1
|
Wang J, Jiao L, Yi C, Bai H, Liu Q, Fu Y, Liu J, Wang C, Lei Y, Zhang T, Wen J, Yang L, Shu D, Yang S, Li C, Li H, Zhang W, Cheng B. Molecular Chain Rearrangement of Natural Cellulose-Based Artificial Interphase for Ultra-Stable Zn Metal Anodes. Angew Chem Int Ed Engl 2025; 64:e202418992. [PMID: 39502026 DOI: 10.1002/anie.202418992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Indexed: 11/21/2024]
Abstract
The unstable electrolyte-anode interface, plagued by parasitic side reactions and uncontrollable dendrite growth, severely hampers the practical implementation of aqueous zinc-ion batteries. To address these challenges, we developed a regenerated cellulose-based artificial interphase with synergistically optimized structure and surface chemistry on the Zn anode (RC@Zn), using a facile molecular chain rearrangement strategy. This RC interphase features a drastically increased amorphous region and more exposed active hydroxyl groups, facilitating rapid Zn2+ diffusion and homogeneous Zn2+ interface distribution, thereby enabling dendrite-free Zn deposition. Additionally, the compact texture and abundant negatively charged surface of the RC interphase effectively shield water molecules and harmful anions, completely preventing H2 evolution and Zn corrosion. The superior mechanical strength and adhesion of the RC interphase also accommodate the substantial volume changes of Zn anodes even under deep cycling conditions. Consequently, the RC@Zn electrode demonstrates an outstanding cycling lifespan of over 8000 hours at a high current density of 10 mA cm-2. Significantly, the electrode maintains stable cycling even at a 90 % depth of discharge and ensures stable operation of full cells with a low negative/positive capacity ratio of 1.6. This study provides new solution to construct highly stable and deep cycling Zn metal anodes through interface engineering.
Collapse
Affiliation(s)
- Jizhen Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Long Jiao
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chao Yi
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Hongyuan Bai
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Qiaoyun Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yusen Fu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jiajia Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chuang Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yechen Lei
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Tian Zhang
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Jiaqi Wen
- Nanoyang Group, Tianjin Key Laboratory of Advanced Carbon and Electrochemical Energy Storage, School of Chemical Engineering and Technology, National Industry-Education Integration Platform of Energy Storage, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Leixin Yang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Dengkun Shu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shuo Yang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Chenyang Li
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Huan Li
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Wenjun Zhang
- Department of Materials Science and Engineering, & Center of Super-Diamond and Advanced Films, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, 999077, China
| | - Bowen Cheng
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, China
| |
Collapse
|
2
|
Duan C, Liu X, Tian G, Zhang D, Wen Y, Che Y, Xie Z, Ni Y. A one-stone-two-birds strategy for cellulose dissolution, regeneration, and functionalization as a photocatalytic composite membrane for wastewater purification. Int J Biol Macromol 2024; 274:133317. [PMID: 38925199 DOI: 10.1016/j.ijbiomac.2024.133317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Photocatalytic membranes integrate membrane separation and photocatalysis to deliver an efficient solution for water purification, while the top priority is to exploit simple, efficient, renewable, and low-cost photocatalytic membrane materials. We herein propose a facile one-stone-two-birds strategy to construct a multifunctional regenerated cellulose composite membrane decorated by Prussian blue analogue (ZnPBA) microspheres for wastewater purification. The hypotheses are that: 1) ZnCl2 not only serves as a cellulose solvent for tuning cellulose dissolution and regeneration, but also functions as a precursor for in-situ growth of spherical-like ZnPBA; 2) More homogeneous reactions including coordination and hydrogen bonding among Zn2+, [Fe(CN)6]3- and cellulose chains contribute to a rapid and uniform anchoring of ZnPBA microspheres on the regenerated cellulose fibrils (RCFs). Consequently, the resultant ZnPBA/RCM features a high loading of ZnPBA (65.3 wt%) and exhibits excellent treatment efficiency and reusability in terms of photocatalytic degradation of tetracycline (TC) (90.3 % removal efficiency and 54.3 % of mineralization), oil-water separation efficiency (>97.8 % for varying oils) and antibacterial performance (99.4 % for E. coli and 99.2 % for S. aureus). This work paves a simple and useful way for exploiting cellulose-based functional materials for efficient wastewater purification.
