1
|
Lv H, Yu H, Zhang H, Zhu F, Wang Z, Xu Q, Ji W. PDA and ZIF-8 double-modified melamine foam for efficient adsorption co-removal of multiple organic phosphorus flame retardants in environmental water. ENVIRONMENTAL RESEARCH 2025; 278:121713. [PMID: 40311901 DOI: 10.1016/j.envres.2025.121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/03/2025]
Abstract
ZIF-8 and polydopamine (PDA) double-modified melamine foam (MF), namely ZIF-8@PDA MF was fabricated using a new in-situ growth method for the co-removal of multiple organophosphorus flame retardants (OPFRs) from environmental water. The resulting ZIF-8@PDA MF exhibited a porous, three-dimensional (3D) cross-linked network in which ZIF-8 evenly distributed on MF via the PDA's adhesive properties, leading to a 17-fold increase in surface area (from 1.357 to 22.964 m2/g) to facilitate mass transfer and target binding. Through experimental confirmation, the mechanisms of hydrogen bonding, π-π, electrostatic and hydrophobic adsorption enable the effective removal of 11 types of OPFRs including aryl-, alkyl- and Cl-OPFRs. Compared to the adsorbents reported previously, ZIF-8@PDA MF achieved higher removal efficiencies (53.8%-99.7%), particularly a 30% improvement for highly polar TEP and TCEP. The adsorption behavior of OPFRs by ZIF-8@PDA MF followed a spontaneous, endothermic process, conforming to the pseudo-second-order model and Langmuir model. The adsorption equilibrium could be reached within 1 h, 2-48 times faster than most reported studies (2-48 h). In addition, ZIF-8@PDA MF was demonstrated to efficiently remove multiple OPFRs from raw environmental water and the reusability reached up to four cycles without requiring secondary separation, highlighting its practical applicability.
Collapse
Affiliation(s)
- Huijie Lv
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Haohan Yu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Huayin Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Ziyi Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| | - Wenliang Ji
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.
| |
Collapse
|
2
|
Wei D, Li J, Guo M, Xu J, Deng Q, Wang X. Rational selection of 4,4',4″-(1,3,5-triazine-2,4,6-triyl) trianiline-based covalent organic framework as adsorbent for effective co-extraction of aflatoxins, zearalenone and its metabolites from food and biological samples. Food Chem 2025; 463:141013. [PMID: 39243614 DOI: 10.1016/j.foodchem.2024.141013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/30/2024] [Accepted: 08/25/2024] [Indexed: 09/09/2024]
Abstract
Aflatoxins, zearalenone and its metabolites, as representative hazard mycotoxins cause adverse effects on food safety and human health. Developing a sensitive and reliable extraction and detection method is of great importance for monitoring their residue and exposure levels. In contrast to traditional trial-and-error selection steps, 4,4',4″-(1,3,5-triazine-2,4,6-triyl) trianiline covalent-bonding with 2,5-dihydroxyterephthalaldehyde, namely TAPT-OH-COF was screened as a potential adsorbent utilizing density functional theory calculations prior to the synthesis procedure. After experimental verification, magnetic TAPT-OH-COFs were prepared, characterized and applied for the extraction of aflatoxins, zearalenone and its metabolites from food and biological samples, coupled with high-performance liquid chromatography tandem mass spectrophy detection. Under the optimal conditions, the developed method exhibited low limits of quantification (0.05-0.50 μg/kg), satisfactory recoveries (75.8 %-110.9 %) and good precision with intraday and interday relative standard deviations (RSDs) not exceeding 12.2 %. This study may provide great potential for the selection of candidate adsorbents for multi-mycotoxins extraction from complex samples.
Collapse
Affiliation(s)
- Dan Wei
- Hangzhou Medical College, School of Laboratory Medicine and Bioengineering, Hangzhou, 310053, Zhejiang 311300, China; Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Hangzhou 310058, China
| | - Jianliang Li
- Hangzhou Medical College, School of Laboratory Medicine and Bioengineering, Hangzhou, 310053, Zhejiang 311300, China
| | - Ming Guo
- Zhejiang Chemical Production Quality Inspection Co., Ltd, Hangzhou 310023, China
| | - Jingjing Xu
- Hangzhou Medical College, School of Laboratory Medicine and Bioengineering, Hangzhou, 310053, Zhejiang 311300, China
| | - Qiao Deng
- Hangzhou Medical College, School of Laboratory Medicine and Bioengineering, Hangzhou, 310053, Zhejiang 311300, China.
| | - Xu Wang
- Hangzhou Medical College, School of Laboratory Medicine and Bioengineering, Hangzhou, 310053, Zhejiang 311300, China; Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Hangzhou 310058, China.
| |
Collapse
|
3
|
Wang S, Wang S, Chen T, Yu J, Shi Y, Chen G, Xu J, Qiu J, Zhu F, Ouyang G. Detection and health implications of phthalates in tea beverages in market: Application of novel solid-phase microextraction fibers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176031. [PMID: 39236820 DOI: 10.1016/j.scitotenv.2024.176031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Assessment and control of emerging organic pollutants in food have become critical for global food safety and health. The European Union has set standards for certain emerging organic pollutants, such as phthalic acid esters (PAEs) in food. Because of being endocrine disruptors, PAEs are toxic and carcinogenic to humans. Release of PAEs from packaging materials poses a potential risk to human health and causes environmental pollution. In this study, a highly sensitive analytical method for the detection of PAE contents in tea beverages was established using hydroxyl-functionalized covalent organic frameworks (COFs) as solid-phase microextraction (SPME) coating. Results indicate that functionalization with hydroxyl groups enhances the adsorption of PAEs. The proposed method exhibits a wide linear range (1-20,000 ng L-1), low limits of detection (> 0.048 ng L-1), and satisfactory recovery (72.8 %-127.3 %). To investigate the PAE contamination in beverages, contamination levels of six typical PAEs and their health impacts were surveyed across various brands/types/packaging materials of tea beverages sold in China. Results of the hazard quotient and hazard index approaches suggest no or extremely low health concerns regarding PAE levels. We observe that hydroxyl groups functionalized on COFs enhance the adsorption of PAEs. Moreover, an important outcome of this study is development of an efficient and sensitive direct detection method for PAEs in complex tea matrices, providing a reliable approach for the assessment of PAEs in other complex matrices.
Collapse
Affiliation(s)
- Shaohan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaozhuang Wang
- College of Economics and Management, South China Agricultural University, Guangzhou 510642, Guangdong, China
| | - Tianning Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiaxing Yu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yueru Shi
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Guosheng Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianqiao Xu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Junlang Qiu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Gangfeng Ouyang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, KLGHEI of Environment and Energy Chemistry, School of Chemistry, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center Guangzhou), 100 Xianlie Middle Road, Guangzhou 510070, China; Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou 450001, China
| |
Collapse
|
4
|
Fan X, Song X, Zhang Y, Li Z. Unveiling the influence of hydrophobicity on inhibiting hydrogen dissociation for enhanced photocatalytic hydrogen evolution of covalent organic frameworks. J Colloid Interface Sci 2024; 673:836-846. [PMID: 38908283 DOI: 10.1016/j.jcis.2024.06.087] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/24/2024] [Accepted: 06/09/2024] [Indexed: 06/24/2024]
Abstract
Covalent organic frameworks (COFs) have gained considerable interest as candidate photocatalysts for hydrogen evolution. In this work, we synthesized β-keto-enamine-based COFs (TpPa-X, TpDB, and TpDTP) to explore the relations between structures and photocatalytic hydrogen evolution. COFs were divided into two groups: (1) TpPa-X with different substituents attached to the TpPa backbone and (2) COFs featuring diamine linkers of varied lengths (TpDB and TpDTP). Experiments and density functional theory (DFT) calculations show that moderate hydrophobicity is favorable for the photocatalytic hydrogen evolution process, and acceptable contact angles are anticipated to range from 65° to 80°. Naturally, there are comprehensive factors that affect photocatalytic reactions, and the regulation of different backbones and substituents can considerably affect the performance of COFs for photocatalytic hydrogen evolution in terms of electronic structure, specific surface area, surface wettability, carrier separation efficiency, and hydrogen dissociation energy. Results show that TpPa-Cl2 (TpPa-X, X = Cl2) demonstrates the highest photocatalytic activity, approximately 14.51 mmol g-1h-1, with an apparent quantum efficiency of 4.62 % at 420 nm. This work provides guidance for designing efficient COF-based photocatalysts.
Collapse
Affiliation(s)
- Xiaoli Fan
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Da-Zhi Street, Harbin, 150001, PR China
| | - Xin Song
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Da-Zhi Street, Harbin, 150001, PR China
| | - Yangpeng Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Da-Zhi Street, Harbin, 150001, PR China
| | - Zhonghua Li
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No.92, West Da-Zhi Street, Harbin, 150001, PR China.
| |
Collapse
|
5
|
Du L, Li X, Lu X, Guo Y. The synthesis strategies of covalent organic frameworks and advances in their application for adsorption of heavy metal and radionuclide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173478. [PMID: 38815828 DOI: 10.1016/j.scitotenv.2024.173478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/09/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Covalent organic frameworks (COFs) are a novel type of porous materials, with unique properties, such as large specific surface areas, high porosity, pronounced crystallinity, tunable pore sizes, and easy functionalization, and thus have received considerable attention in recent years. COFs play an essential role in the catalytic degradation, adsorption, and separation of heavy metals, radionuclides. In recent years, considering several outstanding characteristics of COFs, including their good thermal/chemical stability, high crystallinity, and remarkable adsorption capacity, they have been widely used in the removal of various environment pollutants. This review primarily discusses the synthesis strategies of COFs along with their diverse synthesis methods, and provides a comprehensive summary and analysis of recent research advances in the use of COFs for removing heavy metal ions and radionuclides from water bodies. Additionally, the adsorption mechanism of COFs with regard to metal ions was determined by analyzing the structural characteristics of COFs. Finally, the future research directions on COFs adsorb rare earth element was discussed.
