloodstream. Although siRNA delivery using viral vectors and electroporation has been used in stem cells, these methods demonstrate low transfection efficiency, cytotoxicity, immunogenicity, events of integration and may involve laborious customization. With the advent of nanotechnology, nanocarriers which act as novel gene delivery vehicles designed to overcome the problems associated with safety and practicality are being developed. The various nanomaterials that are currently being explored and discussed in this review include liposomes, carbon nanotubes, quantum dots, protein and peptide nanocarriers, magnetic nanoparticles, polymeric nanoparticles, etc. These nanodelivery agents exhibit advantages such as low immunogenic response, biocompatibility, design flexibility allowing for surface modification and functionalization, and control over the surface topography for achieving the desired rate of siRNA delivery and improved gene knockdown efficiency. This review also includes discussion on siRNA co-delivery with imaging agents, plasmid DNA, drugs etc. to achieve combined diagnostic and enhanced therapeutic functionality, both for in vitro and in vivo applications.
Collapse
Affiliation(s)
- Fiona Fernandes
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa-403726, India
| | - Pooja Kotharkar
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa-403726, India
| | - Adrija Chakravorty
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa-403726, India
| | - Meenal Kowshik
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa-403726, India
| | - Indrani Talukdar
- Department of Biological Sciences, BITS Pilani, K. K. Birla Goa campus, Zuarinagar, Goa-403726, India
| |
Collapse
|
27
|
Attia N, Mashal M. Mesenchymal Stem Cells: The Past Present and Future. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1312:107-129. [PMID: 33159306 DOI: 10.1007/5584_2020_595] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The biomedical applications of mesenchymal stem cells (MSCs) have gained expanding attention over the past three decades. MSCs are easily obtained from various tissue types (e.g. bone marrow, fat, cord blood, etc.), are capable of self-renewal, and could be induced to differentiate into several cell lineages for countless biomedical applications. In addition, when transplanted, MSCs are not detected by immune surveillance, thus do not lead to graft rejection. Moreover, they can home towards affected tissues and induce their therapeutic effect in a cell-base and/or a cell-free manner. These properties, and many others, have made MSCs appealing therapeutic cell candidates (for cell and/or gene therapy) in myriad clinical conditions. However, similar to any other therapeutic tool, MSCs still have their own limitations and grey areas that entail more research for better understanding and optimization. Herein, we present a brief overview of various pre-clinical/clinical applications of MSCs in regenerative medicine and discuss limitations and future challenges.
Collapse
Affiliation(s)
- Noha Attia
- Department of Basic Sciences, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda. .,The Center of research and evaluation, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda. .,Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt. .,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
| | - Mohamed Mashal
- The Center of research and evaluation, The American University of Antigua-College of Medicine, Coolidge, Antigua and Barbuda.,NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
28
|
Piperno A, Mazzaglia A, Scala A, Pennisi R, Zagami R, Neri G, Torcasio SM, Rosmini C, Mineo PG, Potara M, Focsan M, Astilean S, Zhou GG, Sciortino MT. Casting Light on Intracellular Tracking of a New Functional Graphene-Based MicroRNA Delivery System by FLIM and Raman Imaging. ACS APPLIED MATERIALS & INTERFACES 2019; 11:46101-46111. [PMID: 31729219 DOI: 10.1021/acsami.9b15826] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The theranostic ability of a new fluorescently labeled cationic cyclodextrin-graphene nanoplatform (GCD@Ada-Rhod) was investigated by studying its intracellular trafficking and its ability to deliver plasmid DNA and microRNA. The nanoplatform was synthesized by both covalent and supramolecular approaches, and its chemical structure, morphology, and colloidal behavior were investigated by TGA, TEM, spectroscopic analysis such as UV-vis, fluorescence emission, DLS, and ζ-potential measurements. The cellular internalization of GCD@Ada-Rhod and its perinuclear localization were assessed by FLIM, Raman imaging, and fluorescence microscopy. Biological experiments with pCMS-EGFP and miRNA-15a evidenced the excellent capability of GCD@Ada-Rhod to deliver both pDNA and microRNA without significant cytotoxicity. The biological results evidenced an unforeseen caveolae-mediated endocytosis internalization pathway (generally expected for particles <200 nm), despite the fact that the GCD@Ada-Rhod size is about 400 nm (by DLS and TEM data). We supposed that the internalization pathway was driven by physical-chemical features of GCD@Ada-Rhod, and the caveolae-mediated uptake enhanced the transfection efficiency, avoiding the lysosomal acid degradation. The cellular effects of internalized miRNA-15a on the oncogene protein BCL-2 were investigated at two different concentrations (N/P = 10 and 5), and a reduction of the BCL-2 level was detected at a low concentration (i.e., N/P = 10). miRNA-15a is considered an ideal cancer therapy molecule due to its activity on multiple transcription factors, and the elucidation of the correlation between the concentration of delivered miRNA-15a and the down-/up-regulation of the BCL-2 level, documented for the first time in this work, could be an important contribution to guide its clinical application.