Collapse
Affiliation(s)
- Chao Duan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xiaoshuang Liu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guodong Tian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Dong Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yijian Wen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yiyang Che
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zengyin Xie
- Yibin Grace Group Co., Ltd, Yibin 644000, China
| | - Yonghao Ni
- Department of Chemical and Biomedical Engineering, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
3
|
Zhou H, Li T, Zhu E, Wang S, Zhang Q, Li X, Zhang L, Fan Y, Ma J, Wang Z. Dissolving-co-catalytic strategy for the preparation of flexible and wet-stable cellulose membrane towards biodegradable packaging. Int J Biol Macromol 2024; 275:133454. [PMID: 38964692 DOI: 10.1016/j.ijbiomac.2024.133454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
In the realization of the goal of circular economy, cellulose as one of sustainable biomass resources, have attracted much attention because of their abundant sources, biodegradability and renewability. However, the mechanical and waterproof performance of cellulose-based materials are usually not satisfying, which limits their high-value utilization. In this study, cellulose membrane with high-performance from the aspects of mechanical properties, water-resistance ability, oxygen barrier capacity and biodegradability, was prepared from bleached hardwood pulp (HBKP) in a AlCl3/ZnCl2/H2O solution. The AlCl3/ZnCl2/H2O acted as both solvent and catalyst to dissolve cellulose and facilitate the chemical crosslinking of epichlorohydrin (EPI) with cellulose, thus improved the overall performance of the obtained cellulose membrane. The addition sequence, amount and crosslinking time of EPI during chemical crosslinking had important effects on the properties of the membranes. When 7 wt% EPI was crosslinked for 24 h, the tensile stress reached 133 MPa and the strain reached 17 %. Moreover, the membrane had excellent oxygen insulation down to (1.1 ± 0.31) × 10-4 cm3/m2·d·Pa, and good water-resistance ability, no obvious swelling behavior after 450 days of immersion in distilled water. Furthermore, the membrane could be degraded by microorganisms in about 20 days. This cellulose-based membrane offers a sustainable and biodegradable packaging material.
Collapse
Affiliation(s)
- Huimei Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tianqi Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Enqing Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaoning Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qing Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yimin Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinxia Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China..
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China..
| |
Collapse
|
4
|
Ma W, Li X, Zhang L, Zheng Y, Xi Y, Ma J, Wang Z. Novel insights on room temperature-induced cellulose dissolution mechanism via ZnCl 2 aqueous solution: Migration, penetration, interaction, and dispersion. Int J Biol Macromol 2024; 272:132912. [PMID: 38851617 DOI: 10.1016/j.ijbiomac.2024.132912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
The unique molecular structure of cellulose makes it challenging to dissolve at room temperature (R.T.), and the dissolution mechanism remains unclear. In this study, we employed ZnCl2 aqueous solution for cellulose dissolution at R.T., proposing a novel four-stage dissolution mechanism. The efficient dissolution of cellulose in ZnCl2 aqueous solution at R.T. involves four indispensable stages: rapid migration of hydrated Zn2+ ions towards cellulose, sufficient penetration between cellulose sheets, strong interaction with cellulose hydroxyl groups, and effective dispersion of separated cellulose chains. The proposed four-stage dissolution mechanism was validated through theoretical calculations and experimental evidence. The hydrated Zn2+ ions in ZnCl2 + 3.5H2O solvent exhibited ideal migration, penetration, interaction, and dispersion abilities, resulting in efficient cellulose dissolution at R.T. Moreover, only slight degradation of cellulose occurred in ZnCl2 + 3.5H2O at R.T. Consequently, the regenerated cellulose materials obtained from ZnCl2 + 3.5H2O (R.T.) exhibited better mechanical properties. Notably, the solvent recovery rate reached about 95 % based on previous usage during five cycles. The solvent is outstanding for its green, low-cost, efficiency, simplicity, R.T. conditions and recyclability. This work contributes to a better understanding of the cellulose dissolution mechanisms within inorganic salt solvents at R.T., thereby guiding future development efforts towards greener and more efficient cellulosic solvents.