Collapse
Affiliation(s)
- Lili Du
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS and Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiang Li
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS and Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaofeng Lu
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS and Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Yong Guo
- Key Laboratory of Chemistry of Northwestern Plant Resources, CAS and Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
6
|
Huo Y, Guo R, Zhao C, Ma X, Wen T, Ai Y. Alkyl modified cationic COFs for preferential trapping of charge dispersed perrhenate: Synergistic hydrophobicity and anion-recognition effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169000. [PMID: 38040349 DOI: 10.1016/j.scitotenv.2023.169000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Charge dispersed oxoanionic pollutants (such as TcO4- and ReO4-) with low hydrophilicity are typically difficult to be preferentially extracted. Recently, cationic covalent organic frameworks (COFs) have received considerable attention for anions trapping. Two cationic COFs, denoted as Tp-S and Tp-D, were synthesized by incorporating ethyl and cyclic alkylated diquats into 2,2'-bipyridine-based COF. A synergistic effect of hydrophobic channel and anion-recognition sites were achieved by branched chains, which effectively surmounted the Hofmeister bias. Both Tp-S and Tp-D exhibited raising removal performance for surrogate ReO4- at high acidity with adsorption capacities of 435.6 and 291.4 mg g-1, respectively. Obvious variations caused by side chains were displayed in microstructures and adsorption performance. Specially, compared with Tp-D, Tp-S demonstrated desirable priority in uptake capacity and selectivity. In a real-scenario experiment, Tp-S could remove 72.8 % of ReO4- in a simulated Hanford LAW stream, which was attributed to the spatial effects and charge distribution arising from the open and flexible side chains of Tp-S. Otherwise, the rigid cyclic chains endowed pyridine-base Tp-D material an unprecedented alkaline stability. Spectra and theoretical calculations revealed a mechanism of preferential capture based on electrostatic interaction and hydrogen bonding between charge dispersed ReO4-/TcO4- and Tp-S/Tp-D. This work provides an innovative perspective to tailored materials for the treatment of oxoanionic contaminants.
Collapse
Affiliation(s)
- Yingzhong Huo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Ruoxuan Guo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Chaofeng Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Xinjie Ma
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Tao Wen
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yuejie Ai
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
7
|
Kamaraj M, Suresh Babu P, Shyamalagowri S, Pavithra MKS, Aravind J, Kim W, Govarthanan M. β-cyclodextrin polymer composites for the removal of pharmaceutical substances, endocrine disruptor chemicals, and dyes from aqueous solution- A review of recent trends. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119830. [PMID: 38141340 DOI: 10.1016/j.jenvman.2023.119830] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/25/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Cyclodextrin (CD) and its derivatives are receiving attention as a new-generation adsorbent for water pollution treatment due to their external hydrophilic and internal hydrophobic properties. Among types of CD, β-Cyclodextrin (βCD) has been a material of choice with a proven track record for a range of utilities in distinct domains, owing to its unique cage-like structural conformations and inclusion complex-forming ability, especially to mitigate emerging contaminants (ECs). This article outlines βCD composites in developing approaches of their melds and composites for purposes such as membranes for removal of the ECs in aqueous setups have been explored with emphasis on recent trends. Electrospinning has bestowed an entirely different viewpoint on polymeric materials, comprising βCD, in the framework of diverse functions across a multitude of niches. Besides, this article especially discusses βCD polymer composite membrane-based removal of contaminants such as pharmaceutical substances, endocrine disruptors chemicals, and dyes. Finally, in this article, the challenges and future directions of βCD-based adsorbents are discussed, which may shed light on pragmatic commercial applications of βCD polymer composite membranes.
Collapse
Affiliation(s)
- M Kamaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology-Ramapuram, Chennai, 600089, Tamil Nadu, India; Life Science Division, Faculty of Health and Life Sciences, INTI International University, Nilai, 71800, Malaysia
| | - P Suresh Babu
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India.
| | - S Shyamalagowri
- PG and Research Department of Botany, Pachaiyappa's College, Chennai, 600030, Tamil Nadu, India
| | - M K S Pavithra
- Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, 638401, Tamil Nadu, India
| | - J Aravind
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Woong Kim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - M Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600 077, India.
| |
Collapse
|
8
|
Cheng J, Ma J, Li S, Wang S, Huang C, Lv M, Li J, Wang X, Chen L. A heteropore covalent organic framework for highly selective enrichment of aryl-organophosphate esters in environmental water coupled with UHPLC-MS/MS determination. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132613. [PMID: 37748313 DOI: 10.1016/j.jhazmat.2023.132613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
The identification of an increasing number of aryl organophosphate esters (aryl-OPEs) in environmental samples has led to growing attention recently. Due to the potential adverse effects on human health and environment, development of new analytical methods for sensitive and selective determination of aryl-OPEs in complex matrices is urgently needed. Here, a novel analytical method for the identification and determination of trace amounts of aryl-OPEs in water samples is developed by using melamine sponge@heteropore covalent organic framework (MS@HCOF) based on vortex-assisted extraction (VAE) prior to UHPLC-MS/MS analysis. The MS@HCOF was rationally designed and synthesized through an in-situ growth strategy and exhibited superior selectivity toward aryl-OPEs compared with that of MS@single-pore COF (MS@SCOF) due to steric effect. A systematic optimization was conducted on important parameters of VAE, resulting in the successful extraction of nine aryl-OPEs in just 6 min. Under optimized conditions, the limits of detection (S/N = 3) and quantification (S/N = 10) were within the ranges of 0.001-0.027 and 0.005-0.091 ng/L for nine aryl-OPEs, respectively. The validated method was proven applicable to real water samples, i.e., the recoveries were 65.3-119.5 % for seawater, 59.4-112.9 % for effluent, and 76.0-117.4 % for tap water. Furthermore, the adsorption mechanisms were explored through density functional theory (DFT) calculations. DFT results revealed that a notable selective enrichment capacity of MS@HCOF towards aryl-OPEs stems from π-π conjugation and hydrogen bonding. The established method benefits from the advantages of high selectivity and sensitivity for the ultra-trace determination of aryl-OPEs.
Collapse
Affiliation(s)
- Jiawen Cheng
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Jiping Ma
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China.
| | - Shuang Li
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Shasha Wang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Chaonan Huang
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
9
|
Zhao J, Shen X, Liu YF, Zou RY. (3,3)-Connected Triazine-Based Covalent Organic Frameworks for Efficient CO 2 Separation over N 2 and Dye Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:16367-16373. [PMID: 37939229 DOI: 10.1021/acs.langmuir.3c02095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Covalent organic frameworks (COFs) are a promising class of adsorption and separation materials that can meet the needs of ecological sustainability, such as the removal of carbon dioxide and organic dyes. The two synthesized (3,3)-connected triazine-based COFs demonstrate high specific surface area and good thermal and chemical stability. COFZ1 shows good CO2 adsorption selectivities for different CO2 and N2 volume percentage systems at 273 K and 1 bar, with an ideal adsorbed solution theory (IAST) CO2 selectivity (i.e., separation factor) of 35.09 for the simulated flue gas component and a CO2 adsorption capacity of 24.21 cm3 g-1. In the aqueous dye solutions, both COFs present good adsorption performance for the selected dyes, and the maximum adsorption capacities of COFZ1 for methylene blue (MB) and gentian violet (GV) reach 510 and 564 mg g-1, respectively. Each of the two COFs shows a high anti-interference performance and excellent recyclability. The adsorption capacities of two COFs for RhB (Rhodamine B), MB, and GV hardly vary with pH values and salt concentrations. The adsorption behaviors of the two COFs for dyes follow Langmuir isothermal adsorption and quasi-secondary kinetic adsorption, approaching monolayer adsorption and chemisorption.
Collapse
Affiliation(s)
- Jie Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyu Shen
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yi-Fan Liu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ru-Yi Zou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
10
|
Paz R, Viltres H, Gupta NK, Phung V, Srinivasan S, Rajabzadeh AR, Leyva C. Covalent organic frameworks as highly versatile materials for the removal and electrochemical sensing of organic pollutants. CHEMOSPHERE 2023; 342:140145. [PMID: 37714485 DOI: 10.1016/j.chemosphere.2023.140145] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/04/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
The presence of persistent organic compounds in water has become a worldwide issue due to its resistance to natural degradation, inducing its environmental resilience. Therefore, the accumulation in water bodies, soils, and humans produces toxic effects. Also, low levels of organic pollutants can lead to serious human health issues, such as cancer, chronic diseases, thyroid complications, immune system suppression, etc. Therefore, developing efficient and economically viable remediation strategies motivates researchers to delve into novel domains within material science. Moreover, finding approaches to detect pollutants in drinking water systems is vital for safeguarding water safety and security. Covalent organic frameworks (COFs) are valuable materials constructed through strong covalent interactions between blocked monomers. These materials have tremendous potential in removing and detecting persistent organic pollutants due to their high adsorption capacity, large surface area, tunable porosity, porous structure, and recyclability. This review discusses various synthesis routes for constructing non-functionalized and functionalized COFs and their application in the remediation and electrochemical sensing of persistent organic compounds from contaminated water sources. The development of COF-based materials has some major challenges that need to be addressed for their suitability in the industrial configuration. This review also aims to highlight the importance of COFs in the environmental remediation application with detailed scrutiny of their challenges and outcomes in the current research scenario.