Collapse
Affiliation(s)
- Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , V.le F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Antonino Mazzaglia
- CNR-ISMN c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , V.le F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , V.le F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Rosamaria Pennisi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , V.le F. Stagno d'Alcontres 31 , 98166 Messina , Italy
- Shenzhen International Institute for Biomedical Research , Shenzhen , Guangdong 518119 , China
| | - Roberto Zagami
- CNR-ISMN c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , V.le F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Giulia Neri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , V.le F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Serena M Torcasio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , V.le F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Consolato Rosmini
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , V.le F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| | - Placido G Mineo
- Department of Chemical Sciences , University of Catania , V.le A. Doria 6 , 95125 Catania , Italy
| | - Monica Potara
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences , Babes-Bolyai University , T. Laurian Str. 42 , 400271 Cluj-Napoca , Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences , Babes-Bolyai University , T. Laurian Str. 42 , 400271 Cluj-Napoca , Romania
| | - Simion Astilean
- Nanobiophotonics and Laser Microspectroscopy Center, Interdisciplinary Research Institute in Bio-Nano-Sciences , Babes-Bolyai University , T. Laurian Str. 42 , 400271 Cluj-Napoca , Romania
- Department of Biomolecular Physics, Faculty of Physics , Babes-Bolyai University , M Kogalniceanu Str. 1 , 400084 Cluj-Napoca , Romania
| | - Grace Guoying Zhou
- Shenzhen International Institute for Biomedical Research , Shenzhen , Guangdong 518119 , China
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences , University of Messina , V.le F. Stagno d'Alcontres 31 , 98166 Messina , Italy
| |
Collapse
|
29
|
Scheideler M, Vidakovic I, Prassl R. Lipid nanocarriers for microRNA delivery. Chem Phys Lipids 2019; 226:104837. [PMID: 31689410 DOI: 10.1016/j.chemphyslip.2019.104837] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 02/06/2023]
Abstract
Non-coding RNAs (ncRNAs) like microRNAs (miRNAs) or small interference RNAs (siRNAs) with their power to selectively silence any gene of interest enable the targeting of so far 'undruggable' proteins and diseases. Such RNA molecules have gained much attention from biotech and pharmaceutical companies, which led to the first Food and Drug Administration (FDA) approved ncRNA therapeutic in 2018. However, the main barrier in clinical practice of ncRNAs is the lack of an effective delivery system that can protect the RNA molecules from nuclease degradation, deliver them to specific tissues and cell types, and release them into the cytoplasm of the targeted cells, all without inducing adverse effects. For that reason, drug delivery approaches, formulations, technologies and systems for transporting pharmacological ncRNA compounds to achieve a diagnostic or therapeutic effect in the human body are in demand. Here, we review the development of therapeutic lipid-based nanoparticles for delivery of miRNAs, one class of endogenous ncRNAs with specific regulatory functions. We outline challenges and opportunities for advanced miRNA-based therapies, and discuss the complexity associated with the delivery of functional miRNAs. Novel strategies are addressed how to deal with the most critical points in miRNA delivery, such as toxicity, specific targeting of disease sites, proper cellular uptake and endosomal escape of miRNAs. Current fields of application and various preclinical settings involving miRNA therapeutics are discussed, providing an outlook to future clinical approaches. Following the current trends and technological developments in nanomedicine exciting new delivery systems for ncRNA-based therapeutics can be expected in upcoming years.