Collapse
Affiliation(s)
- Wuliang Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lili Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yi Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yue Xi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jinxia Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
5
|
Cigala RM, De Luca G, Ielo I, Crea F. Biopolymeric Nanocomposites for CO 2 Capture. Polymers (Basel) 2024; 16:1063. [PMID: 38674984 PMCID: PMC11054771 DOI: 10.3390/polym16081063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Carbon dioxide (CO2) impacts the greenhouse effect significantly and results in global warming, prompting urgent attention to climate change concerns. In response, CO2 capture has emerged as a crucial process to capture carbon produced in industrial and power processes before its release into the atmosphere. The main aim of CO2 capture is to mitigate the emissions of greenhouse gas and reduce the anthropogenic impact on climate change. Biopolymer nanocomposites offer a promising avenue for CO2 capture due to their renewable nature. These composites consist of biopolymers derived from biological sources and nanofillers like nanoparticles and nanotubes, enhancing the properties of the composite. Various biopolymers like chitosan, cellulose, carrageenan, and others, possessing unique functional groups, can interact with CO2 molecules. Nanofillers are incorporated to improve mechanical, thermal, and sorption properties, with materials such as graphene, carbon nanotubes, and metallic nanoparticles enhancing surface area and porosity. The CO2 capture mechanism within biopolymer nanocomposites involves physical absorption, chemisorption, and physisorption, driven by functional groups like amino and hydroxyl groups in the biopolymer matrix. The integration of nanofillers further boosts CO2 adsorption capacity by increasing surface area and porosity. Numerous advanced materials, including biopolymeric derivatives like cellulose, alginate, and chitosan, are developed for CO2 capture technology, offering accessibility and cost-effectiveness. This semi-systematic literature review focuses on recent studies involving biopolymer-based materials for CO2 capture, providing an overview of composite materials enriched with nanomaterials, specifically based on cellulose, alginate, chitosan, and carrageenan; the choice of these biopolymers is dictated by the lack of a literature perspective focused on a currently relevant topic such as these biorenewable resources in the framework of carbon capture. The production and efficacy of biopolymer-based adsorbents and membranes are examined, shedding light on potential trends in global CO2 capture technology enhancement.
Collapse
Affiliation(s)
| | | | - Ileana Ielo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, Università degli Studi di Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; (R.M.C.); (G.D.L.); (F.C.)
| | | |
Collapse
|
6
|
Ruan JQ, Xie KY, Wan JN, Chen QY, Zuo X, Li X, Wu X, Fei C, Yao S. Effects of Freeze-Drying Processes on the Acoustic Absorption Performance of Sustainable Cellulose Nanocrystal Aerogels. Gels 2024; 10:141. [PMID: 38391471 PMCID: PMC10888388 DOI: 10.3390/gels10020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Cellulose aerogels have great prospects for noise reduction applications due to their sustainable value and superior 3D interconnected porous structures. The drying principle is a crucial factor in the preparation process for developing high-performance aerogels, particularly with respect to achieving high acoustic absorption properties. In this study, multifunctional cellulose nanocrystal (CNC) aerogels were conveniently prepared using two distinct freeze-drying principles: refrigerator conventional freezing (RCF) and liquid nitrogen unidirectional freezing (LnUF). The results indicate that the rapid RCF process resulted in a denser CNC aerogel structure with disordered larger pores, causing a stronger compressive performance (Young's modulus of 40 kPa). On the contrary, the LnUF process constructed ordered structures of CNC aerogels with a lower bulk density (0.03 g/cm3) and smaller apertures, resulting in better thermal stability, higher diffuse reflection across visible light, and especially increased acoustic absorption performance at low-mid frequencies (600-3000 Hz). Moreover, the dissipation mechanism of sound energy in the fabricated CNC aerogels is predicted by a designed porous media model. This work not only paves the way for optimizing the performance of aerogels through structure control, but also provides a new perspective for developing sustainable and efficient acoustic absorptive materials for a wide range of applications.