Collapse
Affiliation(s)
- Roxana Paz
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, 11500, CDMX, Mexico
| | - Herlys Viltres
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada
| | - Nishesh Kumar Gupta
- Department of Environmental Research, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Vivian Phung
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada
| | - Seshasai Srinivasan
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada.
| | - Amin Reza Rajabzadeh
- School of Engineering Practice and Technology, McMaster University, 1280 Main Street, West Hamilton, Ontario, L8S 4L8, Canada.
| | - Carolina Leyva
- Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, LNAgua, 11500, CDMX, Mexico.
| |
Collapse
|
11
|
Wu Y, Zheng W, Chen C, Yang L, Tong P, Zhong Y, Lin Z, Cai Z. Facile synthesis of spherical covalent organic frameworks for enrichment and quantification of aryl organophosphate esters in mouse serum and tissues. J Sep Sci 2023; 46:e2300482. [PMID: 37727055 DOI: 10.1002/jssc.202300482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Here, an imine-linked-based spherical covalent organic framework (COF) was prepared at room temperature. The as-synthesized spherical COF served as an adsorbent in dispersive solid-phase extraction (dSPE), by its virtue of great surface area (1542.68 m2 /g), regular distribution of pore size (2.95 nm), and excellent stability. Therefore, a simple and high-efficiency dispersive solid phase extraction method based on a spherical COF coupled with high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) was established to determine aryl organophosphate esters in biological samples. This approach displayed favorable linearity in the range of 10.0-1000.0 ng/L (r > 0.9989), a high signal enhancement factor (58.8-181.8 folds) with low limits of detection (0.3-3.3 ng/L). Moreover, it could effectively eliminate complex matrix interference to accurately extract seven aryl organophosphate esters from mouse serum and tissue samples with spiked recoveries of 82.0%-117.4%. The as-synthesized spherical COF has been successfully applied in sample preparation. The dSPE-HPLC-MS/MS method based on a spherical COF has potential application to study the pollutants' metabolism in vivo.
Collapse
Affiliation(s)
- Yijing Wu
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Wenjun Zheng
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Canrong Chen
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Linyan Yang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Ping Tong
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Yanhui Zhong
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, P. R. China
| | - Zongwei Cai
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, P. R. China
| |
Collapse
|
12
|
Qin C, Yang Y, Wu X, Chen L, Liu Z, Tang L, Lyu L, Huang D, Wang D, Zhang C, Yuan X, Liu W, Wang H. Twistedly hydrophobic basis with suitable aromatic metrics in covalent organic networks govern micropollutant decontamination. Nat Commun 2023; 14:6740. [PMID: 37875482 PMCID: PMC10597987 DOI: 10.1038/s41467-023-42513-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 10/12/2023] [Indexed: 10/26/2023] Open
Abstract
The pre-designable structure and unique architectures of covalent organic frameworks (COFs) render them attractive as active and porous medium for water crisis. However, the effect of functional basis with different metrics on the regulation of interfacial behavior in advanced oxidation decontamination remains a significant challenge. In this study, we pre-design and fabricate different molecular interfaces by creating ordered π skeletons, incorporating different pore sizes, and engineering hydrophilic or hydrophobic channels. These synergically break through the adsorption energy barrier and promote inner-surface renewal, achieving a high removal rate for typical antibiotic contaminants (like levofloxacin) by BTT-DATP-COF, compared with BTT-DADP-COF and BTT-DAB-COF. The experimental and theoretical calculations reveal that such functional basis engineering enable the hole-driven levofloxacin oxidation at the interface of BTT fragments to occur, accompanying with electron-mediated oxygen reduction on terphenyl motif to active radicals, endowing it facilitate the balanced extraction of holes and electrons.
Collapse
Affiliation(s)
- Chencheng Qin
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, 410082, Changsha, China
| | - Yi Yang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, 410082, Changsha, China
| | - Xiaodong Wu
- College of Materials Science and Engineering, Nanjing Tech University, 210009, Nanjing, China
| | - Long Chen
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China
| | - Zhaoli Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China
| | - Lin Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, 410082, Changsha, China
| | - Lai Lyu
- Institute of Environmental Research at Greater Bay Area; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, 510006, Guangzhou, China
| | - Danlian Huang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, 410082, Changsha, China
| | - Dongbo Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, 410082, Changsha, China
| | - Chang Zhang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, 410082, Changsha, China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, 410082, Changsha, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, 100871, Beijing, China.
| | - Hou Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, 410082, Changsha, China.
| |
Collapse
|
13
|
Yu Y, Huang W, Yu W, Tang S, Yin H. Metagenomic insights into the mechanisms of triphenyl phosphate degradation by bioaugmentation with Sphingopyxis sp. GY. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115261. [PMID: 37459723 DOI: 10.1016/j.ecoenv.2023.115261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/02/2023] [Accepted: 07/12/2023] [Indexed: 09/20/2023]
Abstract
Biodegradation of triphenyl phosphate (TPHP) by Sphingopyxis sp. GY was investigated, and results demonstrated that TPHP could be completely degraded in 36 h with intracellular enzymes playing a leading role. This study, for the first time, systematically explores the effects of the typical brominated flame retardants, organophosphorus flame retardants, and heavy metals on TPHP degradation. Our findings reveal that TCPs, BDE-47, HBCD, Cd and Cu exhibit inhibitory effects on TPHP degradation. The hydrolysis-, hydroxylated-, monoglucosylated-, methylated products and glutathione (GSH) conjugated derivative were identified and new degradation pathway of TPHP mediated by microorganism was proposed. Moreover, toxicity evaluation experiments indicate a significant reduction in toxicity following treatment with Sphingopyxis sp. GY. To evaluate its potential for environmental remediation, we conducted bioaugmentation experiments using Sphingopyxis sp. GY in a TPHP contaminated water-sediment system, which resulted in excellent remediation efficacy. Twelve intermediate products were detected in the water-sediment system, including the observation of the glutathione (GSH) conjugated derivative, monoglucosylated product, (OH)2-DPHP and CH3-O-DPHP for the first time in microorganism-mediated TPHP transformation. We further identify the active microbial members involved in TPHP degradation within the water-sediment system using metagenomic analysis. Notably, most of these members were found to possess genes related to TPHP degradation. These findings highlight the significant reduction of TPHP achieved through beneficial interactions and cooperation established between the introduced Sphingopyxis sp. GY and the indigenous microbial populations stimulated by the introduced bacteria. Thus, our study provides valuable insights into the mechanisms, co-existed pollutants, transformation pathways, and remediation potential associated with TPHP biodegradation, paving the way for future research and applications in environmental remediation strategies.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Wantang Huang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Wenyan Yu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China
| | - Shaoyu Tang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China.
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
14
|
Yang J, Huang L, You J, Yamauchi Y. Magnetic Covalent Organic Framework Composites for Wastewater Remediation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301044. [PMID: 37156746 DOI: 10.1002/smll.202301044] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Covalent organic frameworks (COFs) with high specific surface area, tailored structure, easy functionalization, and excellent chemical stability have been extensively exploited as fantastic materials in various fields. However, in most cases, COFs prepared in powder form suffer from the disadvantages of tedious operation, strong tendency to agglomerate, and poor recyclability, greatly limiting their practical application in environmental remediation. To tackle these issues, the fabrication of magnetic COFs (MCOFs) has attracted tremendous attention. In this review, several reliable strategies for the fabrication of MCOFs are summarized. In addition, the recent application of MCOFs as outstanding adsorbents for the removal of contaminants including toxic metal ions, dyes, pharmaceuticals and personal care products, and other organic pollutants is discussed. Moreover, in-depth discussions regarding the structural parameters affecting the practical potential of MCOFs are highlighted in detail. Finally, the current challenges and future prospects of MCOFs in this field are provided with the expectation to boost their practical application.