Collapse
Affiliation(s)
- Marcel Scheideler
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, Heidelberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Ivan Vidakovic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria.
| | - Ruth Prassl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria.
| |
Collapse
|
30
|
Muzzalupo R, Mazzotta E. Do niosomes have a place in the field of drug delivery? Expert Opin Drug Deliv 2019; 16:1145-1147. [DOI: 10.1080/17425247.2019.1663821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Rita Muzzalupo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Elisabetta Mazzotta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
31
|
Song P, Yang C, Thomsen JS, Dagnæs-Hansen F, Jakobsen M, Brüel A, Deleuran B, Kjems J. Lipidoid-siRNA Nanoparticle-Mediated IL-1β Gene Silencing for Systemic Arthritis Therapy in a Mouse Model. Mol Ther 2019; 27:1424-1435. [PMID: 31153827 DOI: 10.1016/j.ymthe.2019.05.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 11/18/2022] Open
Abstract
Interleukin-1 beta (IL-1β) plays a central role in the induction of rheumatoid arthritis (RA). In the present study, we demonstrated that lipidoid-polymer hybrid nanoparticle (FS14-NP) can efficiently deliver siRNA against IL-1β (siIL-1β) to macrophages and effectively suppress the pathogenesis of experimental arthritis induced by collagen antibody (CAIA mice). FS14-NP/siIL-1β achieved approximately 70% and 90% gene-silencing efficiency in the RAW 264.7 cell line and intraperitoneal macrophages, respectively. Intravenous administration of FS14-NP/siRNA led to rapid accumulation of siRNA in macrophages within the arthritic joints. Furthermore, FS14-NP/siIL-1β treatment lowered the expression of pro-inflammatory cytokines in arthritic joints and dramatically attenuated ankle swelling, bone erosion, and cartilage destruction. These results demonstrate that FS14-NP/siIL-1β may represent an effective therapy for systemic arthritis and other inflammatory disorders.
Collapse
Affiliation(s)
- Ping Song
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Chuanxu Yang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
| | | | | | - Maria Jakobsen
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Bent Deleuran
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark; Department of Rheumatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus C, Denmark; Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
32
|
Xiao Y, Shi K, Qu Y, Chu B, Qian Z. Engineering Nanoparticles for Targeted Delivery of Nucleic Acid Therapeutics in Tumor. Mol Ther Methods Clin Dev 2019; 12:1-18. [PMID: 30364598 PMCID: PMC6197778 DOI: 10.1016/j.omtm.2018.09.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the past 10 years, with the increase of investment in clinical nano-gene therapy, there are many trials that have been discontinued due to poor efficacy and serious side effects. Therefore, it is particularly important to design a suitable gene delivery system. In this paper, we introduce the application of liposomes, polymers, and inorganics in gene delivery; also, different modifications with some stimuli-responsive systems can effectively improve the efficiency of gene delivery and reduce cytotoxicity and other side effects. Besides, the co-delivery of chemotherapy drugs with a drug tolerance-related gene or oncogene provides a better theoretical basis for clinical cancer gene therapy.
Collapse
Affiliation(s)
- Yao Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Kun Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ying Qu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Bingyang Chu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Zhiyong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University and Collaborative Innovation Center, Chengdu, China
| |
Collapse
|
33
|
Ge X, Wei M, He S, Yuan WE. Advances of Non-Ionic Surfactant Vesicles (Niosomes) and Their Application in Drug Delivery. Pharmaceutics 2019; 11:pharmaceutics11020055. [PMID: 30700021 PMCID: PMC6410054 DOI: 10.3390/pharmaceutics11020055] [Citation(s) in RCA: 263] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/25/2019] [Accepted: 01/27/2019] [Indexed: 12/13/2022] Open
Abstract
Non-Ionic surfactant based vesicles, also known as niosomes, have attracted much attention in pharmaceutical fields due to their excellent behavior in encapsulating both hydrophilic and hydrophobic agents. In recent years, it has been discovered that these vesicles can improve the bioavailability of drugs, and may function as a new strategy for delivering several typical of therapeutic agents, such as chemical drugs, protein drugs and gene materials with low toxicity and desired targeting efficiency. Compared with liposomes, niosomes are much more stable during the formulation process and storage. The required pharmacokinetic properties can be achieved by optimizing components or by surface modification. This novel delivery system is also easy to prepare and scale up with low production costs. In this paper, we summarize the structure, components, formulation methods, quality control of niosome and its applications in chemical drugs, protein drugs and gene delivery.