Collapse
Affiliation(s)
- Ju-Qi Ruan
- School of Physics Science and Technology, Kunming University, Kunming 650214, China
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Kai-Yue Xie
- School of Physics Science and Technology, Kunming University, Kunming 650214, China
| | - Jun-Nan Wan
- School of Physics Science and Technology, Kunming University, Kunming 650214, China
| | - Qing-Yuan Chen
- School of Physics Science and Technology, Kunming University, Kunming 650214, China
| | - Xiaoqing Zuo
- Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Xiaodong Li
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiaodong Wu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Chunlong Fei
- School of Microelectronics, Xidian University, Xi'an 710126, China
| | - Shanshan Yao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
7
|
Sepahvand S, Kargarzadeh H, Jonoobi M, Ashori A, Ismaeilimoghadam S, Varghese RT, Chirayl CJ, Azimi B, Danti S. Recent developments in nanocellulose-based aerogels as air filters: A review. Int J Biol Macromol 2023; 246:125721. [PMID: 37419257 DOI: 10.1016/j.ijbiomac.2023.125721] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Today, one of the world's critical environmental issues is air pollution, which is the most important parameter threatening human health and the environment. Synthetic polymers are widely used in industrial air filter production; however, they are incompatible with the environment due to their secondary pollution. Using renewable materials to manufacture air filters is not only environmentally friendly but also essential. Recently, a new generation of biopolymers called cellulose nanofiber (CNF)-based hydrogels have been proposed, with three dimensional (3D) nanofiber networks and unique physical and mechanical properties. CNFs have become a hot research topic for application as air filter materials because they can compete with synthetic nanofibers due to their advantages, such as abundant, renewable, nontoxic, high specific surface area, high reactivity, flexibility, low cost, low density, and network structure formation. The main focus of the current review is the recent progress in the preparation and employment of nanocellulose materials, especially CNF-based hydrogels, to absorb PM and CO2. This study summarizes the preparation methods, modification strategies, fabrications, and further applications of CNF-based aerogels as air filters. Lastly, challenges in the fabrication of CNFs, and trends for future developments are presented.
Collapse
Affiliation(s)
- Sima Sepahvand
- Department of Bio Systems, Faculty of New Technologies and Aerospace Engineering, Zirab Campus, Shahid Beheshti University, Tehran, Iran
| | - Hanieh Kargarzadeh
- Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Poland
| | - Mehdi Jonoobi
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran.
| | - Alireza Ashori
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran.
| | - Saeed Ismaeilimoghadam
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Rini Thresia Varghese
- Department of Chemistry, Newman College, Thodupuzha, Kerala 685584, India; School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | | | - Bahareh Azimi
- Department of Translational Research on New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Serena Danti
- Department of Civil and Industrial Engineering, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
8
|
Zhang S, Duan Y, Teng C, Quan H, Yang X, Li H, Li X, Yan L. Fast and Selective Degradation of Biomass for Xylose, Glucose and Lignin under Mild Conditions. Molecules 2023; 28:molecules28083306. [PMID: 37110540 PMCID: PMC10145030 DOI: 10.3390/molecules28083306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The conversion of lignocellulose into valuable chemicals has been recognized as the key technology in green chemistry. However, selective degradation of hemicellulose and cellulose with the production of lignin is still a challenge. Therefore, a two-step process has been developed to degrade corncob into xylose and glucose under mild conditions. At first, the corncob was treated with the lower concentration of zinc chloride aqueous solution (30-55 w%) at 95 °C with a short reaction time (8-12 min) and 30.4 w% (selectivity = 89%) of xylose obtained with a solid residue of the composite of cellulose and lignin. Next, the solid residue was treated with a high concentration of zinc chloride aqueous solution (65-85 w%) at 95 °C for about 10 min, and 29.4 w% (selectivity = 92%) of glucose can be obtained. Combining the two steps, the total yield of xylose is 97%, while glucose is 95%. In addition, high pure lignin can be obtained simultaneously, which was confirmed using HSQC studies. Furthermore, for the solid residue of the first-step reaction, a ternary deep eutectic solvent (DES) (choline chloride/oxalic acid/1,4-butanediol, ChCl/OA/BD) has been used to separate the cellulose and lignin efficiently, and high-quality cellulose (Re-C) and lignin (Re-L) were obtained. Furthermore, it provides a simple method to disassemble the lignocellulose for monosaccharides, lignin, and cellulose.