Collapse
Affiliation(s)
- Juan Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Lab of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, LiuFang Campus, No. 206, Donghu New & High Technology Development Zone Wuhan, Guanggu 1st Road, Wuhan, Hubei, 430205, P. R. China
| | - Lijin Huang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, No. 388 Lumo Road, Hongshan District, Wuhan, 430074, P. R. China
| | - Jungmok You
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Yusuke Yamauchi
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, South Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8603, Japan
| |
Collapse
|
15
|
Sheta SM, Hamouda MA, Ali OI, Kandil AT, Sheha RR, El-Sheikh SM. Recent progress in high-performance environmental impacts of the removal of radionuclides from wastewater based on metal-organic frameworks: a review. RSC Adv 2023; 13:25182-25208. [PMID: 37622006 PMCID: PMC10445089 DOI: 10.1039/d3ra04177h] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
The nuclear industry is rapidly developing and the effective management of nuclear waste and monitoring the nuclear fuel cycle are crucial. The presence of various radionuclides such as uranium (U), europium (Eu), technetium (Tc), iodine (I), thorium (Th), cesium (Cs), and strontium (Sr) in the environment is a major concern, and the development of materials with high adsorption capacity and selectivity is essential for their effective removal. Metal-organic frameworks (MOFs) have recently emerged as promising materials for removing radioactive elements from water resources due to their unique properties such as tunable pore size, high surface area, and chemical structure. This review provides an extensive analysis of the potential of MOFs as adsorbents for purifying various radionuclides rather than using different techniques such as precipitation, filtration, ion exchange, electrolysis, solvent extraction, and flotation. This review discusses various MOF fabrication methods, focusing on minimizing environmental impacts when using organic solvents and solvent-free methods, and covers the mechanism of MOF adsorption towards radionuclides, including macroscopic and microscopic views. It also examines the effectiveness of MOFs in removing radionuclides from wastewater, their behavior on exposure to high radiation, and their renewability and reusability. We conclude by emphasizing the need for further research to optimize the performance of MOFs and expand their use in real-world applications. Overall, this review provides valuable insights into the potential of MOFs as efficient and durable materials for removing radioactive elements from water resources, addressing a critical issue in the nuclear industry.
Collapse
Affiliation(s)
- Sheta M Sheta
- Inorganic Chemistry Department, National Research Centre 33 El-Behouth St., Dokki Giza 12622 Egypt +201009697356
| | - Mohamed A Hamouda
- Chemistry Department, Faculty of Science, Helwan University Ain Helwan Cairo 11795 Egypt +201098052633
| | - Omnia I Ali
- Chemistry Department, Faculty of Science, Helwan University Ain Helwan Cairo 11795 Egypt +201098052633
| | - A T Kandil
- Chemistry Department, Faculty of Science, Helwan University Ain Helwan Cairo 11795 Egypt +201098052633
| | - Reda R Sheha
- Nuclear Chem. Dept., Hot Lab Center, Egyptian Atomic Energy Authority P. O. 13759 Cairo Egypt +20-27142451 +201022316076
| | - Said M El-Sheikh
- Nanomaterials and Nanotechnology Department, Central Metallurgical R & D Institute Cairo 11421 Egypt
| |
Collapse
|
16
|
Li L, Li J, Yan Y, Ma R, Zhang X, Wang J, Shen Y, Ullah H, Lu L. Removal of organophosphorus flame retardant by biochar-coated nZVI activating persulfate: Synergistic mechanism of adsorption and catalytic degradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121880. [PMID: 37236590 DOI: 10.1016/j.envpol.2023.121880] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/21/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Triphenyl phosphate (TPhP) is a typical aromatic-based non-chlorinated organophosphorus flame retardant, which has been widely detected in a variety of environments and poses high environmental and human health risks. In this study, biochar coated nano-zero-valent iron (nZVI) was fabricated to activate persulfate (PS) to degrade TPhP from water. A range of biochars (BC400, BC500, BC600, BC700, and BC800) was prepared as potential support to coat nZVI by pyrolyzing corn stalk at 400, 500, 600, 700 and 800 °C. As outperformed other biochars in adsorption rate, adsorption capacity, and less reluctant to be influenced by environmental factors (pH, humic acid (HA), coexistence of anions), BC800 was to act as support to coat nZVI (labeled as BC800@nZVI). SEM, TEM, XRD and XPS characterization showed that nZVI was successfully supported on the BC800. Removal efficiency of 10 mg L-1 TPhP by BC800@nZVI/PS could reach to 96.9% with a high catalytic degradation kinetic rate of 0.0484 min-1 under optimal condition. The removal efficiency remained stable in a wide pH range (3-9) and moderate concentration of HA and coexistence of anions, demonstrated the promising of using BC800@nZVI/PS system to eliminate TPhP contamination. Results from the radical scavenging and electron paramagnetic resonance (EPR) experiments demonstrated radical pathway (i.e. SO4·- and HO·) and non-radical pathway via 1O2 both play important role in TPhP degradation. The TPhP degradation pathway was proposed based on the six degradation intermediates analyzed by LC-MS. This study illustrated the synergistic mechanism of adsorption and catalytic oxidation removal of TPhP by BC800@nZVI/PS system, and provided a cost-efficient approach for TPhP remediation.
Collapse
Affiliation(s)
- Liangzhong Li
- State Environmental Protection Key Laboratory of Environ Pollut Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jianjun Li
- Longnan Ecology and Environment Bureau, Longnan, 746000, China
| | - Yile Yan
- State Environmental Protection Key Laboratory of Environ Pollut Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environ Pollut Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Xiaohui Zhang
- State Environmental Protection Key Laboratory of Environ Pollut Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Jun Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yi Shen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Lun Lu
- State Environmental Protection Key Laboratory of Environ Pollut Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| |
Collapse
|
17
|
Rasheed T, Ahmad Hassan A, Ahmad T, Khan S, Sher F. Organic Covalent Interaction-based Frameworks as Emerging Catalysts for Environment and Energy Applications: Current Scenario and Opportunities. Chem Asian J 2023:e202300196. [PMID: 37171867 DOI: 10.1002/asia.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/30/2023] [Indexed: 05/13/2023]
Abstract
The term "covalent organic framework" (COF) refers to a class of porous organic polymeric materials made from organic building blocks that have been covalently bonded. The preplanned and predetermined bonding of the monomer linkers allow them to demonstrate directional flexibility in two- or three-dimensional spaces. COFs are modern materials, and the discovery of new synthesis and linking techniques has made it possible to prepare them with a variety of favorable features and use them in a range of applications. Additionally, they can be post-synthetically altered or transformed into other materials of particular interest to produce compounds with enhanced chemical and physical properties. Because of its tunability in different chemical and physical states, post-synthetic modifications, high stability, functionality, high porosity and ordered geometry, COFs are regarded as one of the most promising materials for catalysis and environmental applications. This study highlights the basic advancements in establishing the stable COFs structures and various post-synthetic modification approaches. Further, the photocatalytic applications, such as organic transformations, degradation of emerging pollutants and removal of heavy metals, production of hydrogen and Conversion of carbon dioxide (CO2 ) to useful products have also been presented. Finally, the future research directions and probable outcomes have also been summarized, by focusing their promises for specialists in a variety of research fields.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Adv. Mater., King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Adeel Ahmad Hassan
- Department of Polymer Science and Engineering, Shanghai State Key Lab of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tauqir Ahmad
- Center for Advanced Specialty Chemicals Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44412, Republic of Korea
| | - Sardaraz Khan
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| |
Collapse
|
18
|
Lin Z, Jin Y, Chen Y, Li Y, Chen J, Zhuang X, Mo P, Liu H, Chen P, Lv W, Liu G. Leaf-like ionic covalent organic framework for the highly efficient and selective removal of non-steroidal anti-inflammatory drugs: Adsorption performance and mechanism insights. J Colloid Interface Sci 2023; 645:943-955. [PMID: 37182326 DOI: 10.1016/j.jcis.2023.05.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023]
Abstract
In recent years, ionic covalent organic frameworks (iCOFs) have become popular for the removal of contaminants from water. Herein, we employed 2-hydroxybenzene-1,3,5-tricarbaldehyde (TFP) and 1,3-diaminoguanidine monohydrochloride (DgCl) to develop a novel leaf-like iCOF (TFP-DgCl) for the highly efficient and selective removal of non-steroidal anti-inflammatory drugs (NSAIDs). The uniformly distributed adsorption sites, suitable pore sizes, and functional groups (hydroxyl groups, guanidinium groups, and aromatic groups) of the TFP-DgCl endowed it with powerful and selective adsorption capacities for NSAIDs. Remarkably, the optimal leaf-like TFP-DgCl demonstrated an excellent maximum adsorption capacity (1100.08 mg/g) for diclofenac sodium (DCF), to the best of our knowledge, the largest adsorption capacity ever achieved for DCF. Further testing under varying environmental conditions such as pH, different types of anions, and multi-component systems confirmed the practical suitability of the TFP-DgCl. Moreover, the prepared TFP-DgCl exhibited exceptional reusability and stability through six adsorption-desorption cycles. Finally, the adsorption mechanisms of NSAIDs on leaf-like TFP-DgCl were confirmed as electrostatic interactions, hydrogen bonding, and π-π interactions. This work significantly supplements to our understanding of iCOFs and provides new insights into the removal of NSAIDs from wastewater.
