1
|
Kheirabadi NR, Chiolerio A, Szaciłowski K, Adamatzky A. Neuromorphic Liquids, Colloids, and Gels: A Review. Chemphyschem 2023; 24:e202200390. [PMID: 36002385 PMCID: PMC10092099 DOI: 10.1002/cphc.202200390] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/23/2022] [Indexed: 01/07/2023]
Abstract
Advances in flexible electronic devices and robotic software require that sensors and controllers be virtually devoid of traditional electronic components, be deformable and stretch-resistant. Liquid electronic devices that mimic biological synapses would make an ideal core component for flexible liquid circuits. This is due to their unbeatable features such as flexibility, reconfiguration, fault tolerance. To mimic synaptic functions in fluids we need to imitate dynamics and complexity similar to those that occurring in living systems. Mimicking ionic movements are considered as the simplest platform for implementation of neuromorphic in material computing systems. We overview a series of experimental laboratory prototypes where neuromorphic systems are implemented in liquids, colloids and gels.
Collapse
Affiliation(s)
| | - Alessandro Chiolerio
- Unconventional Computing Laboratory, UWE, Bristol, UK.,Center for Bioinspired Soft Robotics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Konrad Szaciłowski
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Krakow, Poland
| | | |
Collapse
|
2
|
Kang J, Jang Y, Moon SH, Kang Y, Kim J, Kim Y, Park SK. Symmetrically Ion-Gated In-Plane Metal-Oxide Transistors for Highly Sensitive and Low-Voltage Driven Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103275. [PMID: 35240004 PMCID: PMC9069198 DOI: 10.1002/advs.202103275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
To provide a unique opportunity for on-chip scaled bioelectronics, a symmetrically gated metal-oxide electric double layer transistor (EDLT) with ion-gel (IG) gate dielectric and simple in-plane Corbino electrode architecture is proposed. Using amorphous indium-gallium-zinc oxide (a-IGZO) semiconductor and IG dielectric layers, low-voltage driven EDLTs with high ionotronic effects can be realized. More importantly, in contrast to the conventional asymmetric rectangular EDLTs which can cause non-uniform potential variation in the active channel layer and eventually degrade the sensing performance, the new symmetrical in-plane type EDLTs achieve high and spatially uniform ion responsive behaviors. The symmetrically gated a-IGZO EDLTs exhibited a responsivity of 129.4% to 5 ppm mercury (Hg2+ ) ions which are approximately three times higher than that with conventional electrode structure (responsivity of 38.5%). To confirm the viability of the new device architectures and the findings, the detailed mechanism of the symmetric gating effects in the in-plane EDLTs with a variety of electrical characterization and 3D fine element analysis simulations is also discussed.
Collapse
Affiliation(s)
- Jingu Kang
- School of Electrical and Electronics EngineeringChung‐Ang UniversitySeoul06974Korea
| | - Young‐Woo Jang
- School of Electrical and Electronics EngineeringChung‐Ang UniversitySeoul06974Korea
| | - Sang Hee Moon
- School of Electrical and Electronics EngineeringChung‐Ang UniversitySeoul06974Korea
| | - Youngjin Kang
- School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419Korea
| | - Jaehyun Kim
- Department of Chemistry and Materials Research CenterNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Yong‐Hoon Kim
- School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwon16419Korea
| | - Sung Kyu Park
- School of Electrical and Electronics EngineeringChung‐Ang UniversitySeoul06974Korea
| |
Collapse
|
3
|
Programmable Electrofluidics for Ionic Liquid Based Neuromorphic Platform. MICROMACHINES 2019; 10:mi10070478. [PMID: 31319459 PMCID: PMC6680446 DOI: 10.3390/mi10070478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 11/16/2022]
Abstract
Due to the limit in computing power arising from the Von Neumann bottleneck, computational devices are being developed that mimic neuro-biological processing in the brain by correlating the device characteristics with the synaptic weight of neurons. This platform combines ionic liquid gating and electrowetting for programmable placement/connectivity of the ionic liquid. In this platform, both short-term potentiation (STP) and long-term potentiation (LTP) are realized via electrostatic and electrochemical doping of the amorphous indium gallium zinc oxide (aIGZO), respectively, and pulsed bias measurements are demonstrated for lower power considerations. While compatible with resistive elements, we demonstrate a platform based on transitive amorphous indium gallium zinc oxide (aIGZO) pixel elements. Using a lithium based ionic liquid, we demonstrate both potentiation (decrease in device resistance) and depression (increase in device resistance), and propose a 2D platform array that would enable a much higher pixel count via Active Matrix electrowetting.