Collapse
Affiliation(s)
- Shangzhong Zhang
- Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, China
| | - Yi Duan
- Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, China
- Key Laboratory of Anhui for Tobacco Chemistry, Hefei 230088, China
| | - Changchang Teng
- Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, China
| | - Hongdong Quan
- Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, China
| | - Xiuguo Yang
- Inner Mongolia Key Laboratory of Polyol Chemical New Material Enterprise, Chifeng Ruiyang Chemical Co., Ltd., Pingzhuang, Chifeng 024076, China
| | - Hongyan Li
- Inner Mongolia Key Laboratory of Polyol Chemical New Material Enterprise, Chifeng Ruiyang Chemical Co., Ltd., Pingzhuang, Chifeng 024076, China
| | - Xiaohe Li
- Inner Mongolia Key Laboratory of Polyol Chemical New Material Enterprise, Chifeng Ruiyang Chemical Co., Ltd., Pingzhuang, Chifeng 024076, China
| | - Lifeng Yan
- Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, China
| |
Collapse
|
9
|
Deep eutectic solvent assisted preparation of ZnO deposited carbonized wood for efficient CO2 storage and oil absorption. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Feng S, Du X, Luo J, Zhuang Y, Wang J, Wan Y. A review on facilitated transport membranes based on π-complexation for carbon dioxide separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Adegoke KA, Oyedotun KO, Ighalo J, Amaku JF, Olisah C, Adeola AO, Iwuozor KO, Akpomie KG, Conradie J. Cellulose derivatives and cellulose-metal-organic frameworks for CO2 adsorption and separation. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
12
|
Lu X, Que H, Gu X. Facile fabrication of lignin containing cellulose films using water as green solvent. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
|
14
|
Ho NAD, Leo CP. A review on the emerging applications of cellulose, cellulose derivatives and nanocellulose in carbon capture. ENVIRONMENTAL RESEARCH 2021; 197:111100. [PMID: 33812871 DOI: 10.1016/j.envres.2021.111100] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/17/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Carbon capture can be implemented at a large scale only if the CO2 selective materials are abundantly available at low cost. Since the sustainable requirement also elevated, the low-cost and biodegradable cellulosic materials are developed into CO2 selective adsorbent and membranes recently. The applications of cellulose, cellulosic derivatives and nanocellulose as CO2 selective adsorbents and membranes are reviewed here. The fabrication and modification strategies are discussed besides comparing their CO2 separation performance. Cellulose nanofibrils (CNFs) and cellulose nanocrystals (CNCs) isolated from cellulose possess a big surface area for mechanical enhancement and a great number of hydroxyl groups for modification. Nanocellulose aerogels with the large surface area were chemically modified to improve their selectivity towards CO2. Even with the reduction of surface area, amino-functionalized nanocellulose aerogels exhibited the satisfactory chemisorption of CO2 with a capacity of more than 2 mmol/g was recorded. Inorganic fillers such as silica, zeolite and MOFs were further incorporated into nanocellulose aerogels to enhance the physisorption of CO2 by increasing the surface area. Although CO2 adsorbents developed from cellulose and cellulose derivatives were less reported, their applications as the building blocks of CO2 separation membranes had been long studied. Cellulose acetate membranes were commercialized for CO2 separation, but their separation performance could be further improved with silane or inorganic filler. CNCs and CNFs enhanced the CO2 selectivity and permeance through polyvinyl alcohol coating on membranes, but only CNF membranes incorporated with MOFs were explored so far. Although some of these membranes surpassed the upper-bound of Robeson plot, their stability should be further investigated.
Collapse
Affiliation(s)
- Ngo Anh Dao Ho
- Faculty of Environment and Labour Safety, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City, Vietnam.