Collapse
Affiliation(s)
- Zili Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yuhan Jin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongxian Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yulin Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiayi Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoqin Zhuang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Peiying Mo
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Haijin Liu
- Key Laboratory for Yellow River and Huaihe River Water Environment and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Ping Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenying Lv
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guoguang Liu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
19
|
Shen S, Li X, Geng Z, Lu X. Kinetics and capacities of non-reactive phosphorus (NRP) sorption to crushed autoclaved aerated concrete (CAAC). J Environ Sci (China) 2023; 127:799-810. [PMID: 36522107 DOI: 10.1016/j.jes.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 06/17/2023]
Abstract
With growing interest in resource recovery and/or reuse, waste materials have been considered a promising alternative for phosphorus (P) adsorption because they are low-cost and easily accessible. Crushed autoclaved aerated concrete (CAAC), as representative construction waste, has been extensively studied for P removal in ecological technologies such as treatment wetlands. However, most of the previous studies focused on the adsorption of orthophosphate, namely reactive phosphorus, and lacked attention to non-reactive phosphorus (NRP) which is widely present in sewage. This study presents the first investigation on the potential and mechanism of CAAC removing four model NRP compounds. Adsorption isotherm and kinetics of NRP onto CAAC indicate that the removal of NRP was a chemisorption process and also involved a two-step pore diffusion process. The desorption experiment shows that different NRP species showed varying degrees of desorption. Most NRP was irreversibly adsorbed on CAAC. Among the model compounds considered in this study, the adsorption capacity and hydrolysis rate of organophosphorus were much less than that of inorganic phosphorus. Moreover, the adsorption of different NRP species by CAAC in the mesocosm study was different from the results of laboratory adsorption experiments, and the possible biodegradation was essential for the conversion and removal of NRP. The findings confirmed the validity of CAAC for NRP removal and the potential advantages of CAAC in terms of costs and environmental impact. This study will contribute to a better understanding of NRP conversion and environmental fate and that can be the basis for a refined risk assessment.
Collapse
Affiliation(s)
- Shuting Shen
- School Energy and Environment, Southeast University, Nanjing 210096, China; ERC Taihu Lake Water Environment Wuxi, Wuxi 214135, China
| | - Xiang Li
- School Energy and Environment, Southeast University, Nanjing 210096, China; ERC Taihu Lake Water Environment Wuxi, Wuxi 214135, China
| | - Zhuofan Geng
- School Energy and Environment, Southeast University, Nanjing 210096, China; ERC Taihu Lake Water Environment Wuxi, Wuxi 214135, China
| | - Xiwu Lu
- School Energy and Environment, Southeast University, Nanjing 210096, China; ERC Taihu Lake Water Environment Wuxi, Wuxi 214135, China.
| |
Collapse
|
20
|
Song K, Zhang H, Pan YT, Ur Rehman Z, He J, Wang DY, Yang R. Metal-organic framework-derived bird's nest-like capsules for phosphorous small molecules towards flame retardant polyurea composites. J Colloid Interface Sci 2023; 643:489-501. [PMID: 37088052 DOI: 10.1016/j.jcis.2023.04.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
The loading treatment of phosphorus flame retardants can mitigate their migration and plasticization effect. However, designing suitable carriers has remained a great challenge. Herein, two kinds of Co-based isomers, namely cobalt-cobalt layered double hydroxides (CoCo-LDH) and cobalt basic carbonate (CBC), were synthesized by employing ZIF-67 as a self-template, assemblied into two different nanostructures namely multi-yolk@shell CBC@CoCo-LDH (m-CBC@LDH) and solid CBC nanoparticles by facilely tuning the reaction time, which were employed as carriers, respectively. Subsequently, triphenyl phosphate (TPP)-loaded m-CBC@LDH (m-CBC-P@LDH) was prepared using TPP as the guest. The m-CBC@LDH with high specific surface area and hollow structure exhibited up to more than 30% of TPP loading. The peak of heat release rate and total heat release of polyurea composite blended with 5 wt% m-CBC-P@LDH reduced by 41.7% and 20.6% respectively, and the mechanical properties were less damaged. This work complements a feasible approach for preparation of metal-organic frameworks-derived flame retardant carriers.
Collapse
Affiliation(s)
- Kunpeng Song
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Henglai Zhang
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ye-Tang Pan
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - Zeeshan Ur Rehman
- College of Mechatronic Engineering, Changwon National University, Changwon, Gyeongsangnam-do 51140, Republic of Korea
| | - Jiyu He
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China.
| | - De-Yi Wang
- IMDEA Materials Institute, C/Eric Kandel, 2, 28906 Getafe, Madrid, Spain
| | - Rongjie Yang
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
21
|
Wang W, Gong M, Zhu D, Vakili M, Gholami Z, Jiang H, Zhou S, Qu H. Post-synthetic thiol modification of covalent organic frameworks for mercury(II) removal from water. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 14:100236. [PMID: 36793397 PMCID: PMC9923162 DOI: 10.1016/j.ese.2023.100236] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Various materials have been developed for environmental remediation of mercury ion pollution. Among these materials, covalent organic frameworks (COFs) can efficiently adsorb Hg(II) from water. Herein, two thiol-modified COFs (COF-S-SH and COF-OH-SH) were prepared, through the reaction between 2,5-divinylterephthalaldehyde and 1,3,5-tris-(4-aminophenyl)benzene, followed by post-synthetic modification using bis(2-mercaptoethyl) sulfide and dithiothreitol, respectively. The modified COFs showed excellent Hg(II) adsorption abilities with maximum adsorption capacities of 586.3 and 535.5 mg g-1 for COF-S-SH and COF-OH-SH, respectively. The prepared materials showed excellent selective absorbability for Hg(II) against multiple cationic metals in water. Unexpectedly, the experimental data showed that both co-existing toxic anionic diclofenac sodium (DCF) and Hg(II) performed positive effect for capturing another pollutant by these two modified COFs. Thus, a synergistic adsorption mechanism between Hg(II) and DCF on COFs was proposed. Moreover, density functional theory calculations revealed that synergistic adsorption occurred between Hg(II) and DCF, which resulted in a significant reduction in the adsorption system's energy. This work highlights a new direction for application of COFs to simultaneous removal of heavy metals and co-existing organic pollutants from water.
Collapse
Affiliation(s)
- Wei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province, 810016, China
| | - Minjuan Gong
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province, 810016, China
| | - Donghai Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province, 810016, China
| | | | - Zahra Gholami
- ORLEN UniCRE, a.s, Revoluční 1521/84, 400 01, Ústí nad Labem, Czech Republic
| | - Huanhuan Jiang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province, 810016, China
| | - Shuangxi Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, Qinghai Province, 810016, China
| | - Han Qu
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
22
|
Application of Hydrogen-Bonded Organic Frameworks in Environmental Remediation: Recent Advances and Future Trends. SEPARATIONS 2023. [DOI: 10.3390/separations10030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
The hydrogen-bonded organic frameworks (HOFs) are a class of porous materials with crystalline frame structures, which are self-assembled from organic structures by hydrogen bonding in non-covalent bonds π-π packing and van der Waals force interaction. HOFs are widely used in environmental remediation due to their high specific surface area, ordered pore structure, pore modifiability, and post-synthesis adjustability of various physical and chemical forms. This work summarizes some rules for constructing stable HOFs and the synthesis of HOF-based materials (synthesis of HOFs, metallized HOFs, and HOF-derived materials). In addition, the applications of HOF-based materials in the field of environmental remediation are introduced, including adsorption and separation (NH3, CO2/CH4 and CO2/N2, C2H2/C2He and CeH6, C2H2/CO2, Xe/Kr, etc.), heavy metal and radioactive metal adsorption, organic dye and pesticide adsorption, energy conversion (producing H2 and CO2 reduced to CO), organic dye degradation and pollutant sensing (metal ion, aniline, antibiotic, explosive steam, etc.). Finally, the current challenges and further studies of HOFs (such as functional modification, molecular simulation, application extension as remediation of contaminated soil, and cost assessment) are discussed. It is hoped that this work will help develop widespread applications for HOFs in removing a variety of pollutants from the environment.
Collapse
|
23
|
Cai Y, Chen Z, Wang S, Chen J, Hu B, Shen C, Wang X. Carbon-based nanocomposites for the elimination of inorganic and organic pollutants through sorption and catalysis strategies. Sep Purif Technol 2023; 308:122862. [DOI: doi.org/10.1016/j.seppur.2022.122862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
|
24
|
Zhang X, Zhu D, Wang S, Zhang J, Zhou S, Wang W. Efficient adsorption and degradation of dyes from water using magnetic covalent organic frameworks with a pyridinic structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34669-34683. [PMID: 36515876 DOI: 10.1007/s11356-022-24688-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Covalent organic frameworks (COFs) have promising applications in environmental remediation owing to their precise directional synthesis and superior adsorption ability. However, magnetic COFs with pyridinic N have not been studied as bifunctional materials for the adsorption and catalytic degradation of dyes. Therefore, in this study, a magnetic COF with a pyridinic structure (BiPy-MCOF) was successfully synthesized using a solvothermal method, which exhibited higher methyl orange (MO) removal than other common adsorbents. The best degradation efficiency via the Fenton-like reaction was obtained by pre-adsorbing MO for 3 h at pH 3.1. Both adsorption and catalytic degradation resulted in better removal of MO under acidic conditions. The introduction of pyridinic N improved MO adsorption and degradation on BiPy-MCOF. The electrostatic potential (ESP) showed that pyridinic N had a strong affinity for MO adsorption. Density functional theory calculations confirmed the potential sites on MO molecules that may be attacked by free radicals. Possible degradation pathways were proposed based on the experimental results. Moreover, BiPy-MCOF could effectively degrade MO at least four times, and a high degradation efficiency was obtained in other dyes applications. The coupling of adsorption and degradation demonstrated that the as-prepared BiPy-MCOF was an effective material for organic dyes removal from water.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Donghai Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Shiyi Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Jinwen Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Shuangxi Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China
| | - Wei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xi'ning, 810016, Qinghai Province, China.