Collapse
Affiliation(s)
- Xuemei Ge
- School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Minyan Wei
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Suna He
- Department of Pharmaceutical Sciences, Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Wei-En Yuan
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, and School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
34
|
Grijalvo S, Puras G, Zárate J, Sainz-Ramos M, Qtaish NAL, López T, Mashal M, Attia N, Díaz D, Pons R, Fernández E, Pedraz JL, Eritja R. Cationic Niosomes as Non-Viral Vehicles for Nucleic Acids: Challenges and Opportunities in Gene Delivery. Pharmaceutics 2019; 11:E50. [PMID: 30678296 PMCID: PMC6409589 DOI: 10.3390/pharmaceutics11020050] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/11/2022] Open
Abstract
Cationic niosomes have become important non-viral vehicles for transporting a good number of small drug molecules and macromolecules. Growing interest shown by these colloidal nanoparticles in therapy is determined by their structural similarities to liposomes. Cationic niosomes are usually obtained from the self-assembly of non-ionic surfactant molecules. This process can be governed not only by the nature of such surfactants but also by others factors like the presence of additives, formulation preparation and properties of the encapsulated hydrophobic or hydrophilic molecules. This review is aimed at providing recent information for using cationic niosomes for gene delivery purposes with particular emphasis on improving the transportation of antisense oligonucleotides (ASOs), small interference RNAs (siRNAs), aptamers and plasmids (pDNA).
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, E-01006 Vitoria-Gasteiz and E-03202 Elche, Spain.
| | - Gustavo Puras
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, E-01006 Vitoria-Gasteiz and E-03202 Elche, Spain.
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Jon Zárate
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, E-01006 Vitoria-Gasteiz and E-03202 Elche, Spain.
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Myriam Sainz-Ramos
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, E-01006 Vitoria-Gasteiz and E-03202 Elche, Spain.
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Nuseibah A L Qtaish
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, E-01006 Vitoria-Gasteiz and E-03202 Elche, Spain.
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Tania López
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, E-01006 Vitoria-Gasteiz and E-03202 Elche, Spain.
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Mohamed Mashal
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Noha Attia
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - David Díaz
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206 La Laguna, Tenerife, Spain.
- Institut für Organische Chemie, Universität Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany.
| | - Ramon Pons
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
| | - Eduardo Fernández
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, E-01006 Vitoria-Gasteiz and E-03202 Elche, Spain.
- Neuroprothesis and Neuroengineering Research Group, Miguel Hernández University, E-03202 Elche, Spain.
| | - José Luis Pedraz
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, E-01006 Vitoria-Gasteiz and E-03202 Elche, Spain.
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain.
| | - Ramon Eritja
- Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Jordi Girona 18-26, E-08034 Barcelona, Spain.
- Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), E-08034 Barcelona, E-01006 Vitoria-Gasteiz and E-03202 Elche, Spain.
| |
Collapse
|
35
|
Bai Z, Wei J, Yu C, Han X, Qin X, Zhang C, Liao W, Li L, Huang W. Non-viral nanocarriers for intracellular delivery of microRNA therapeutics. J Mater Chem B 2019; 7:1209-1225. [DOI: 10.1039/c8tb02946f] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
MicroRNAs are small regulatory noncoding RNAs that regulate various biological processes. Herein, we will present the development of the strategies for intracellular miRNAs delivery, and specially focus on the rational designed routes, their mechanisms of action, as well as potential therapeutics used in the host cells orin vivostudies.
Collapse
Affiliation(s)
- Zhiman Bai
- School of Physics and Materials Science
- Anhui University
- Hefei 230601
- China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Xisi Han
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Wenzhen Liao
- Department of Nutrition and Food Hygiene
- Guangdong Provincial Key Laboratory of Tropical Disease Research
- School of Public Health
- Southern Medical University
- Guangzhou 510515
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM)
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
- Nanjing Tech University (NanjingTech)
- Nanjing 211816
- China
| |
Collapse
|