| | - C P Leo
- Faculty of Environment and Labour Safety, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City, Vietnam; School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
15
|
Wang H, Wang M, Liang X, Yuan J, Yang H, Wang S, Ren Y, Wu H, Pan F, Jiang Z. Organic molecular sieve membranes for chemical separations. Chem Soc Rev 2021; 50:5468-5516. [PMID: 33687389 DOI: 10.1039/d0cs01347a] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Molecular separations that enable selective transport of target molecules from gas and liquid molecular mixtures, such as CO2 capture, olefin/paraffin separations, and organic solvent nanofiltration, represent the most energy sensitive and significant demands. Membranes are favored for molecular separations owing to the advantages of energy efficiency, simplicity, scalability, and small environmental footprint. A number of emerging microporous organic materials have displayed great potential as building blocks of molecular separation membranes, which not only integrate the rigid, engineered pore structures and desirable stability of inorganic molecular sieve membranes, but also exhibit a high degree of freedom to create chemically rich combinations/sequences. To gain a deep insight into the intrinsic connections and characteristics of these microporous organic material-based membranes, in this review, for the first time, we propose the concept of organic molecular sieve membranes (OMSMs) with a focus on the precise construction of membrane structures and efficient intensification of membrane processes. The platform chemistries, designing principles, and assembly methods for the precise construction of OMSMs are elaborated. Conventional mass transport mechanisms are analyzed based on the interactions between OMSMs and penetrate(s). Particularly, the 'STEM' guidelines of OMSMs are highlighted to guide the precise construction of OMSM structures and efficient intensification of OMSM processes. Emerging mass transport mechanisms are elucidated inspired by the phenomena and principles of the mass transport processes in the biological realm. The representative applications of OMSMs in gas and liquid molecular mixture separations are highlighted. The major challenges and brief perspectives for the fundamental science and practical applications of OMSMs are tentatively identified.
Collapse
Affiliation(s)
- Hongjian Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Meidi Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xu Liang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Jinqiu Yuan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hao Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4 117585, Singapore
| | - Shaoyu Wang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yanxiong Ren
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hong Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Fusheng Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China and Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
16
|
Kunalan S, Dey K, Roy PK, Velachi V, Maiti PK, Palanivelu K, Jayaraman N. Efficient facilitated transport PETIM dendrimer-PVA-PEG/PTFE composite flat-bed membranes for selective removal of CO2. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.119007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Fabrication of mixed matrix membranes with zinc ion loaded titanium dioxide for improved CO2 separation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Preparation and performance characterization of novel PVA blended with fluorinated polyimide membrane for gas separation. HIGH PERFORM POLYM 2020. [DOI: 10.1177/0954008320959708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fluorinated polyimide and PVA blending membranes were prepared by aqueous solution casting. We chose a poly (amic acid) ammonium salt (PAAS) in aqueous solution based on a novel green strategy as the PI precursor. The blending membranes were characterized by ATR-FTIR, DSC, TGA and gas permeation measurement. The ATR-FTIR analysis revealed that the imidization reaction of 6FPI based on aqueous precursor was completed at 180°C and hydrogen bonds formed between PVA and 6FPI. 6FPI showed good compatibility with PVA segment in blending membranes without obvious separated phase structure. The blending membranes showed high separation properties, for blending with 6FPI the gas separation performance stability was improved due to the hydrogen bonds between hydroxyl groups of PVA and carbonyl groups of 6FPI, and the rigid structure of 6FPI. At high operating pressure 10 bar, the CO2 permeability and CO2/N2 selectivity remained rather high. Using water as the solvent in the PAAS synthesis and membrane preparation is more environmentally friendly and less costly.
Collapse
|
19
|
Zhou Y, Jia M, Zhang X, Yao J. Etched ZIF‐8 as a Filler in Mixed‐Matrix Membranes for Enhanced CO
2
/N
2
Separation. Chemistry 2020; 26:7918-7922. [DOI: 10.1002/chem.202000965] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/24/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Yichen Zhou
- College of Chemical Engineering, Jiangsu Key Laboratory for the Chemistry & Utilization of Agricultural and Forest BiomassJiangsu Key Laboratory of Biomass-Based Green Fuels and ChemicalsNanjing Forestry University Department Nanjing Jiangsu 210037 P.R. China
| | - Mingmin Jia