| |
Collapse
|
25
|
Sun W, Xu Q, Liu Q, Wang T, Liu Z. Post-synthetic modification of a magnetic covalent organic framework with alkyne linkages for efficient magnetic solid-phase extraction and determination of trace basic orange II in food samples. J Chromatogr A 2023; 1690:463777. [PMID: 36640681 DOI: 10.1016/j.chroma.2023.463777] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
Efficient magnetic solid phase extraction using covalent organic frameworks (COFs) can find important applications in food safety. In this work, a sulfonate-functionalized magnetic COF (Fe3O4@COF-SO3Na) was synthesized by self-polycondensation of two-in-one monomer 1,6-bis(4-formylphenyl)-3,8-bis((4-aminophenyl) ethynyl)) pyrene (BFBAEPy) on the surface of aminated Fe3O4 and a thiol-yne click reaction. It was further adopted as an adsorbent for the efficient magnetic solid-phase extraction (MSPE) of basic orange II. The selective adsorption experiment indicated that it displayed selective adsorption ability to basic orange II due to the ion exchange, hydrogen bonds, and π-π interactions. Under the optimized conditions, the proposed MSPE method coupled with HPLC-DAD showed excellent linearity in the range of 0.05-0.5 µg/mL (R2 = 0.9997) for basic orange II. The lower limits of detection (LODs) for basic orange II were 1.0-1.4 µg/L for three food samples: yellow croaker, paprika and dried bean curd. The recoveries were 90.1-98.8% with relative standard deviations (RSDs) below 4.2%. Therefore, this work provides an effective strategy to modify magnetic COFs as absorbents in MSPE. Due to the tunability of functional groups in thiol‑yne click reactions, the functional groups of magnetic COFs can be readily designed to enrich their multifunctional applications. Meanwhile, this work proposed a new method to detect trace amounts of basic orange II in food samples.
Collapse
Affiliation(s)
- Wei Sun
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Qing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China.
| | - Qili Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Tianliang Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Zhaixin Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| |
Collapse
|
26
|
Yu Y, Zhong Z, Guo H, Yu Y, Zheng T, Li H, Chang Z. Biochar-goethite composites inhibited/enhanced degradation of triphenyl phosphate by activating persulfate: Insights on the mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159940. [PMID: 36336063 DOI: 10.1016/j.scitotenv.2022.159940] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
In this study, the biochar-goethite composites (MBC@FH) were synthesized through co-ball milling and the degradation of triphenyl phosphate (TPhP) was compared in persulfate (PDS) alone system and MBC@FH&PDS systems. The results showed that TPhP can be effectively degraded in PDS alone system and degradation efficiency reached up to 90 % within reaction of 8 h, at a PDS concentration of 10 mM, a reaction temperature of 30 °C and a system pH of 6.12. The obvious degradation can be ascribed to the reactive oxygen species (ROS) generated by self-decompose of PDS, among which 1O2, ∙OH and O2∙- play a major role in the degradation process. Although 350 °C biochar-goethite composites (MBC35@FH) and 800 °C biochar-goethite composites (MBC80@FH) facilitated PDS activation to produce more ROS, the catalytic degradation of TPhP was different in their systems. The degradation of TPhP was inhibited by MBC35@FH due to its stronger adsorption for TPhP, while MBC80@FH promoted TPhP degradation and degradation efficiency was up to 100 % within 6 h. 1O2 and SO4∙- played a stronger degradation role than ∙OH and O2∙- in above systems. The transformation of Fe species, functional groups (oxygen-containing functional groups, pyrrolic nitrogen) and persistent free radicals (PFRs) on the MBC@FH were involved in the PDS activation to produce ROS. Furthermore, MBC80@FH was more capable of activating PDS than MBC35@FH due to its abundant defect sites, larger specific surface area, more PFRs, higher Fe content and stronger electron transfer capability. In addition, seven possible TPhP intermediates were identified and possible degradation pathways of TPhP were proposed accordingly. This study illustrated that not all metallic carbon catalysts are necessarily beneficial for organic contaminants degradation.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zijuan Zhong
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Haobo Guo
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tong Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hongyan Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Zhaofeng Chang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China.
| |
Collapse
|
27
|
Cao Y, Li X, Yu G, Wang B. Regulating defective sites for pharmaceuticals selective removal: Structure-dependent adsorption over continuously tunable pores. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130025. [PMID: 36166908 DOI: 10.1016/j.jhazmat.2022.130025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/06/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Developing efficient adsorbents with proper pore size for pharmaceutical removal is challenging. Water stable metal-organic frameworks (MOFs) are crystalline materials within the three-dimensional frameworks, which have already aroused increasing attention for their potential advantages with high surface area and abundant channels. However, whether or not the existing ones are performing their full capacities needs to be seriously considered. Herein, we precisely designed a series of fine-tuning hierarchically porous materials based on the water-stable Zr-based MOFs. The adsorption capacity and uptake rate of as-synthesized materials for pharmaceuticals are significantly improved. Fifteen isostructural frameworks with increasing finely tuned pore structures were successfully constructed with seven monocarboxylic modulators of increasing alkyl chain lengths. A strong correlated relationship between the mesoporous proportion and trapping kinetics can be found. Adsorption performance of 17 pharmaceuticals with various typical categories has been systematically studied over these as-synthesized materials. Competitors in natural wastewater were studied systematically. The competitive adsorption can selectively trap the target compounds in HA (humic acid), BSA (bovine serum albumin), and BHB (bovine hemoglobin) by an efficient size exclusion effect. Thus, this study offers helpful guidance for MOF modification to enhance the removal of micropollutants in natural wastewater and a fundamental understanding of the porosity-performance relationships.
Collapse
Affiliation(s)
- Yuhua Cao
- School of Chemistry and Chemical engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100084, China
| | - Xiang Li
- School of Chemistry and Chemical engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100084, China.
| | - Gang Yu
- School of Environment, Tsinghua University, Beijing 100081, China
| | - Bo Wang
- School of Chemistry and Chemical engineering, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100084, China
| |
Collapse
|
28
|
Wang N, Zhou X, Cui B. Recent advances and applications of magnetic covalent organic frameworks in food analysis. J Chromatogr A 2023; 1687:463702. [PMID: 36508770 DOI: 10.1016/j.chroma.2022.463702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/07/2022]
Abstract
Recently, covalent organic frameworks (COFs) have been widely used to prepare magnetic adsorbents for food analysis due to their highly tunable porosity, large specific surface area, excellent chemical and thermal stability and large delocalised π-electron system. This review summarises the main types and preparation methods of magnetic COFs and their applications in food analysis for the detection of pesticide residues, veterinary drugs, endocrine-disrupting phenols and estrogens, plasticisers and other food contaminants. Furthermore, challenges and future outlook in the development of magnetic COFs for food analysis are discussed.
Collapse
Affiliation(s)
- Na Wang
- State key laboratory of biobased material and green papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Xuesheng Zhou
- School of automotive engineering, ShanDong JiaoTong University, Jinan 250357, China.
| | - Bo Cui
- State key laboratory of biobased material and green papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
29
|
Bukhari SNA, Ahmed N, Amjad MW, Hussain MA, Elsherif MA, Ejaz H, Alotaibi NH. Covalent Organic Frameworks (COFs) as Multi-Target Multifunctional Frameworks. Polymers (Basel) 2023; 15:267. [PMID: 36679148 PMCID: PMC9866219 DOI: 10.3390/polym15020267] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Covalent organic frameworks (COFs), synthesized from organic monomers, are porous crystalline polymers. Monomers get attached through strong covalent bonds to form 2D and 3D structures. The adjustable pore size, high stability (chemical and thermal), and metal-free nature of COFs make their applications wider. This review article briefly elaborates the synthesis, types, and applications (catalysis, environmental Remediation, sensors) of COFs. Furthermore, the applications of COFs as biomaterials are comprehensively discussed. There are several reported COFs having good results in anti-cancer and anti-bacterial treatments. At the end, some newly reported COFs having anti-viral and wound healing properties are also discussed.
Collapse
Affiliation(s)
- Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Naveed Ahmed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| | - Muhammad Wahab Amjad
- Center for Ultrasound Molecular Imaging and Therapeutics, Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Muhammad Ajaz Hussain
- Centre for Organic Chemistry, School of Chemistry, University of the Punjab, Lahore 54590, Pakistan
| | - Mervat A. Elsherif
- Chemistry Department, College of Science, Jouf University, Sakaka 72388, Saudi Arabia
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nasser H. Alotaibi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
| |
Collapse
|
30
|
Cai Y, Chen Z, Wang S, Chen J, Hu B, Shen C, Wang X. Carbon-based nanocomposites for the elimination of inorganic and organic pollutants through sorption and catalysis strategies. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
31
|
Hierarchical covalent organic frameworks-modified diatomite for efficient separation of bisphenol A from water in a convenient column mode. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Cai G, Wang T, Wei Q, Tong C, Cao Y, Shi S, Chen Y, Guo Y. Weaving microscale wool ball-like hollow covalent organic polymers from nanorods for efficient adsorption and sensing. Chem Commun (Camb) 2022; 58:11571-11574. [PMID: 36165975 DOI: 10.1039/d2cc04254a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microscale covalent organic polymers with a unique 3D hollow wool ball-like morphology have been woven from 1D nanorods by a cascade emulsion strategy with a large surface area (284 m2 g-1), which showed great potential for simultaneous removal (Qmax, 358.15 mg g-1) and fluorescent detection (detection limit, 8.0 μg L-1) of bisphenol A.