Collapse
|
4
|
Zhang C, Zhao W, Bi S, Rouleau CM, Fowlkes JD, Boldman WL, Gu G, Li Q, Feng G, Rack PD. Low-Temperature Charging Dynamics of the Ionic Liquid and Its Gating Effect on FeSe 0.5Te 0.5 Superconducting Films. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17979-17986. [PMID: 31021595 DOI: 10.1021/acsami.9b02373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Ionic liquids (ILs) have been investigated extensively because of their unique ability to form the electric double layer (EDL), which induces high electrical field. For certain materials, low-temperature IL charging is needed to limit the electrochemical etching. Here, we report our investigation of the low-temperature charging dynamics in two widely used ILs-DEME-TF2N and C4mim-TF2N. Results show that the formation of the EDL at ∼220 K requires several hours relative to milliseconds at room temperature, and an equivalent voltage Ve is introduced as a measure of the EDL formation during the biasing process. The experimental observation is supported by molecular dynamics simulation, which shows that the dynamics are logically a function of gate voltage, time, and temperature. To demonstrate the importance of understanding the charging dynamics, a 140 nm thick FeSe0.5Te0.5 film was biased using the DEME IL, showing a tunable Tc between 18 and 35 K. Notably, this is the first observation of the tunability of the Tc in thick film FeSe0.5Te0.5 superconductors.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Materials Science and Engineering , University of Tennessee , Knoxville , Tennessee 37996 , United States
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Wei Zhao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Sheng Bi
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
| | - Christopher M Rouleau
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Jason D Fowlkes
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Walker L Boldman
- Department of Materials Science and Engineering , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Genda Gu
- Department of Condensed Matter Physics and Materials Science , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Qiang Li
- Department of Condensed Matter Physics and Materials Science , Brookhaven National Laboratory , Upton , New York 11973 , United States
| | - Guang Feng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering , Huazhong University of Science and Technology (HUST) , Wuhan 430074 , China
- Shenzhen Research Institute of Huazhong University of Science and Technology , Shenzhen 518057 , China
| | - Philip D Rack
- Department of Materials Science and Engineering , University of Tennessee , Knoxville , Tennessee 37996 , United States
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| |
Collapse
|
5
|
Kumar M, Abbas S, Kim J. All-Oxide-Based Highly Transparent Photonic Synapse for Neuromorphic Computing. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34370-34376. [PMID: 30207159 DOI: 10.1021/acsami.8b10870] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The neuromorphic system processes enormous information even with very low energy consumption, which practically can be achieved with photonic artificial synapse. Herein, a photonic artificial synapse is demonstrated based on an all-oxide highly transparent device. The device consists of conformally grown In2O3/ZnO thin films on a fluorine-doped tin oxide/glass substrate. The device showed a loop opening in current-voltage characteristics, which was attributed to charge trapping/detrapping. Ultraviolet illumination-induced versatile features such as short-term/long-term plasticity and paired-pulse facilitation were truly confirmed. Further, photonic potentiation and electrical habituation were implemented. This study paves the way to develop a device in which current can be modulated under the action of optical stimuli, serving as a fundamental step toward the realization of low-cost synaptic behavior.
Collapse
|