- College of Chemical Engineering, Jiangsu Key Laboratory for the Chemistry & Utilization of Agricultural and Forest BiomassJiangsu Key Laboratory of Biomass-Based Green Fuels and ChemicalsNanjing Forestry University Department Nanjing Jiangsu 210037 P.R. China
| | - Xiongfei Zhang
- College of Chemical Engineering, Jiangsu Key Laboratory for the Chemistry & Utilization of Agricultural and Forest BiomassJiangsu Key Laboratory of Biomass-Based Green Fuels and ChemicalsNanjing Forestry University Department Nanjing Jiangsu 210037 P.R. China
| | - Jianfeng Yao
- College of Chemical Engineering, Jiangsu Key Laboratory for the Chemistry & Utilization of Agricultural and Forest BiomassJiangsu Key Laboratory of Biomass-Based Green Fuels and ChemicalsNanjing Forestry University Department Nanjing Jiangsu 210037 P.R. China
| |
Collapse
|
20
|
Facilitated transport membranes by incorporating self-exfoliated covalent organic nanosheets for CO2/CH4 separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116457] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
21
|
Kan C, Song F, Shao X, Wu L, Zhu J. Fe(III) induced fluorescent probe based on triamine and rhodamine derivatives and its applications in biological imaging. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2019.112306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
22
|
Polyethyleneimine-functionalized phenolphthalein-based cardo poly(ether ether ketone) membrane for CO2 separation. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
23
|
Facile preparation of collagen fiber–glycerol-carboxymethyl cellulose composite film by immersing method. Carbohydr Polym 2020; 229:115429. [DOI: 10.1016/j.carbpol.2019.115429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/11/2019] [Accepted: 10/02/2019] [Indexed: 01/10/2023]
|
24
|
Zhang XF, Song L, Wang Z, Wang Y, Wan L, Yao J. Highly transparent graphene oxide/cellulose composite film bearing ultraviolet shielding property. Int J Biol Macromol 2020; 145:663-667. [DOI: 10.1016/j.ijbiomac.2019.12.241] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/21/2019] [Accepted: 12/27/2019] [Indexed: 01/17/2023]
|
25
|
Song L, Shu L, Wang Y, Zhang XF, Wang Z, Feng Y, Yao J. Metal nanoparticle-embedded bacterial cellulose aerogels via swelling-induced adsorption for nitrophenol reduction. Int J Biol Macromol 2020; 143:922-927. [DOI: 10.1016/j.ijbiomac.2019.09.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 02/05/2023]
|
26
|
Park CH, Lee JH, Kim NU, Kong CI, Kim JH, Kim JH. Solid-state facilitated transport of carbon monoxide through mixed matrix membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117373] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Integration of CdS particles into sodium alginate aerogel with enhanced photocatalytic performance. Int J Biol Macromol 2019; 141:1111-1117. [DOI: 10.1016/j.ijbiomac.2019.09.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
|
28
|
Zhang X, Ma X, Hou T, Guo K, Yin J, Wang Z, Shu L, He M, Yao J. Inorganic Salts Induce Thermally Reversible and Anti‐Freezing Cellulose Hydrogels. Angew Chem Int Ed Engl 2019; 58:7366-7370. [DOI: 10.1002/anie.201902578] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/17/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Xiong‐Fei Zhang
- College of Chemical EngineeringJiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest ResourcesJiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest BiomassNanjing Forestry University Nanjing 210037 China
| | - Xiaofeng Ma
- College of ScienceNanjing Forestry University Nanjing 210037 China
| | - Ting Hou
- College of ScienceNanjing Forestry University Nanjing 210037 China
| | - Kechun Guo
- College of ScienceNanjing Forestry University Nanjing 210037 China
| | - Jiayu Yin
- College of ScienceNanjing Forestry University Nanjing 210037 China
| | - Zhongguo Wang
- College of Chemical EngineeringJiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest ResourcesJiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest BiomassNanjing Forestry University Nanjing 210037 China
| | - Lian Shu
- College of Chemical EngineeringJiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest ResourcesJiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest BiomassNanjing Forestry University Nanjing 210037 China
| | - Ming He
- College of ScienceNanjing Forestry University Nanjing 210037 China
| | - Jianfeng Yao
- College of Chemical EngineeringJiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest ResourcesJiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest BiomassNanjing Forestry University Nanjing 210037 China
| |
Collapse
|
29
|
Abstract
Due to the high specific surface area, high mechanical strength and broad possibility of surface modification, nanocellulose has obtained much attention as a new class of bio-based nanomaterials with promising potential in a wide variety of applications. Recently, a considerable amount of research has been aimed to the fabrication of nanocellulose based hybrid membranes for water treatment. However, nanocellulose based hybrid gas separation membrane is still a new research area. Herein, we force on recent advancements in the fabrication methods and separation performances of nanocellulose-based hybrid membranes for CO2 separation, the transport mechanisms involved, along with the challenges in the utilization of nanocellulose in membranes. Finally, some perspectives on future R&D of nanocellulose-based membranes for CO2 separation are proposed.