Collapse
Affiliation(s)
- Guihan Cai
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Tongtao Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Qisheng Wei
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, Guangxi, China
| | - Chaoying Tong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Yuanxin Cao
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, Guangxi, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China. .,Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, Guangxi, China.,Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China.
| | - Yuxia Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | - Ying Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan, China.
| |
Collapse
|
33
|
Zhang A, Liu X, Hong J, Guo R, Zhou Y, Ai Y. A mussel-pearl side chain interaction in mercury(II) and phenol removal by sulfur-functionalized covalent organic frameworks: A DFT study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156082. [PMID: 35618120 DOI: 10.1016/j.scitotenv.2022.156082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/19/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
The covalent organic framework materials (COFs) with excellent chemical and physical characteristics have been rapidly developed as adsorbents in the application of environmental remediation. In the design of COFs, the selection of functional groups and side chains is of great significance. Herein, density function theory (DFT) method is used to illustrate the adsorption behavior and mechanism of three sulfur-functionalized COFs (S-COFs) for the adsorption of mercury(II) and phenol. According to the analysis of geometric configurations and electronic properties, it demonstrated that the side chains of S-COFs with high flexibility and concentrated sulfur-functional groups, acting like a closed mussel which tightly confined the contaminants, the highest adsorption was -24.32 kcal/mol. The adsorption mechanism of phenol and mercury(II) on S-COFs was elucidated. For phenol, hydrogen bonds and π-π stacking interaction played an important role in the adsorption process, while the coordination interaction was dominated for the adsorption of mercury(II). This research explains the importance of selecting appropriate functional groups and side chains for COFs in the removal of contaminants in the molecular scale, and reveals the great potential of COFs in environmental remediation applications.
Collapse
Affiliation(s)
- Anrui Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Xuewei Liu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jiahui Hong
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Ruoxuan Guo
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yueying Zhou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yuejie Ai
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environment and Chemical Engineering, North China Electric Power University, Beijing 102206, PR China.
| |
Collapse
|
34
|
Wu Y, Li H, An Y, Sun Q, Liu B, Zheng H, Ding W. Construction of magnetic alginate-based biosorbent and its adsorption performances for anionic organic contaminants. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Rasheed T. Covalent organic frameworks as promising adsorbent paradigm for environmental pollutants from aqueous matrices: Perspective and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155279. [PMID: 35429563 DOI: 10.1016/j.scitotenv.2022.155279] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/22/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Covalent organic frameworks (COFs) are an emerging class of new porous crystalline polymers materials having robust framework, outstanding structural regularity, highly ordered aperture size, inherent porosity, and chemical stability with designer properties, making them an ideal material for adsorbing a variety of contaminants from water bodies. Presented study focusses on the current advances and progress of pristine COFs as well as COFs based composites as an emerging substitute for the adsorption and removal of a variety of pollutants including water desalination technique, heavy metals, pharmaceuticals, dyes and organic pollutants. The absorption capabilities of COFs-derived architecture are evaluated and equated with those of other commonly used adsorbents. The interaction between sorption ability and structural property as well as some regularly utilized ways to improve the adsorption performance of COFs-based materials are also reviewed. Finally, perspective and a summary about the challenges and opportunities of COFs and COFs-derived materials are discussed to deliver some exciting data for fabricating and designing of COFs and COFs-derived materials for remediation of environmental pollutants.
Collapse
Affiliation(s)
- Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran 31261, Saudi Arabia.
| |
Collapse
|
36
|
Wang L, Tao Y, Wang J, Tian M, Liu S, Quan T, Yang L, Wang D, Li X, Gao D. A novel hydroxyl-riched covalent organic framework as an advanced adsorbent for the adsorption of anionic azo dyes. Anal Chim Acta 2022; 1227:340329. [DOI: 10.1016/j.aca.2022.340329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
|
37
|
Liu L, Wang XX, Liu F, Xu GJ, Lin JM, Wang ML, Wu YN, Zhao RS, Wang X. Cationic covalent organic nanosheets for rapid and effective detection of phenoxy carboxylic acid herbicides residue emitted from water and rice samples. Food Chem 2022; 383:132396. [DOI: 10.1016/j.foodchem.2022.132396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/23/2021] [Accepted: 02/06/2022] [Indexed: 11/04/2022]
|
38
|
Yang L, Yin Z, Tian Y, Liu Y, Feng L, Ge H, Du Z, Zhang L. A new and systematic review on the efficiency and mechanism of different techniques for OPFRs removal from aqueous environments. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128517. [PMID: 35217347 DOI: 10.1016/j.jhazmat.2022.128517] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Organic phosphorus flame retardants (OPFRs), as a new type of emerging contaminant, have drawn great attention over the last few years, due to their wide distribution in aquatic environments and potential toxicities to humans and living beings. Various treatment methods have been reported to remove OPFRs from water or wastewater. In this review, the performances and mechanisms for OPFRs removal with different methods including adsorption, oxidation, reduction and biological techniques are overviewed and discussed. Each technique possesses its advantage and limitation, which is compared in the paper. The degradation pathways of typical OPFRs pollutants, such as Cl-OPFRs, alkyl OPFRs and aryl OPFRs, are also reviewed and compared. The degradation of those OPFRs depends heavily upon their structures and properties. Furthermore, the implications and future perspectives in such area are discussed. The review may help identify the research priorities for OPFRs remediation and understand the fate of OPFRs during the treatment processes.
Collapse
Affiliation(s)
- Liansheng Yang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China; Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng 224001, China
| | - Ze Yin
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China; Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Province Collaborative Innovation Center for Sustainable Utilization of Water Resources and Optimization of Industrial Structure, Department of Water Resource and Environment, Hebei GEO University, No. 136 Huai'an Road, Shijiazhuang 050031, Hebei, China
| | - Yajun Tian
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yongze Liu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Li Feng
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Huiru Ge
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Ziwen Du
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| | - Liqiu Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
39
|
Abdelkhalek A, El-Latif MA, Ibrahim H, Hamad H, Showman M. Controlled synthesis of graphene oxide/silica hybrid nanocomposites for removal of aromatic pollutants in water. Sci Rep 2022; 12:7060. [PMID: 35487929 PMCID: PMC9054805 DOI: 10.1038/s41598-022-10602-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/16/2022] [Indexed: 12/01/2022] Open
Abstract
The remarkable characteristics of graphene make it a model candidate for boosting the effectiveness of nano-adsorbents with high potential owing to its large surface area, π–π interaction, and accessible functional groups that interact with an adsorbate. However, the stacking of graphene reduces its influence adsorption characteristics and also its practical application. On the other hand, the widespread use of aromatic compounds in the industry has aggravated the contamination of the water environment, and how to effectively remove them has become a research hotspot. Herein, we develop the functionalization of silica nanoparticles on graphene oxide nanosheet (FGS) by a facile, cheap, and efficient synthesis protocol for adsorption of Trypan Blue (TB) and Bisphenol A (BPA). It was demonstrated that chemical activation with KOH at high autoclaving temperature successfully transformed rice husk ash (RHA) into FGS. The graphene oxide layered interlamination was kept open by using SiO2 to expose the interlayers' strong adsorption sites. XRD, EDX, FTIR, Raman spectroscopy, SEM, HR-TEM, and BET surface area are used to investigate the chemical composition, structure, morphology, and textural nature of the as-produced FGS hybrid nanocomposite. The various oxygen-containing functional groups of the hybrid nanocomposites resulted in a significantly increased adsorption capacity, according to experimental findings. In addition, FGS2, the best composite, has a specific surface area of 1768 m2g−1. Based on Langmuir isotherms, the maximal TB dye and BPA removal capacity attained after 30 min were 455 and 500 mg/g, respectively. The Langmuir isotherm model, a pseudo-second-order kinetic model, and an intraparticle diffusion model have all been used to provide mechanistic insights into the adsorption process. This suggests that BPA and TB adsorption on FGS2 is mostly chemically regulated monolayer adsorption. Due to its unique sp2-hybridized single-atom-layer structure, the exposed graphene oxide nanosheets' extremely hydrophobic effect, hydrogen bonding, and strong—electron donor–acceptor interaction contributed to their improved adsorption of BPA and TB. According to adsorption thermodynamics, FGS2 adsorption of TB and BPA is a spontaneous exothermic reaction that is aided by lowering the temperature. For adsorption-based wastewater cleanup, the produced nanocomposites with a regulated amount of carbon and silica in the form of graphene oxide and silica can be used. These findings suggest that functionalized GO/SiO2 hybrid nanocomposites could be a viable sorbent for the efficient and cost-effective removal of aromatic chemicals from wastewater.
Collapse
Affiliation(s)
- Amr Abdelkhalek
- Department of Environmental Studies, Institute of Graduate Studies and Research (IGSR), Alexandria University, P.O. Box 832, Alexandria, Egypt
| | - Mona Abd El-Latif
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Hesham Ibrahim
- Department of Environmental Studies, Institute of Graduate Studies and Research (IGSR), Alexandria University, P.O. Box 832, Alexandria, Egypt
| | - Hesham Hamad
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| | - Marwa Showman
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
40
|
|
41
|
Cai J, Niu B, Xie Q, Lu N, Huang S, Zhao G, Zhao J. Accurate Removal of Toxic Organic Pollutants from Complex Water Matrices. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2917-2935. [PMID: 35148082 DOI: 10.1021/acs.est.1c07824] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Characteristic emerging pollutants at low concentration have raised much attention for causing a bottleneck in water remediation, especially in complex water matrices where high concentration of interferents coexist. In the future, tailored treatment methods are therefore of increasing significance for accurate removal of target pollutants in different water matrices. This critical review focuses on the overall strategies for accurately removing highly toxic emerging pollutants in the presence of typical interferents. The main difficulties hindering the improvement of selectivity in complex matrices are analyzed, implying that it is difficult to adopt a universal approach for multiple targets and water substrates. Selective methods based on assorted principles are proposed aiming to improve the anti-interference ability. Thus, typical approaches and fundamentals to achieve selectivity are subsequently summarized including their mechanism, superiority and inferior position, application scope, improvement method and the bottlenecks. The results show that different methods may be applicable to certain conditions and target pollutants. To better understand the mechanism of each selective method and further select the appropriate method, advanced methods for qualitative and quantitative characterization of selectivity are presented. The processes of adsorption, interaction, electron transfer, and bond breaking are discussed. Some comparable selective quantitative methods are helpful for promoting the development of related fields. The research framework of selectivity removal and its fundamentals are established. Presently, although continuous advances and remarkable achievements have been attained in the selective removal of characteristic organic pollutants, there are still various substantial challenges and opportunities. It is hopeful to inspire the researches on the new generation of water and wastewater treatment technology, which can selectively and preferentially treat characteristic pollutants, and establish a reliable research framework to lead the direction of environmental science.
Collapse
Affiliation(s)
- Junzhuo Cai
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Baoling Niu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Qihao Xie
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Ning Lu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Shuyu Huang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 200092, Shanghai, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| |
Collapse
|
42
|
Metal-organic and covalent organic frameworks for the remediation of aqueous dye solutions: Adsorptive, catalytic and extractive processes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
A novel covalent organic framework with multiple adsorption sites for removal of Hg2+ and sensitive detection of nitrofural. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
44
|
Liu R, Yan Q, Tang Y, Liu R, Huang L, Shuai Q. NaCl template-assisted synthesis of self-floating COFs foams for the efficient removal of sulfamerazine. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126702. [PMID: 34325291 DOI: 10.1016/j.jhazmat.2021.126702] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/07/2021] [Accepted: 07/18/2021] [Indexed: 05/28/2023]
Abstract
The preparation of hierarchical porous covalent organic frameworks (HP-COFs) is of great significance due to their inherent porosity and low density. However, it is still very challenging owing to the poor machinability of COFs. Herein, a simple and cost-efficient strategy for the synthesis of HP-COFs was proposed. In particular, p-toluenesulfonic acid and NaCl, both of which can be recycled, are utilized as catalyst and template, respectively. The resulting HP-TpBD-900 featuring abundant macropore and mesopore as well as large specific surface area (~700 m2 g-1) possessed self-floating ability and was turned out to be a promising adsorbent for the efficient removal of sulfamerazine (SMR) in aqueous solution. The maximum adsorption capacity is 168 mg g-1, which is more than twice in comparison to that of material prepared without NaCl template. In addition, no significant decrease in adsorption capacity was observed after 5 cycles. Furthermore, the density functional theory (DFT) method was utilized to elucidate the adsorption mechanism, which could be dominated by hydrogen bonding and C-H···π interaction. This work not only provides a new strategy for the synthesis of HP-COFs, but also contributes to boosting the application of COFs in the field of wastewater treatment.
Collapse
Affiliation(s)
- Ruiqi Liu
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Qian Yan
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Yumeng Tang
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Rui Liu
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| | - Lijin Huang
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China; Zhejiang Institute, China University of Geosciences, Hangzhou 311305, PR China.
| | - Qin Shuai
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), No. 388, Lumo Road, Hongshan District, Wuhan 430074, PR China
| |
Collapse
|
45
|
Gan J, Li X, Rizwan K, Adeel M, Bilal M, Rasheed T, Iqbal HMN. Covalent organic frameworks-based smart materials for mitigation of pharmaceutical pollutants from aqueous solution. CHEMOSPHERE 2022; 286:131710. [PMID: 34343918 DOI: 10.1016/j.chemosphere.2021.131710] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/05/2023]
Abstract
Covalent organic frameworks (COFs) are an emergent group of crystalline porous materials that have gained incredible interest in recent years. With foreseeable controllable functionalities and structural configurations, the constructions and catalytic properties of these organic polymeric materials can be controlled to fabricate targeted materials. The specified monomer linkers and pre-designed architecture of COFs facilitate the post-synthetic modifications for introducing novel functions and useful properties. By virtue of inherent porosity, robust framework, well-ordered geometry, functionality, higher stability, and amenability to functionalization, COFs and COFs-based composites are regarded as prospective nanomaterials for environmental clean-up and remediation. This report spotlights the state-of-the-art advances and progress in COFs-based materials to efficiently mitigate pharmaceutical-based environmental pollutants from aqueous solutions. Synthesis approaches, structure, functionalization, and sustainability aspects of COFs are discussed. Moreover, the adsorptive and photocatalytic potential of COFs and their derived nanocomposites for removal and degradation of pharmaceuticals are thoroughly vetted. In addition to deciphering adsorption mechanism/isotherms, the stability, regeneratability and reproducibility are also delineated. Lastly, the outcomes are summed up, and new directions are proposed to widen the promise of COF-based smart materials in diverse fields.
Collapse
Affiliation(s)
- JianSong Gan
- School of Food and Drug, Jiangsu Vocational College of Finance & Economics, Huaian, 223003, China; School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221094, China.
| | - XiaoBing Li
- School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, 221094, China
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan
| | - Muhammad Adeel
- Faculty of Applied Engineering, iPRACS, University of Antwerp, 2020, Antwerp, Belgium
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| | - Tahir Rasheed
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
46
|
Mo P, Fu D, Chen P, Zhang Q, Zheng X, Hao J, Zhuang X, Liu H, Liu G, Lv W. Ionic covalent organic frameworks for Non-Steroidal Anti-Inflammatory drugs (NSAIDs) removal from aqueous Solution: Adsorption performance and mechanism. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Evans AM, Strauss MJ, Corcos AR, Hirani Z, Ji W, Hamachi LS, Aguilar-Enriquez X, Chavez AD, Smith BJ, Dichtel WR. Two-Dimensional Polymers and Polymerizations. Chem Rev 2021; 122:442-564. [PMID: 34852192 DOI: 10.1021/acs.chemrev.0c01184] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.
Collapse
Affiliation(s)
- Austin M Evans
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Michael J Strauss
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Amanda R Corcos
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zoheb Hirani
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Woojung Ji
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leslie S Hamachi
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States.,Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Xavier Aguilar-Enriquez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Anton D Chavez
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| | - Brian J Smith
- Department of Chemistry, Bucknell University,1 Dent Drive, Lewisburg, Pennsylvania 17837, United States
| | - William R Dichtel
- Department of Chemistry, Northwestern University, 1425 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
48
|
Yue Y, Cai P, Xu K, Li H, Chen H, Zhou HC, Huang N. Stable Bimetallic Polyphthalocyanine Covalent Organic Frameworks as Superior Electrocatalysts. J Am Chem Soc 2021; 143:18052-18060. [PMID: 34637619 DOI: 10.1021/jacs.1c06238] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The development of highly stable covalent organic frameworks (COFs) is extremely compelling for their implementation in practical application. In this work, we rationally designed and synthesized new kinds of ultrastable bimetallic polyphthalocyanine COFs, which are constructed with the dioxin linkage through the nucleophilic aromatic substitution between octahydroxylphthalocyanine and hexadecafluorophthalocyanine. The resulting bimetallic CuPcF8-CoPc-COF and CuPcF8-CoNPc-COF exhibited strong robustness under harsh conditions. The eclipsed stacking mode of metallophthalocyanine units supplies a high-speed pathway for electron transfer. With these structural advantages, both COFs displayed considerable activity, selectivity, and stability toward electrocatalytic CO2 reduction in an aqueous system. Notably, CuPcF8-CoNPc-COF showed a faradaic efficiency of 97% and an exceptionally high turnover frequency of 2.87 s-1, which is superior to most COF-based electrocatalysts. Furthermore, the catalytic mechanism was well demonstrated by using a theoretical calculation. This work not only expanded the variety of dioxin-linked COFs, but also constituted a new step toward their practical use in carbon cycle.
Collapse
Affiliation(s)
- Yan Yue
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Peiyu Cai
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Kai Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hanying Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hongzheng Chen
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - Ning Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
49
|
High-performance adsorption of chromate by hydrazone-linked guanidinium-based ionic covalent organic frameworks: Selective ion exchange. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Wu H, Kudo T, Takahashi T, Ito T, Kim SY. Impregnation of covalent organic framework into porous silica support for the recovery of palladium ions from simulated high-level liquid waste. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07971-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|