Collapse
|
30
|
Zhang X, Ma X, Hou T, Guo K, Yin J, Wang Z, Shu L, He M, Yao J. Inorganic Salts Induce Thermally Reversible and Anti‐Freezing Cellulose Hydrogels. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902578] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiong‐Fei Zhang
- College of Chemical EngineeringJiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest ResourcesJiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest BiomassNanjing Forestry University Nanjing 210037 China
| | - Xiaofeng Ma
- College of ScienceNanjing Forestry University Nanjing 210037 China
| | - Ting Hou
- College of ScienceNanjing Forestry University Nanjing 210037 China
| | - Kechun Guo
- College of ScienceNanjing Forestry University Nanjing 210037 China
| | - Jiayu Yin
- College of ScienceNanjing Forestry University Nanjing 210037 China
| | - Zhongguo Wang
- College of Chemical EngineeringJiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest ResourcesJiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest BiomassNanjing Forestry University Nanjing 210037 China
| | - Lian Shu
- College of Chemical EngineeringJiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest ResourcesJiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest BiomassNanjing Forestry University Nanjing 210037 China
| | - Ming He
- College of ScienceNanjing Forestry University Nanjing 210037 China
| | - Jianfeng Yao
- College of Chemical EngineeringJiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest ResourcesJiangsu Key Lab for the Chemistry and Utilization of Agricultural and Forest BiomassNanjing Forestry University Nanjing 210037 China
| |
Collapse
|
31
|
Dai Z, Deng J, Yu Q, Helberg RML, Janakiram S, Ansaloni L, Deng L. Fabrication and Evaluation of Bio-Based Nanocomposite TFC Hollow Fiber Membranes for Enhanced CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10874-10882. [PMID: 30794742 DOI: 10.1021/acsami.8b19651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanocellulose is a promising and sustainable biobased nanomaterial because of its excellent mechanical properties, biocompatibility, natural abundance, and especially its high aspect ratio. Interest in applying nanocellulose as nanofillers in membrane fabrication has been growing rapidly in recent years. In the present work, nanocellulose crystals (CNCs) and nanocellulose fibers (CNFs) were incorporated into polyvinyl alcohol (PVA) to prepare evenly dispersed nanocomposites. The resultant nanocomposite materials containing up to 80 wt % of nanocellulose were coated as defect-free, thin-film-composite selective layers onto hollow fiber membrane substrates via dip-coating for efficient CO2 capture. Thermogravimetric analysis, Fourier-transform infrared, X-ray diffraction, scanning transmission electron microscopy, scanning electron microscopy, and humid mixed gas permeation test were used to evaluate the nanocomposite materials and the membranes. The resultant PVA/CNC nanocomposite membranes exhibit both higher CO2 permeance and CO2/N2 selectivity compared to the PVA/CNF membranes and neat PVA membranes. The addition of CNCs showed more positive effects on the CO2 permeation compared to CNFs. Under optimized conditions, CO2 permeance of 672 GPU with a CO2/N2 selectivity of 43.6 was obtained with a PVA/CNC membrane. Excellent long-term stability of the membrane was also documented within a period of up to 1 year. The interface between the polymer phase and charged CNFs is believed to form fast gas transport channels at the humid state and thus enhances CO2 permeation.
Collapse
Affiliation(s)
- Zhongde Dai
- Department of Chemical Engineering , Norwegian University of Science and Technology , Trondheim 7491 , Norway
| | - Jing Deng
- Department of Chemical Engineering , Norwegian University of Science and Technology , Trondheim 7491 , Norway
| | - Qiang Yu
- Department of Chemical Engineering , Norwegian University of Science and Technology , Trondheim 7491 , Norway
| | - Ragne M L Helberg
- Department of Chemical Engineering , Norwegian University of Science and Technology , Trondheim 7491 , Norway
| | - Saravanan Janakiram
- Department of Chemical Engineering , Norwegian University of Science and Technology , Trondheim 7491 , Norway
| | - Luca Ansaloni
- Department of Chemical Engineering , Norwegian University of Science and Technology , Trondheim 7491 , Norway
| | - Liyuan Deng
- Department of Chemical Engineering , Norwegian University of Science and Technology , Trondheim 7491 , Norway
| |
Collapse
|
32
|
|